1
|
Khalili MR, Ahmadloo S, Mousavi SA, Joghataei MT, Brouki Milan P, Naderi Gharahgheshlagh S, Mohebi SL, Haramshahi SMA, Hosseinpour Sarmadi V. Navigating mesenchymal stem cells doses and delivery routes in heart disease trials: A comprehensive overview. Regen Ther 2025; 29:117-127. [PMID: 40162019 PMCID: PMC11952810 DOI: 10.1016/j.reth.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
In recent years, various clinical trials have been designed and implemented using mesenchymal stem cells (MSCs) for the treatment of heart diseases. Clinical trials exploring MSC-based treatments have proliferated, yet the lack of standardized protocols for MSC administration remains a significant challenge. Despite the growing popularity of MSC trials, questions persist regarding optimal dosing, administration routes, and frequency to achieve safety and efficacy, particularly in the context of cardiac regeneration. The current study has reviewed the clinical trials that have used MSCs for the treatment of heart diseases since 2009. The findings reveal diverse transplantation methods and varying MSCs quantities, highlighting the absence of a universal guideline for MSCs utilization in heart disease clinical trials.
Collapse
Affiliation(s)
- Mohammad Reza Khalili
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Salma Ahmadloo
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Seyed Amin Mousavi
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seyedeh Lena Mohebi
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amin Haramshahi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Zhang JJ, Pogwizd SM, Fukuda K, Zimmermann WH, Fan C, Hare JM, Bolli R, Menasché P. Trials and tribulations of cell therapy for heart failure: an update on ongoing trials. Nat Rev Cardiol 2025; 22:372-385. [PMID: 39548233 DOI: 10.1038/s41569-024-01098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Heart failure (HF) remains a leading cause of mortality, responsible for 13% of all deaths worldwide. The prognosis for patients with HF is poor, with only a 50% survival rate within 5 years. A major challenge of ischaemia-driven HF is the loss of cardiomyocytes, compounded by the minimal regenerative capacity of the adult heart. To date, replacement of irreversibly damaged heart muscle can only be achieved by complete heart transplantation. In the past 20 years, cell therapy has emerged and evolved as a promising avenue for cardiac repair and regeneration. During this time, cell therapy for HF has encountered substantial barriers in both preclinical studies and clinical trials but the field continues to progress and evolve from lessons learned from such research. In this Review, we provide an overview of ongoing trials of cell-based and cell product-based therapies for the treatment of HF. Findings from these trials will facilitate the clinical translation of cardiac regenerative and reparative therapies not only by evaluating the safety and efficacy of specific cell-based therapeutics but also by establishing the feasibility of novel or underexplored treatment protocols such as repeated intravenous dosing, personalized patient selection based on pharmacogenomics, systemic versus intramural cell delivery, and epicardial engraftment of engineered tissue products.
Collapse
Affiliation(s)
- Jianyi Jay Zhang
- Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA.
- Division of Cardiovascular Disease, Department of Medicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Steven M Pogwizd
- Division of Cardiovascular Disease, Department of Medicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen - Georg-August-University, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Lower Saxony, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Joshua M Hare
- Department of Medicine, Interdisciplinary Stem Cell Institute (ISCI), University of Miami, Miami, FL, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Université de Paris, PARCC, INSERM, Paris, France
| |
Collapse
|
3
|
Nappi F. Myocarditis and Inflammatory Cardiomyopathy in Dilated Heart Failure. Viruses 2025; 17:484. [PMID: 40284927 PMCID: PMC12031395 DOI: 10.3390/v17040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Inflammatory cardiomyopathy is a condition that is characterised by the presence of inflammatory cells in the myocardium, which can lead to a significant deterioration in cardiac function. The etiology of this condition involves multiple factors, both infectious and non-infectious causes. While it is primarily associated with viral infections, other potential causes include bacterial, protozoal, or fungal infections, as well as a wide variety of toxic substances and drugs, and systemic immune-mediated pathological conditions. In spite of comprehensive investigation, the presence of inflammatory cardiomyopathy accompanied by left ventricular dysfunction, heart failure or arrhythmia is indicative of an unfavourable outcome. The reasons for the occurrence of either favourable outcomes, characterised by the absence of residual myocardial injury, or unfavourable outcomes, marked by the development of dilated cardiomyopathy, in patients afflicted by the condition remain to be elucidated. The relative contributions of pathogenic agents, genomic profiles of the host, and environmental factors in disease progression and resolution remain subjects of ongoing discourse. This includes the determination of which viruses function as active inducers and which merely play a bystander role. It remains unknown which changes in the host immune profile are critical in determining the outcome of myocarditis caused by various viruses, including coxsackievirus B3 (CVB3), adenoviruses, parvoviruses B19 and SARS-CoV-2. The objective of this review is unambiguous: to provide a concise summary and comprehensive assessment of the extant evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy. Its focus is exclusively on virus-induced and virus-associated myocarditis. In addition, the extant lacunae of knowledge in this field are identified and the extant experimental models are evaluated, with the aim of proposing future directions for the research domain. This includes differential gene expression that regulates iron and lipid and metabolic remodelling. Furthermore, the current state of knowledge regarding the cardiovascular implications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is also discussed, along with the open questions that remain to be addressed.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
4
|
Carlson WD, Bosukonda D, Keck PC, Bey P, Tessier SN, Carlson FR. Cardiac preservation using ex vivo organ perfusion: new therapies for the treatment of heart failure by harnessing the power of growth factors using BMP mimetics like THR-184. Front Cardiovasc Med 2025; 12:1535778. [PMID: 40171539 PMCID: PMC11960666 DOI: 10.3389/fcvm.2025.1535778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
As heart transplantation continues to be the gold standard therapy for end-stage heart failure, the imbalance between the supply of hearts, and the demand for them, continues to get worse. In the US alone, with less than 4,000 hearts suitable for transplant and over 100,000 potential recipients, this therapy is only available to a very few. The use of hearts Donated after Circulatory Death (DCD) and Donation after Brain Death (DBD) using ex vivo machine perfusion (EVMP) is a promising approach that has already increased the availability of suitable organs for heart transplantation. EVMP offers the promise of enabling the expansion of the overall number of heart transplants and lower rates of early graft dysfunction. These are realized through (1) safe extension of the time between procurement and transplantation and (2) ex vivo assessment of preserved hearts. Notably, ex vivo perfusion has facilitated the donation of DCD hearts and improved the success of transplantation. Nevertheless, DCD hearts suffer from serious preharvest ischemia/reperfusion injury (IRI). Despite these developments, only 40% of hearts offered for transplantation can be utilized. These devices do offer an opportunity to evaluate donor hearts for transplantation, resuscitate organs previously deemed unsuitable for transplantation, and provide a platform for the development of novel therapeutics to limit cardiac injury. Bone Morphogenetic Protein (BMP) signaling is a new target which holds the potential for ameliorating myocardial IRI. Recent studies have demonstrated that BMP signaling has a significant role in blocking the deleterious effects of injury to the heart. We have designed novel small peptide BMP mimetics that act via activin receptor-like kinase (ALK3), a type I BMP receptor. They are capable of (1) inhibiting inflammation and apoptosis, (2) blocking/reversing the epithelial-mesenchymal transition (EMT) and fibrosis, and (3) promoting tissue regeneration. In this review, we explore the promise that novel therapeutics, including these BMP mimetics, offer for the protection of hearts against myocardial injury during ex vivo transportation for cardiac transplantation. This protection represents a significant advance and a promising ex vivo therapeutic approach to expanding the donor pool by increasing the number of transplantable hearts.
Collapse
Affiliation(s)
- William D. Carlson
- Division of Cardiology, Mass General Hospital/Harvard, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Therapeutics by Design, Weston, MA, United States
| | - Dattatreyamurty Bosukonda
- Division of Cardiology, Mass General Hospital/Harvard, Boston, MA, United States
- Therapeutics by Design, Weston, MA, United States
| | | | - Philippe Bey
- Therapeutics by Design, Weston, MA, United States
| | - Shannon N. Tessier
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children’s Hospital, Boston, MA, United States
| | | |
Collapse
|
5
|
Tang XL, Wysoczynski M, Gumpert AM, Solanki M, Li Y, Wu WJ, Zheng S, Ruble H, Li H, Stowers H, Zheng S, Ou Q, Tanveer N, Slezak J, Kalra DK, Bolli R. Intravenous infusions of mesenchymal stromal cells have cumulative beneficial effects in a porcine model of chronic ischaemic cardiomyopathy. Cardiovasc Res 2024; 120:1939-1952. [PMID: 39163570 PMCID: PMC11630033 DOI: 10.1093/cvr/cvae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
AIMS The development of cell therapy as a widely available clinical option for ischaemic cardiomyopathy is hindered by the invasive nature of current cell delivery methods. Furthermore, the rapid disappearance of cells after transplantation provides a cogent rationale for using repeated cell doses, which, however, has not been done thus far in clinical trials because it is not feasible with invasive approaches. The goal of this translational study was to test the therapeutic utility of the intravenous route for cell delivery. METHODS AND RESULTS Pigs with chronic ischaemic cardiomyopathy induced by myocardial infarction received one or three intravenous doses of allogeneic bone marrow mesenchymal stromal cells (MSCs) or placebo 35 days apart. Rigour guidelines, including blinding and randomization, were strictly followed. A comprehensive assessment of left ventricular (LV) function was conducted with three independent methods (echocardiography, magnetic resonance imaging, and haemodynamic studies). The results demonstrate that three doses of MSCs improved both load-dependent and independent indices of LV function and reduced myocardial hypertrophy and fibrosis; in contrast, one dose failed to produce most of these benefits. CONCLUSIONS To our knowledge, this is the first study to show that intravenous infusion of a cell product improves LV function and structure in a large animal model of chronic ischaemic cardiomyopathy and that repeated infusions are necessary to produce robust effects. This study, conducted in a clinically relevant model, supports a new therapeutic strategy based on repeated intravenous infusions of allogeneic MSCs and provides a foundation for a first-in-human trial testing this strategy in patients with chronic ischaemic cardiomyopathy.
Collapse
Affiliation(s)
- Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Marcin Wysoczynski
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Anna M Gumpert
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Mitesh Solanki
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Yan Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Wen-Jian Wu
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Shirong Zheng
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Halina Ruble
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Hong Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Heather Stowers
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Shengnan Zheng
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Qinghui Ou
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Nida Tanveer
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Bratislava, Slovakia
| | - Dinesh K Kalra
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| |
Collapse
|
6
|
Miyasako K, Nakashima A, Ishiuchi N, Tanaka Y, Morimoto K, Sasaki K, Nagamatsu S, Matsuda G, Masaki T. Impact of immunosuppressive drugs on efficacy of mesenchymal stem cell therapy for suppressing renal fibrosis. Stem Cells Transl Med 2024; 13:1067-1085. [PMID: 39401338 PMCID: PMC11555481 DOI: 10.1093/stcltm/szae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/15/2024] [Indexed: 11/13/2024] Open
Abstract
Preemptive regenerative medicine using mesenchymal stem cells (MSCs) may provide a novel therapeutic approach to prevent the progression from organ damage to organ failure. Although immunosuppressive drugs are often used in patients with organ disorder, their impact on MSC therapy remains unclear. We investigated the effects of immunosuppressive drugs on the therapeutic efficacy of MSCs. We created unilateral ureteral obstruction models, as a well-established model of renal fibrosis, a preliminary stage of organ failure. Three immunosuppressive drugs (methylprednisolone, cyclosporine, and cyclophosphamide) were intraperitoneally administered 3 days after surgery, and MSCs were injected via tail vein the following day. Preadministration of methylprednisolone or cyclophosphamide interfered with MSC activation by reducing expression of interferon-gamma (IFN-γ) and high-mobility group box-1 protein, thus significantly attenuating the therapeutic efficacy of MSCs. Preadministration of cyclophosphamide downregulated the expression of stromal cell-derived factor-1/C-X-C motif ligand 12, which is a potent migration factor for MSCs, resulting in reduced MSC engraftment in the renal cortex. IFN-γ-preconditioned activated MSCs were unaffected by these drugs and maintained their beneficial therapeutic effects. Cyclosporine preadministration had no effect on the therapeutic efficacy of MSCs. Our study demonstrated that the administration of certain immunosuppressive drugs interfered with MSC activation and engraftment at the site of injury, resulting in a significant attenuation of their therapeutic efficacy. These findings provide crucial information for selecting patients suitable for MSC therapy. Use of MSCs preactivated with IFN-γ or other means is preferred for patients on methylprednisolone or cyclophosphamide.
Collapse
Affiliation(s)
- Kisho Miyasako
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
- Department of Nephrology, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, Japan
| | - Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Yoshiki Tanaka
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Keisuke Morimoto
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Shogo Nagamatsu
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Go Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
- TWOCELLS Company, Limited, 16-35 Hijiyama-honmachi, Minami-ku, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| |
Collapse
|
7
|
Bezstarosti S, Erpicum P, Maggipinto G, Dreyer GJ, Reinders MEJ, Meziyerh S, Roelen DL, De Fijter JW, Kers J, Weekers L, Beguin Y, Jouret F, Heidt S. Allogeneic mesenchymal stromal cell therapy in kidney transplantation: should repeated human leukocyte antigen mismatches be avoided? Front Genet 2024; 15:1436194. [PMID: 39399215 PMCID: PMC11466828 DOI: 10.3389/fgene.2024.1436194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/15/2024] [Indexed: 10/15/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) have immunomodulatory properties and are therefore considered promising tools in kidney transplantation. Although most studies have been conducted with autologous MSCs, using allogeneic MSCs as an off-the-shelf product is more feasible in clinical settings. However, allogeneic MSCs could potentially induce an immune response, which might eventually be directed towards the kidney allograft because of shared human leukocyte antigen (HLA) epitope mismatches between the kidney and MSC donor. In this study, we performed in-depth analyses of two cohorts (n = 20) that received third-party MSC therapy after kidney transplantation. While the Neptune Study from Leiden University Medical Center specifically selected MSC to avoid repeated HLA antigen mismatches between kidney and MSC donors, the study from the University of Liège did not perform specific MSC selection. The comparative analyses of amino acid mismatches between these cohorts showed that MSC selection to avoid repeated HLA mismatches at the split antigen level was not sufficient to prevent repeated mismatches at the amino acid level. However, repeated amino acid mismatches were not associated with the occurrence of donor-specific antibodies (DSAs). Thus, the clinical relevance of repeated amino acid mismatches seems to be limited with regard to the risk of DSA formation. Since DSA formation was limited (3 of 20 patients) in this study, larger studies are required to investigate the relevance of preventing repeated HLA mismatches in allogeneic MSC therapy in kidney transplantation.
Collapse
Affiliation(s)
- Suzanne Bezstarosti
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, Netherlands
| | - Pauline Erpicum
- Laboratory of Translational Research in Nephrology (LTRN), Interdisciplinary Cluster for Applied Genoproteomics (GIGA) - Cardiovascular Sciences, University of Liège, Liège, Belgium
- Division of Nephrology, CHU Liège, University of Liège, Liège, Belgium
| | - Gianni Maggipinto
- Division of Immuno-Hematology, CHU Liège, University of Liège, Liège, Belgium
| | - Geertje J. Dreyer
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, Netherlands
| | - Marlies E. J. Reinders
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, Netherlands
| | - Soufian Meziyerh
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, Netherlands
| | - Dave L. Roelen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Johan W. De Fijter
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, Netherlands
| | - Jesper Kers
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Laurent Weekers
- Division of Nephrology, CHU Liège, University of Liège, Liège, Belgium
| | - Yves Beguin
- Division of Hematology, CHU Liège, University of Liège, Liège, Belgium
| | - François Jouret
- Laboratory of Translational Research in Nephrology (LTRN), Interdisciplinary Cluster for Applied Genoproteomics (GIGA) - Cardiovascular Sciences, University of Liège, Liège, Belgium
- Division of Nephrology, CHU Liège, University of Liège, Liège, Belgium
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
8
|
Niroomand A, Nita GE, Lindstedt S. Machine Perfusion and Bioengineering Strategies in Transplantation-Beyond the Emerging Concepts. Transpl Int 2024; 37:13215. [PMID: 39267617 PMCID: PMC11390383 DOI: 10.3389/ti.2024.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Solid organ transplantation has progressed rapidly over the decades from the first experimental procedures to its role in the modern era as an established treatment for end-stage organ disease. Solid organ transplantation including liver, kidney, pancreas, heart, and lung transplantation, is the definitive option for many patients, but despite the advances that have been made, there are still significant challenges in meeting the demand for viable donor grafts. Furthermore, post-operatively, the recipient faces several hurdles, including poor early outcomes like primary graft dysfunction and acute and chronic forms of graft rejection. In an effort to address these issues, innovations in organ engineering and treatment have been developed. This review covers efforts made to expand the donor pool including bioengineering techniques and the use of ex vivo graft perfusion. It also covers modifications and treatments that have been trialed, in addition to research efforts in both abdominal organs and thoracic organs. Overall, this article discusses recent innovations in machine perfusion and organ bioengineering with the aim of improving and increasing the quality of donor organs.
Collapse
Affiliation(s)
- Anna Niroomand
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - George Emilian Nita
- Department of Transplantation Surgery, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Division of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Sandra Lindstedt
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Zhidu S, Ying T, Rui J, Chao Z. Translational potential of mesenchymal stem cells in regenerative therapies for human diseases: challenges and opportunities. Stem Cell Res Ther 2024; 15:266. [PMID: 39183341 PMCID: PMC11346273 DOI: 10.1186/s13287-024-03885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Advances in stem cell technology offer new possibilities for patients with untreated diseases and disorders. Stem cell-based therapy, which includes multipotent mesenchymal stem cells (MSCs), has recently become important in regenerative therapies. MSCs are multipotent progenitor cells that possess the ability to undergo in vitro self-renewal and differentiate into various mesenchymal lineages. MSCs have demonstrated promise in several areas, such as tissue regeneration, immunological modulation, anti-inflammatory qualities, and wound healing. Additionally, the development of specific guidelines and quality control methods that ultimately result in the therapeutic application of MSCs has been made easier by recent advancements in the study of MSC biology. This review discusses the latest clinical uses of MSCs obtained from the umbilical cord (UC), bone marrow (BM), or adipose tissue (AT) in treating various human diseases such as pulmonary dysfunctions, neurological disorders, endocrine/metabolic diseases, skin burns, cardiovascular conditions, and reproductive disorders. Additionally, this review offers comprehensive information regarding the clinical application of targeted therapies utilizing MSCs. It also presents and examines the concept of MSC tissue origin and its potential impact on the function of MSCs in downstream applications. The ultimate aim of this research is to facilitate translational research into clinical applications in regenerative therapies.
Collapse
Affiliation(s)
- Song Zhidu
- Department of Ophthalmology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China
| | - Tao Ying
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiang Rui
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhang Chao
- Department of Ophthalmology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China.
| |
Collapse
|
10
|
Yahyazadeh R, Baradaran Rahimi V, Askari VR. Stem cell and exosome therapies for regenerating damaged myocardium in heart failure. Life Sci 2024; 351:122858. [PMID: 38909681 DOI: 10.1016/j.lfs.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Finding novel treatments for cardiovascular diseases (CVDs) is a hot topic in medicine; cell-based therapies have reported promising news for controlling dangerous complications of heart disease such as myocardial infarction (MI) and heart failure (HF). Various progenitor/stem cells were tested in various in-vivo, in-vitro, and clinical studies for regeneration or repairing the injured tissue in the myocardial to accelerate the healing. Fetal, adult, embryonic, and induced pluripotent stem cells (iPSC) have revealed the proper potency for cardiac tissue repair. As an essential communicator among cells, exosomes with specific contacts (proteins, lncRNAs, and miRNAs) greatly promote cardiac rehabilitation. Interestingly, stem cell-derived exosomes have more efficiency than stem cell transplantation. Therefore, stem cells induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), cardiac stem cells (CDC), and skeletal myoblasts) and their-derived exosomes will probably be considered an alternative therapy for CVDs remedy. In addition, stem cell-derived exosomes have been used in the diagnosis/prognosis of heart diseases. In this review, we explained the advances of stem cells/exosome-based treatment, their beneficial effects, and underlying mechanisms, which will present new insights in the clinical field in the future.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Nativi-Nicolau J, Yilmaz A, Dasgupta N, Macey R, Cochrane J, Peatman J, Summers C, Luth J, Zolty R. Six-minute walk test as clinical end point in cardiomyopathy clinical trials, including ATTR-CM: a systematic literature review. J Comp Eff Res 2024; 13:e230158. [PMID: 38869839 PMCID: PMC11234454 DOI: 10.57264/cer-2023-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Aim: The six-minute walk test (6MWT) is a common measure of functional capacity in patients with heart failure (HF). Primary clinical study end points in cardiomyopathy (CM) trials, including transthyretin-mediated amyloidosis with CM (ATTR-CM), are often limited to hospitalization and mortality. Objective: To investigate the relationship between the 6MWT and hospitalization or mortality in CM, including ATTR-CM. Method: A PRISMA-guided systematic literature review was conducted using search terms for CM, 6MWT, hospitalization and mortality. Results: Forty-one studies were identified that reported 6MWT data and hospitalization or mortality data for patients with CM. The data suggest that a greater 6MWT distance is associated with a reduced risk of hospitalization or mortality in CM. Conclusion: The 6MWT is an accepted alternative end point in CM trials, including ATTR-CM.
Collapse
Affiliation(s)
| | - Ali Yilmaz
- Division of Cardiovascular Imaging, University Hospital Münster, 48149, Münster, Germany
| | - Noel Dasgupta
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Richard Macey
- Adelphi Values PROVE, Bollington, Cheshire, UK, SK10 5JB
| | - James Cochrane
- Adelphi Values PROVE, Bollington, Cheshire, UK, SK10 5JB
| | - Judith Peatman
- Adelphi Values PROVE, Bollington, Cheshire, UK, SK10 5JB
| | - Catherine Summers
- Medical Affairs Department, Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | - Jennifer Luth
- Medical Affairs Department, Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | - Ronald Zolty
- Division of Cardiovascular Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198 USA
| |
Collapse
|
12
|
Goto T, Nakamura Y, Ito Y, Miyagawa S. Regenerative medicine in cardiovascular disease. Regen Ther 2024; 26:859-866. [PMID: 39430582 PMCID: PMC11490749 DOI: 10.1016/j.reth.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024] Open
Abstract
Owing to the rapid increase in the number of people with severe heart failure, regenerative medicine is anticipated to play a role in overcoming the limitations inherent in existing surgical interventions. There are essentially two types of cardiac regenerative therapies for a failing heart. Cellular regenerative therapies using various stem cells improve the functional recovery of the heart mainly by cytokine paracrine effects. The implantation of induced pluripotent stem cell-derived cardiomyocytes can contribute not only to the inhibition of adverse heart remodeling by paracrine effects but also to the supply of newly born functional myocytes with the recipient myocardium as "mechanically working cells." Cell transplantation, including autologous myoblast transplantation, reduces heart failure exacerbations and benefits patients without the need for other treatment options. Although cellular therapy is currently the mainstream approach, it requires an in-house cell-processing center with an aseptic environment. In addition, these stem cells are usually introduced via several invasive delivery methods, including intracoronary administration, and cellular sheet implantation. Simplifying the culture methods for these cells is a crucial problem that needs to be resolved. Drug-induced regenerative therapy is another option that enhances self-endogenous regenerative systems in the human body and does not require invasive methods or cell cultures. Therefore, drug-induced regenerative therapies may overcome the disadvantages of these cellular therapies. The purpose of this report is to summarize cell transplantation therapy in the cardiovascular system and regenerative therapy for heart failure using an autologous endogenous regenerative system.
Collapse
Affiliation(s)
- Takasumi Goto
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Cardiovascular Surgery, Toyonaka Municipal Hospital, Osaka, Japan
| | - Yuki Nakamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshito Ito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
13
|
Olatunji G, Kokori E, Yusuf I, Ayanleke E, Damilare O, Afolabi S, Adetunji B, Mohammed S, Akinmoju O, Aboderin G, Aderinto N. Stem cell-based therapies for heart failure management: a narrative review of current evidence and future perspectives. Heart Fail Rev 2024; 29:573-598. [PMID: 37733137 DOI: 10.1007/s10741-023-10351-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Heart failure (HF) is a prevalent and debilitating global cardiovascular condition affecting around 64 million individuals, placing significant strain on healthcare systems and diminishing patients' quality of life. The escalating prevalence of HF underscores the urgent need for innovative therapeutic approaches that target the root causes and aim to restore normal cardiac function. Stem cell-based therapies have emerged as promising candidates, representing a fundamental departure from conventional treatments focused primarily on symptom management. This review explores the evolving landscape of stem cell-based therapies for HF management. It delves into the mechanisms of action, clinical evidence from both positive and negative outcomes, ethical considerations, and regulatory challenges. Key findings include the potential for improved cardiac function, enhanced quality of life, and long-term benefits associated with stem cell therapies. However, adverse events and patient vulnerabilities necessitate stringent safety assessments. Future directions in stem cell-based HF therapies include enhancing efficacy and safety through optimized stem cell types, delivery techniques, dosing strategies, and long-term safety assessments. Personalized medicine, combining therapies, addressing ethical and regulatory challenges, and expanding access while reducing costs are crucial aspects of the evolving landscape.
Collapse
Affiliation(s)
- Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Ismaila Yusuf
- Department of Medicine and Surgery, Obafemi Awolowo University, Osun, Nigeria
| | - Emmanuel Ayanleke
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Olakanmi Damilare
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Samson Afolabi
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Busayo Adetunji
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Saad Mohammed
- Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
| | | | - Gbolahan Aboderin
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria.
| |
Collapse
|
14
|
Abouzid MR, Umer AM, Jha SK, Akbar UA, Khraisat O, Saleh A, Mohamed K, Esteghamati S, Kamel I. Stem Cell Therapy for Myocardial Infarction and Heart Failure: A Comprehensive Systematic Review and Critical Analysis. Cureus 2024; 16:e59474. [PMID: 38832190 PMCID: PMC11145929 DOI: 10.7759/cureus.59474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 06/05/2024] Open
Abstract
In exploring therapeutic options for ischemic heart disease (IHD) and heart failure, cell-based cardiac repair has gained prominence. This systematic review delves into the current state of knowledge surrounding cell-based therapies for cardiac repair. Employing a comprehensive search across relevant databases, the study identifies 35 included studies with diverse cell types and methodologies. Encouragingly, these findings reveal the promise of cell-based therapies in cardiac repair, demonstrating significant enhancements in left ventricular ejection fraction (LVEF) across the studies. Mechanisms of action involve growth factors that stimulate angiogenesis, differentiation, and the survival of transplanted cells. Despite these positive outcomes, challenges persist, including low engraftment rates, limitations in cell differentiation, and variations in clinical reproducibility. The optimal dosage and frequency of cell administration remain subjects of debate, with potential benefits from repeated dosing. Additionally, the choice between autologous and allogeneic stem cell transplantation poses a critical decision. This systematic review underscores the potential of cell-based therapies for cardiac repair, bearing implications for innovative treatments in heart diseases. However, further research is imperative to optimize cell type selection, delivery techniques, and long-term efficacy, fostering a more comprehensive understanding of cell-based cardiac repair.
Collapse
Affiliation(s)
- Mohamed R Abouzid
- Internal Medicine, Baptist Hospitals of Southeast Texas, Beaumont, USA
| | - Ahmed Muaaz Umer
- Internal Medicine Residency, Camden Clark Medical Center, Parkersburg, USA
| | - Suman Kumar Jha
- Internal Medicine, Sheer Memorial Adventist Hospital, Banepa, NPL
| | - Usman A Akbar
- Internal Medicine, Camden Clark Medical Center, Parkersburg, USA
| | - Own Khraisat
- Internal Medicine, King Hussein Medical City, Amman, JOR
| | - Amr Saleh
- Cardiovascular Medicine, Yale School of Medicine, New Haven, USA
| | - Kareem Mohamed
- Internal Medicine, University of Missouri Kansas City, Kansas City, USA
| | | | - Ibrahim Kamel
- Internal Medicine, Steward Carney Hospital, Boston, USA
| |
Collapse
|
15
|
Drera A, Rodella L, Brangi E, Riccardi M, Vizzardi E. Endothelial Dysfunction in Heart Failure: What Is Its Role? J Clin Med 2024; 13:2534. [PMID: 38731063 PMCID: PMC11084443 DOI: 10.3390/jcm13092534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The endothelium is a continuous layer of cells that coats the interior walls of arteries, capillaries, and veins. It has an essential regulatory role in hemostatic function, vascular tone, inflammation, and platelet activity. Endothelial dysfunction is characterized by a shift to a proinflammatory and prothrombic state, and it could have a bidirectional relationship with heart failure (HF). Due to neurohormonal activation and shear stress, HFrEF may promote endothelial dysfunction, increase ROS synthesis, and reduce nitric oxide production. Different studies have also shown that endothelium function is damaged in HFpEF because of a systemic inflammatory state. Some clinical trials suggest that drugs that have an effect on endothelial dysfunction in patients with HF or cardiovascular disease may be a therapeutic option. The aim of this review is to highlight the pathogenetic correlation between endothelial dysfunction and heart failure and the related potential therapeutic options.
Collapse
Affiliation(s)
- Andrea Drera
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy; (A.D.); (L.R.); (E.B.); (M.R.)
| | - Luca Rodella
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy; (A.D.); (L.R.); (E.B.); (M.R.)
| | - Elisa Brangi
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy; (A.D.); (L.R.); (E.B.); (M.R.)
| | - Mauro Riccardi
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy; (A.D.); (L.R.); (E.B.); (M.R.)
| | - Enrico Vizzardi
- Cardiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Spedali Civili di Brescia, 23123 Brescia, Italy
| |
Collapse
|
16
|
Paresishvili T, Kakabadze Z. Freeze-Dried Mesenchymal Stem Cells: From Bench to Bedside. Review. Adv Biol (Weinh) 2024; 8:e2300155. [PMID: 37990389 DOI: 10.1002/adbi.202300155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Indexed: 11/23/2023]
Abstract
This review describes the freeze-dried mesenchymal stem cells (MSCs) and their ability to restore damaged tissues and organs. An analysis of the literature shows that after the lyophilization MSCs retain >80% of paracrine factors and that the mechanism of their action on the restoration of damaged tissues and organs is similar to the mechanism of action of paracrine factors in fresh and cryopreserved mesenchymal stem cells. Based on the own materials, the use of paracrine factors of freeze-dried MSCs in vivo and in vitro for the treatment of various diseases of organs and tissues has shown to be effective. The study also discusses about the advantages and disadvantages of freeze-dried MSCs versus cryopreserved MSCs. However, for the effective use of freeze-dried MSCs in clinical practice, a more detailed study of the mechanism of interaction of paracrine factors of freeze-dried MSCs with target cells and tissues is required. It is also necessary to identify possible other specific paracrine factors of freeze-dried MSCs. In addition, develop new therapeutic strategies for the use of freeze-dried MSCs in regenerative medicine and tissue bioengineering.
Collapse
Affiliation(s)
- Teona Paresishvili
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, 0186, Georgia
| | - Zurab Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, 0186, Georgia
| |
Collapse
|
17
|
Chowdhury MA, Zhang JJ, Rizk R, Chen WCW. Stem cell therapy for heart failure in the clinics: new perspectives in the era of precision medicine and artificial intelligence. Front Physiol 2024; 14:1344885. [PMID: 38264333 PMCID: PMC10803627 DOI: 10.3389/fphys.2023.1344885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Stem/progenitor cells have been widely evaluated as a promising therapeutic option for heart failure (HF). Numerous clinical trials with stem/progenitor cell-based therapy (SCT) for HF have demonstrated encouraging results, but not without limitations or discrepancies. Recent technological advancements in multiomics, bioinformatics, precision medicine, artificial intelligence (AI), and machine learning (ML) provide new approaches and insights for stem cell research and therapeutic development. Integration of these new technologies into stem/progenitor cell therapy for HF may help address: 1) the technical challenges to obtain reliable and high-quality therapeutic precursor cells, 2) the discrepancies between preclinical and clinical studies, and 3) the personalized selection of optimal therapeutic cell types/populations for individual patients in the context of precision medicine. This review summarizes the current status of SCT for HF in clinics and provides new perspectives on the development of computation-aided SCT in the era of precision medicine and AI/ML.
Collapse
Affiliation(s)
- Mohammed A. Chowdhury
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
- Department of Public Health and Health Sciences, Health Sciences Ph.D. Program, School of Health Sciences, University of South Dakota, Vermillion, SD, United States
- Department of Cardiology, North Central Heart, Avera Heart Hospital, Sioux Falls, SD, United States
| | - Jing J. Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Rodrigue Rizk
- Department of Computer Science, University of South Dakota, Vermillion, SD, United States
| | - William C. W. Chen
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
18
|
Liu B, Zhang J, Zhou Z, Feng B, He J, Yan W, Zhou X, Amponsah AE, Guo R, Du X, Liu X, Cui H, O'Brien T, Ma J. Preclinical Evidence for the Effectiveness of Mesenchymal Stromal Cells for Diabetic Cardiomyopathy: A Systematic Review and Meta-analysis. Curr Stem Cell Res Ther 2024; 19:220-233. [PMID: 37165495 DOI: 10.2174/1574888x18666230510111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus that endangers human health. DCM results in cardiac dysfunction, which eventually progresses to heart failure. Mesenchymal stromal cells (MSCs), a type of multipotent stem cell, have shown promising therapeutic effects in various cardiovascular diseases and diabetic complications in preclinical studies due to their immunomodulatory and regenerative abilities. However, there is still a lack of evidence to summarize the effectiveness of MSCs in the treatment of DCM. Therefore, a meta-analysis and systematic review are warranted to evaluate the therapeutic potential of MSCs for DCM in preclinical studies. METHODS A comprehensive literature search in English or Chinese was conducted in PubMed, EMBASE, web of Science, Cochrane Library, and China National Knowledge Internet from inception to June 30, 2022. The summarized outcomes included echocardiography, morphology, and pathology. Data were independently extracted and analyzed by two authors. The software we adopted was Review Manager5.4.1. This systematic review was written in compliance with PRISMA 2020 and the review protocol was registered on PROSPERO, registration no. CRD42022350032. RESULTS We included 20 studies in our meta-analysis to examine the efficacy of MSCs in the treatment of DCM. The MSC-treated group showed a statistically significant effect on left ventricular ejection fraction (WMD=12.61, 95% CI 4.32 to 20.90, P=0.003) and short axis fractional shortening (WMD=6.84, 95% CI 4.09 to 9.59, P < 0.00001). The overall effects on the ratio of early to late diastolic mitral annular velocity, left ventricular end-diastolic pressure, maximum positive pressure development, maximum negative pressure development, left ventricular relaxation time constant, heart weight to body weight ratio, fibrosis area, and arteriole density were analyzed, suggesting that MSCs represent an effective therapy for the treatment of DCM. CONCLUSION Our results suggest a therapeutic role for MSCs in the treatment of DCM, and these results provide support for the use of MSCs in clinical trials of patients with DCM.
Collapse
Affiliation(s)
- Boxin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Jinyu Zhang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Zijing Zhou
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Baofeng Feng
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Jingjing He
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Wei Yan
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Xinghong Zhou
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Asiamah Ernest Amponsah
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Ruiyun Guo
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Xiaofeng Du
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Xin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
| | - Huixian Cui
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province
| | - Timothy O'Brien
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province
| |
Collapse
|
19
|
Wittenberg RE, Gauvreau K, Leighton J, Moleon-Shea M, Borow KM, Marx GR, Emani SM. Prospective randomized controlled trial of the safety and feasibility of a novel mesenchymal precursor cell therapy in hypoplastic left heart syndrome. JTCVS OPEN 2023; 16:656-672. [PMID: 38204673 PMCID: PMC10775099 DOI: 10.1016/j.xjon.2023.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 01/12/2024]
Abstract
Objective To assess the safety and feasibility of low-dose, novel, allogenic mesenchymal precursor cell (MPC) therapy as an adjunct to left ventricular (LV) recruitment for patients with hypoplastic left heart syndrome (HLHS) and borderline left ventricles. MPC injections into the hypoplastic left ventricle may stimulate neovascularization and beneficial LV remodeling and may improve the likelihood of achieving biventricular (BiV) or 1.5 ventricle (1.5V) circulation. Methods Children <5 years with prior single ventricle palliation undergoing LV recruitment surgery at a single center were randomized to MPC injections into the LV endocardium/papillary muscles (MPCs) or standard-of-care (controls) and followed for 24 months. The primary endpoint was safety, including (serious) adverse events (S/AEs), and panel reactive antibodies (PRAs). Secondary endpoints included BiV/1.5V conversion and LV size and function. Results Nineteen subjects were enrolled, including 9 MPC recipients and 10 controls. Fourteen patients (74%) had >1 AE, and 2 patients had SAEs, both deemed unrelated to the trial product. AE severity and frequency were similar in the 2 groups. Baseline PRA levels were high, with no difference between the groups at 12 months. The overall probability of BiV/1.5V conversion was 0.16 (95% confidence interval [CI], 0.05 to 0.41) at 12 months and 0.52 (95% CI, 0.31 to 0.77) at 24 months. For patients with imaging data at both time points, increases in LV volumes from baseline to 12 months were larger in the MPC group by 3-dimensional echocardiography and cardiac magnetic resonance imaging. For children who successfully underwent BiV conversion (n = 12), full BiV conversion was achieved at 24 months in 5 of 5 (100%) MPC-treated children compared with 4 of 7 (57%) controls. Conclusions MPC injections were considered safe and feasible in HLHS patients. More than 50% of subjects underwent BiV/1.5V conversion within 2 years. Larger trials are needed to investigate the therapeutic potential of MPCs in this population.
Collapse
Affiliation(s)
| | | | - Jonah Leighton
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Mass
| | | | | | - Gerald R. Marx
- Department of Cardiology, Boston Children's Hospital, Boston, Mass
| | - Sitaram M. Emani
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Mass
| |
Collapse
|
20
|
Bruschettini M, Badura A, Romantsik O. Stem cell-based interventions for the treatment of stroke in newborn infants. Cochrane Database Syst Rev 2023; 11:CD015582. [PMID: 37994736 PMCID: PMC10666199 DOI: 10.1002/14651858.cd015582.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
BACKGROUND Perinatal stroke refers to a diverse but specific group of cerebrovascular diseases that occur between 20 weeks of fetal life and 28 days of postnatal life. Acute treatment options for perinatal stroke are limited supportive care, such as controlling hypoglycemia and seizures. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, or regenerate injured brain tissue. Preclinical findings have culminated in ongoing human neonatal studies. OBJECTIVES To evaluate the benefits and harms of stem cell-based interventions for the treatment of stroke in newborn infants compared to control (placebo or no treatment) or stem-cell based interventions of a different type or source. SEARCH METHODS We searched CENTRAL, PubMed, Embase, and three trials registries in February 2023. We planned to search the reference lists of included studies and relevant systematic reviews for studies not identified by the database searches. SELECTION CRITERIA We attempted to include randomized controlled trials, quasi-randomized controlled trials, and cluster trials that evaluated any of the following comparisons. • Stem cell-based interventions (any type) versus control (placebo or no treatment) • Mesenchymal stem/stromal cells (MSCs) of a specifictype (e.g. number of doses or passages) or source (e.g. autologous/allogeneic or bone marrow/cord) versus MSCs of another type or source • Stem cell-based interventions (other than MSCs) of a specific type (e.g. mononuclear cells, oligodendrocyte progenitor cells, neural stem cells, hematopoietic stem cells, or induced pluripotent stem cell-derived cells) or source (e.g. autologous/allogeneic or bone marrow/cord) versus stem cell-based interventions (other than MSCs) of another type or source • MSCs versus stem cell-based interventions other than MSCs We planned to include all types of transplantation regardless of cell source (bone marrow, cord blood, Wharton's jelly, placenta, adipose tissue, peripheral blood), type of graft (autologous or allogeneic), and dose. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were all-cause neonatal mortality, major neurodevelopmental disability, and immune rejection or any serious adverse event. Our secondary outcomes included all-cause mortality prior to first hospital discharge, seizures, adverse effects, and death or major neurodevelopmental disability at 18 to 24 months of age. We planned to use GRADE to assess the certainty of evidence for each outcome. MAIN RESULTS We identified no completed or ongoing randomized trials that met our inclusion criteria. We excluded three studies: two were phase 1 trials, and one included newborn infants with conditions other than stroke (i.e. cerebral ischemia and anemia). Among the three excluded studies, we identified the first phase 1 trial on the use of stem cells for neonatal stroke. It reported that a single intranasal application of bone marrow-derived MSCs in term neonates with a diagnosis of perinatal arterial ischemic stroke (PAIS) was feasible and apparently not associated with severe adverse events. However, the trial included only 10 infants, and follow-up was limited to three months. AUTHORS' CONCLUSIONS No evidence is currently available to evaluate the benefits and harms of stem cell-based interventions for treatment of stroke in newborn infants. We identified no ongoing studies. Future clinical trials should focus on standardizing the timing and method of cell delivery and cell processing to optimize the therapeutic potential of stem cell-based interventions and safety profiles. Phase 1 and large animal studies might provide the groundwork for future randomized trials. Outcome measures should include all-cause mortality, major neurodevelopmental disability and immune rejection, and any other serious adverse events.
Collapse
Affiliation(s)
- Matteo Bruschettini
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Department of Research and Education, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anna Badura
- Department of Neonatology, University Children's Hospital Regensburg, Hospital St Hedwig of the Order of St John, University of Regensburg, Regensburg, Germany
| | - Olga Romantsik
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
21
|
Chen G, Yu Z, Zhang Y, Liu S, Chen C, Zhang S. Radiation-induced gastric injury during radiotherapy: molecular mechanisms and clinical treatment. JOURNAL OF RADIATION RESEARCH 2023; 64:870-879. [PMID: 37788485 PMCID: PMC10665304 DOI: 10.1093/jrr/rrad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/08/2023] [Indexed: 10/05/2023]
Abstract
Radiotherapy (RT) has been the standard of care for treating a multitude of cancer types. Radiation-induced gastric injury (RIGI) is a common complication of RT for thoracic and abdominal tumors. It manifests acutely as radiation gastritis or gastric ulcers, and chronically as chronic atrophic gastritis or intestinal metaplasia. In recent years, studies have shown that intracellular signals such as oxidative stress response, p38/MAPK pathway and transforming growth factor-β signaling pathway are involved in the progression of RIGI. This review also summarized the risk factors, diagnosis and treatment of this disease. However, the root of therapeutic challenges lies in the incomplete understanding of the mechanisms. Here, we also highlight the potential mechanistic, diagnostic and therapeutic directions of RIGI.
Collapse
Affiliation(s)
- Guangxia Chen
- Department of Gastroenterology, The First People’s Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou 221200, China
| | - Zuxiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yuehua Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shiyu Liu
- Department of Gastroenterology, The First People’s Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou 221200, China
| | - Chong Chen
- Department of Gastroenterology, The First People’s Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou 221200, China
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital , Chengdu 610051, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621099, China
| |
Collapse
|
22
|
Lee RH, Boregowda SV, Shigemoto-Kuroda T, Bae E, Haga CL, Abbery CA, Bayless KJ, Haskell A, Gregory CA, Ortiz LA, Phinney DG. TWIST1 and TSG6 are coordinately regulated and function as potency biomarkers in human MSCs. SCIENCE ADVANCES 2023; 9:eadi2387. [PMID: 37948519 PMCID: PMC10637745 DOI: 10.1126/sciadv.adi2387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) have been evaluated in >1500 clinical trials, but outcomes remain suboptimal because of knowledge gaps in quality attributes that confer potency. We show that TWIST1 directly represses TSG6 expression that TWIST1 and TSG6 are inversely correlated across bone marrow-derived MSC (BM-MSC) donor cohorts and predict interdonor differences in their proangiogenic, anti-inflammatory, and immune suppressive activity in vitro and in sterile inflammation and autoimmune type 1 diabetes preclinical models. Transcript profiling of TWIST1HiTSG6Low versus TWISTLowTSG6Hi BM-MSCs revealed previously unidentified roles for TWIST1/TSG6 in regulating cellular oxidative stress and TGF-β2 in modulating TSG6 expression and anti-inflammatory activity. TWIST1 and TSG6 levels also correlate to donor stature and predict differences in iPSC-derived MSC quality attributes. These results validate TWIST1 and TSG6 as biomarkers that predict interdonor differences in potency across laboratories and assay platforms, thereby providing a means to manufacture MSC products tailored to specific diseases.
Collapse
Affiliation(s)
- Ryang Hwa Lee
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Siddaraju V. Boregowda
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Taeko Shigemoto-Kuroda
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - EunHye Bae
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Christopher L. Haga
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Colette A. Abbery
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Kayla J. Bayless
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Andrew Haskell
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Carl A. Gregory
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Luis A. Ortiz
- Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Donald G. Phinney
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| |
Collapse
|
23
|
Amini H, Namjoo AR, Narmi MT, Mardi N, Narimani S, Naturi O, Khosrowshahi ND, Rahbarghazi R, Saghebasl S, Hashemzadeh S, Nouri M. Exosome-bearing hydrogels and cardiac tissue regeneration. Biomater Res 2023; 27:99. [PMID: 37803483 PMCID: PMC10559618 DOI: 10.1186/s40824-023-00433-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND In recent years, cardiovascular disease in particular myocardial infarction (MI) has become the predominant cause of human disability and mortality in the clinical setting. The restricted capacity of adult cardiomyocytes to proliferate and restore the function of infarcted sites is a challenging issue after the occurrence of MI. The application of stem cells and byproducts such as exosomes (Exos) has paved the way for the alleviation of cardiac tissue injury along with conventional medications in clinics. However, the short lifespan and activation of alloreactive immune cells in response to Exos and stem cells are the main issues in patients with MI. Therefore, there is an urgent demand to develop therapeutic approaches with minimum invasion for the restoration of cardiac function. MAIN BODY Here, we focused on recent data associated with the application of Exo-loaded hydrogels in ischemic cardiac tissue. Whether and how the advances in tissue engineering modalities have increased the efficiency of whole-based and byproducts (Exos) therapies under ischemic conditions. The integration of nanotechnology and nanobiology for designing novel smart biomaterials with therapeutic outcomes was highlighted. CONCLUSION Hydrogels can provide suitable platforms for the transfer of Exos, small molecules, drugs, and other bioactive factors for direct injection into the damaged myocardium. Future studies should focus on the improvement of physicochemical properties of Exo-bearing hydrogel to translate for the standard treatment options.
Collapse
Affiliation(s)
- Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran
| | - Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Taghavi Narmi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Narimani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ozra Naturi
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Nafiseh Didar Khosrowshahi
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Shahriar Hashemzadeh
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Sun B, Wang L, Guo W, Chen S, Ma Y, Wang D. New treatment methods for myocardial infarction. Front Cardiovasc Med 2023; 10:1251669. [PMID: 37840964 PMCID: PMC10569499 DOI: 10.3389/fcvm.2023.1251669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023] Open
Abstract
For a long time, cardiovascular clinicians have focused their research on coronary atherosclerotic cardiovascular disease and acute myocardial infarction due to their high morbidity, high mortality, high disability rate, and limited treatment options. Despite the continuous optimization of the therapeutic methods and pharmacological therapies for myocardial ischemia-reperfusion, the incidence rate of heart failure continues to increase year by year. This situation is speculated to be caused by the current therapies, such as reperfusion therapy after ischemic injury, drugs, rehabilitation, and other traditional treatments, that do not directly target the infarcted myocardium. Consequently, these therapies cannot fundamentally solve the problems of myocardial pathological remodeling and the reduction of cardiac function after myocardial infarction, allowing for the progression of heart failure after myocardial infarction. Coupled with the decline in mortality caused by acute myocardial infarction in recent years, this combination leads to an increase in the incidence of heart failure. As a new promising therapy rising at the beginning of the twenty-first century, cardiac regenerative medicine provides a new choice and hope for the recovery of cardiac function and the prevention and treatment of heart failure after myocardial infarction. In the past two decades, regeneration engineering researchers have explored and summarized the elements, such as cells, scaffolds, and cytokines, required for myocardial regeneration from all aspects and various levels day and night, paving the way for our later scholars to carry out relevant research and also putting forward the current problems and directions for us. Here, we describe the advantages and challenges of cardiac tissue engineering, a contemporary innovative therapy after myocardial infarction, to provide a reference for clinical treatment.
Collapse
Affiliation(s)
- Bingbing Sun
- Department of Critical Care Medicine, The Air Force Characteristic Medical Center, Air Force Medical University, Beijing, China
| | - Long Wang
- Department of General Internal Medicine, Beijing Dawanglu Emergency Hospital, Beijing, China
| | - Wenmin Guo
- Department of Critical Care Medicine, The Air Force Characteristic Medical Center, Air Force Medical University, Beijing, China
| | - Shixuan Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yujie Ma
- Department of Critical Care Medicine, The Air Force Characteristic Medical Center, Air Force Medical University, Beijing, China
| | - Dongwei Wang
- Department of Cardiac Rehabilitation, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Sundin A, Ionescu SI, Balkan W, Hare JM. Mesenchymal STRO-1/STRO-3 + precursor cells for the treatment of chronic heart failure with reduced ejection fraction. Future Cardiol 2023; 19:567-581. [PMID: 37933628 PMCID: PMC10652293 DOI: 10.2217/fca-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/30/2023] [Indexed: 11/08/2023] Open
Abstract
The heart is susceptible to proinflammatory and profibrotic responses after myocardial injury, leading to further worsening of cardiac dysfunction. Important developments in the management of heart failure with reduced ejection fraction have reduced morbidity and mortality; however, these therapies focus on optimizing cardiac function through hemodynamic and neurohormonal pathways and not by repairing the underlying cardiac injury. The potential of cell-based therapy to reverse cardiac injury has received substantial attention. Herein are examined the phase II and III studies of bone marrow-derived mesenchymal STRO-1+ or STRO-1/STRO-3+ precursor cells in patients with ischemic and nonischemic heart failure with reduced ejection fraction, addressing the safety and efficacy of cell-based therapy throughout multiple clinical trials, the optimal dose and the steps toward revolutionizing the treatment of heart failure.
Collapse
Affiliation(s)
- Andrew Sundin
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Simona I Ionescu
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
26
|
Iqbal F, Johnston A, Wyse B, Rabani R, Mander P, Hoseini B, Wu J, Li RK, Gauthier-Fisher A, Szaraz P, Librach C. Combination human umbilical cord perivascular and endothelial colony forming cell therapy for ischemic cardiac injury. NPJ Regen Med 2023; 8:45. [PMID: 37626067 PMCID: PMC10457300 DOI: 10.1038/s41536-023-00321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Cell-based therapeutics are promising interventions to repair ischemic cardiac tissue. However, no single cell type has yet been found to be both specialized and versatile enough to heal the heart. The synergistic effects of two regenerative cell types including endothelial colony forming cells (ECFC) and first-trimester human umbilical cord perivascular cells (FTM HUCPVC) with endothelial cell and pericyte properties respectively, on angiogenic and regenerative properties were tested in a rat model of myocardial infarction (MI), in vitro tube formation and Matrigel plug assay. The combination of FTM HUCPVCs and ECFCs synergistically reduced fibrosis and cardiomyocyte apoptosis, while promoting favorable cardiac remodeling and contractility. These effects were in part mediated by ANGPT2, PDGF-β, and VEGF-C. PDGF-β signaling-dependent synergistic effects on angiogenesis were also observed in vitro and in vivo. FTM HUCPVCs and ECFCs represent a cell combination therapy for promoting and sustaining vascularization following ischemic cardiac injury.
Collapse
Affiliation(s)
- Farwah Iqbal
- Create Fertility Centre, Toronto, ON, Canada
- Virginia Tech Carillion School of Medicine, Roanoke, VA, USA
| | | | | | | | | | | | - Jun Wu
- Toronto General Research Institute (TGRI), University Health Network (UHN), Toronto, ON, Canada
| | - Ren-Ke Li
- Toronto General Research Institute (TGRI), University Health Network (UHN), Toronto, ON, Canada
| | | | | | - Clifford Librach
- Create Fertility Centre, Toronto, ON, Canada.
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Obstetrics and Gynecology, Women's College Hospital, Toronto, ON, Canada.
| |
Collapse
|
27
|
Wang E, Zhou R, Li T, Hua Y, Zhou K, Li Y, Luo S, An Q. The Molecular Role of Immune Cells in Dilated Cardiomyopathy. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1246. [PMID: 37512058 PMCID: PMC10385992 DOI: 10.3390/medicina59071246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Dilated cardiomyopathy (DCM) is a rare and severe condition characterized by chamber dilation and impaired contraction of the left ventricle. It constitutes a fundamental etiology for profound heart failure and abrupt cardiac demise, rendering it a prominent clinical indication for heart transplantation (HTx) among both adult and pediatric populations. DCM arises from various etiologies, including genetic variants, epigenetic disorders, infectious insults, autoimmune diseases, and cardiac conduction abnormalities. The maintenance of cardiac function involves two distinct types of immune cells: resident immune cells and recruited immune cells. Resident immune cells play a crucial role in establishing a harmonious microenvironment within the cardiac tissue. Nevertheless, in response to injury, cardiomyocytes initiate a cytokine cascade that attracts peripheral immune cells, thus perturbing this intricate equilibrium and actively participating in the initiation and pathological remodeling of dilated cardiomyopathy (DCM), particularly during the progression of myocardial fibrosis. Additionally, immune cells assume a pivotal role in orchestrating the inflammatory processes, which are intimately linked to the prognosis of DCM. Consequently, understanding the molecular role of various immune cells and their regulation mechanisms would provide an emerging era for managing DCM. In this review, we provide a summary of the most recent advancements in our understanding of the molecular mechanisms of immune cells in DCM. Additionally, we evaluate the effectiveness and limitations of immunotherapy approaches for the treatment of DCM, with the aim of optimizing future immunotherapeutic strategies for this condition.
Collapse
Affiliation(s)
- Enping Wang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ruofan Zhou
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yifei Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuhua Luo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Soni SS, D'Elia AM, Rodell CB. Control of the post-infarct immune microenvironment through biotherapeutic and biomaterial-based approaches. Drug Deliv Transl Res 2023; 13:1983-2014. [PMID: 36763330 PMCID: PMC9913034 DOI: 10.1007/s13346-023-01290-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
Ischemic heart failure (IHF) is a leading cause of morbidity and mortality worldwide, for which heart transplantation remains the only definitive treatment. IHF manifests from myocardial infarction (MI) that initiates tissue remodeling processes, mediated by mechanical changes in the tissue (loss of contractility, softening of the myocardium) that are interdependent with cellular mechanisms (cardiomyocyte death, inflammatory response). The early remodeling phase is characterized by robust inflammation that is necessary for tissue debridement and the initiation of repair processes. While later transition toward an immunoregenerative function is desirable, functional reorientation from an inflammatory to reparatory environment is often lacking, trapping the heart in a chronically inflamed state that perpetuates cardiomyocyte death, ventricular dilatation, excess fibrosis, and progressive IHF. Therapies can redirect the immune microenvironment, including biotherapeutic and biomaterial-based approaches. In this review, we outline these existing approaches, with a particular focus on the immunomodulatory effects of therapeutics (small molecule drugs, biomolecules, and cell or cell-derived products). Cardioprotective strategies, often focusing on immunosuppression, have shown promise in pre-clinical and clinical trials. However, immunoregenerative therapies are emerging that often benefit from exacerbating early inflammation. Biomaterials can be used to enhance these therapies as a result of their intrinsic immunomodulatory properties, parallel mechanisms of action (e.g., mechanical restraint), or by enabling cell or tissue-targeted delivery. We further discuss translatability and the continued progress of technologies and procedures that contribute to the bench-to-bedside development of these critically needed treatments.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
29
|
Correia CD, Ferreira A, Fernandes MT, Silva BM, Esteves F, Leitão HS, Bragança J, Calado SM. Human Stem Cells for Cardiac Disease Modeling and Preclinical and Clinical Applications—Are We on the Road to Success? Cells 2023; 12:1727. [DOI: https:/doi.org/10.3390/cells12131727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are pointed out by the World Health Organization (WHO) as the leading cause of death, contributing to a significant and growing global health and economic burden. Despite advancements in clinical approaches, there is a critical need for innovative cardiovascular treatments to improve patient outcomes. Therapies based on adult stem cells (ASCs) and embryonic stem cells (ESCs) have emerged as promising strategies to regenerate damaged cardiac tissue and restore cardiac function. Moreover, the generation of human induced pluripotent stem cells (iPSCs) from somatic cells has opened new avenues for disease modeling, drug discovery, and regenerative medicine applications, with fewer ethical concerns than those associated with ESCs. Herein, we provide a state-of-the-art review on the application of human pluripotent stem cells in CVD research and clinics. We describe the types and sources of stem cells that have been tested in preclinical and clinical trials for the treatment of CVDs as well as the applications of pluripotent stem-cell-derived in vitro systems to mimic disease phenotypes. How human stem-cell-based in vitro systems can overcome the limitations of current toxicological studies is also discussed. Finally, the current state of clinical trials involving stem-cell-based approaches to treat CVDs are presented, and the strengths and weaknesses are critically discussed to assess whether researchers and clinicians are getting closer to success.
Collapse
Affiliation(s)
- Cátia D. Correia
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Anita Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- School of Health, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bárbara M. Silva
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Sofia M. Calado
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
30
|
Correia CD, Ferreira A, Fernandes MT, Silva BM, Esteves F, Leitão HS, Bragança J, Calado SM. Human Stem Cells for Cardiac Disease Modeling and Preclinical and Clinical Applications-Are We on the Road to Success? Cells 2023; 12:1727. [PMID: 37443761 PMCID: PMC10341347 DOI: 10.3390/cells12131727] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Cardiovascular diseases (CVDs) are pointed out by the World Health Organization (WHO) as the leading cause of death, contributing to a significant and growing global health and economic burden. Despite advancements in clinical approaches, there is a critical need for innovative cardiovascular treatments to improve patient outcomes. Therapies based on adult stem cells (ASCs) and embryonic stem cells (ESCs) have emerged as promising strategies to regenerate damaged cardiac tissue and restore cardiac function. Moreover, the generation of human induced pluripotent stem cells (iPSCs) from somatic cells has opened new avenues for disease modeling, drug discovery, and regenerative medicine applications, with fewer ethical concerns than those associated with ESCs. Herein, we provide a state-of-the-art review on the application of human pluripotent stem cells in CVD research and clinics. We describe the types and sources of stem cells that have been tested in preclinical and clinical trials for the treatment of CVDs as well as the applications of pluripotent stem-cell-derived in vitro systems to mimic disease phenotypes. How human stem-cell-based in vitro systems can overcome the limitations of current toxicological studies is also discussed. Finally, the current state of clinical trials involving stem-cell-based approaches to treat CVDs are presented, and the strengths and weaknesses are critically discussed to assess whether researchers and clinicians are getting closer to success.
Collapse
Affiliation(s)
- Cátia D. Correia
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Anita Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- School of Health, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bárbara M. Silva
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Sofia M. Calado
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
31
|
Mori da Cunha MGMC, van der Veer BK, Giacomazzi G, Mackova K, Cattani L, Koh KP, Vande Velde G, Gijsbers R, Albersen M, Sampaolesi M, Deprest J. VEGF overexpressed mesoangioblasts enhance urethral and vaginal recovery following simulated vaginal birth in rats. Sci Rep 2023; 13:8622. [PMID: 37244975 DOI: 10.1038/s41598-023-35809-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
Vaginal birth causes pelvic floor injury which may lead to urinary incontinence. Cell therapy has been proposed to assist in functional recovery. We aim to assess if intra-arterial injection of rat mesoangioblasts (MABs) and stable Vascular Endothelial Growth Factor (VEGF)-expressing MABs, improve recovery of urethral and vaginal function following simulated vaginal delivery (SVD). Female rats (n = 86) were assigned to either injection of saline (control), allogeneic-MABs (MABsallo), autologous-MABs (MABsauto) or allogeneic-MABs transduced to stably expressed VEGF (MABsallo-VEGF). One hour after SVD, 0.5 × 106 MABs or saline were injected into the aorta. Primary outcome was urethral (7d and 14d) and vaginal (14d) function; others were bioluminescent imaging for cell tracking (1, 3 and 7d), morphometry (7, 14 and 60d) and mRNAseq (3 and 7d). All MABs injected rats had external urethral sphincter and vaginal function recovery within 14d, as compared to only half of saline controls. Functional recovery was paralleled by improved muscle regeneration and microvascularization. Recovery rate was not different between MABsallo and MABsauto. MABsallo-VEGF accelerated functional recovery and increased GAP-43 expression at 7d. At 3d we detected major transcriptional changes in the urethra of both MABsallo and MABsallo-VEGF-injected animals, with upregulation of Rho/GTPase activity, epigenetic factors and dendrite development. MABSallo also upregulated transcripts that encode proteins involved in myogenesis and downregulated pro-inflammatory processes. MABsallo-VEGF also upregulated transcripts that encode proteins involved in neuron development and downregulated genes involved in hypoxia and oxidative stress. At 7d, urethras of MABsallo-VEGF-injected rats showed downregulation of oxidative and inflammatory response compared to MABSallo. Intra-arterial injection of MABsallo-VEGF enhances neuromuscular regeneration induced by untransduced MABs and accelerates the functional urethral and vaginal recovery after SVD.
Collapse
Affiliation(s)
- Marina G M C Mori da Cunha
- Group Biomedical Sciences, Centre for Surgical Technologies, KU Leuven, Leuven, Belgium.
- Group Biomedical Sciences, Woman and Child, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
- Department of Development and Regeneration, Experimental Gynecology Laboratory -Lok 05.30 ON3, Herestraat 49, Leuven, Belgium.
| | - Bernard K van der Veer
- Laboratory for Stem Cell and Developmental Epigenetics, Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Giorgia Giacomazzi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Department Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Katerina Mackova
- Group Biomedical Sciences, Centre for Surgical Technologies, KU Leuven, Leuven, Belgium
- Group Biomedical Sciences, Woman and Child, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Third Faculty of Medicine, Institute for the Care of the Mother and Child, Charles University, Prague, Czech Republic
| | - Laura Cattani
- Group Biomedical Sciences, Centre for Surgical Technologies, KU Leuven, Leuven, Belgium
- Group Biomedical Sciences, Woman and Child, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Kian Peng Koh
- Laboratory for Stem Cell and Developmental Epigenetics, Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Rik Gijsbers
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
- Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Maarten Albersen
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Department Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Jan Deprest
- Group Biomedical Sciences, Centre for Surgical Technologies, KU Leuven, Leuven, Belgium
- Group Biomedical Sciences, Woman and Child, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Pelvic Floor Unit, University Hospitals KU Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Suda M, Paul KH, Minamino T, Miller JD, Lerman A, Ellison-Hughes GM, Tchkonia T, Kirkland JL. Senescent Cells: A Therapeutic Target in Cardiovascular Diseases. Cells 2023; 12:1296. [PMID: 37174697 PMCID: PMC10177324 DOI: 10.3390/cells12091296] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Senescent cell accumulation has been observed in age-associated diseases including cardiovascular diseases. Senescent cells lack proliferative capacity and secrete senescence-associated secretory phenotype (SASP) factors that may cause or worsen many cardiovascular diseases. Therapies targeting senescent cells, especially senolytic drugs that selectively induce senescent cell removal, have been shown to delay, prevent, alleviate, or treat multiple age-associated diseases in preclinical models. Some senolytic clinical trials have already been completed or are underway for a number of diseases and geriatric syndromes. Understanding how cellular senescence affects the various cell types in the cardiovascular system, such as endothelial cells, vascular smooth muscle cells, fibroblasts, immune cells, progenitor cells, and cardiomyocytes, is important to facilitate translation of senotherapeutics into clinical interventions. This review highlights: (1) the characteristics of senescent cells and their involvement in cardiovascular diseases, focusing on the aforementioned cardiovascular cell types, (2) evidence about senolytic drugs and other senotherapeutics, and (3) the future path and clinical potential of senotherapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Karl H. Paul
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Jordan D. Miller
- Division of Cardiovascular Surgery, Mayo Clinic College of Medicine, 200 First St., S.W., Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| |
Collapse
|
33
|
Wu Y, Shum HCE, Wu K, Vadgama J. From Interaction to Intervention: How Mesenchymal Stem Cells Affect and Target Triple-Negative Breast Cancer. Biomedicines 2023; 11:1182. [PMID: 37189800 PMCID: PMC10136169 DOI: 10.3390/biomedicines11041182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC) lacks estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expressions, making targeted therapies ineffective. Mesenchymal stem cells (MSCs) have emerged as a promising approach for TNBC treatment by modulating the tumor microenvironment (TME) and interacting with cancer cells. This review aims to comprehensively overview the role of MSCs in TNBC treatment, including their mechanisms of action and application strategies. We analyze the interactions between MSC and TNBC cells, including the impact of MSCs on TNBC cell proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance, along with the signaling pathways and molecular mechanisms involved. We also explore the impact of MSCs on other components of the TME, such as immune and stromal cells, and the underlying mechanisms. The review discusses the application strategies of MSCs in TNBC treatment, including their use as cell or drug carriers and the advantages and limitations of different types and sources of MSCs in terms of safety and efficacy. Finally, we discuss the challenges and prospects of MSCs in TNBC treatment and propose potential solutions or improvement methods. Overall, this review provides valuable insights into the potential of MSCs as a novel therapeutic approach for TNBC treatment.
Collapse
Affiliation(s)
- Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Hang Chee Erin Shum
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ke Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Jaydutt Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| |
Collapse
|
34
|
Williams K, Khan A, Lee YS, Hare JM. Cell-based therapy to boost right ventricular function and cardiovascular performance in hypoplastic left heart syndrome: Current approaches and future directions. Semin Perinatol 2023; 47:151725. [PMID: 37031035 PMCID: PMC10193409 DOI: 10.1016/j.semperi.2023.151725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
Congenital heart disease remains one of the most frequently diagnosed congenital diseases of the newborn, with hypoplastic left heart syndrome (HLHS) being considered one of the most severe. This univentricular defect was uniformly fatal until the introduction, 40 years ago, of a complex surgical palliation consisting of multiple staged procedures spanning the first 4 years of the child's life. While survival has improved substantially, particularly in experienced centers, ventricular failure requiring heart transplant and a number of associated morbidities remain ongoing clinical challenges for these patients. Cell-based therapies aimed at boosting ventricular performance are under clinical evaluation as a novel intervention to decrease morbidity associated with surgical palliation. In this review, we will examine the current burden of HLHS and current modalities for treatment, discuss various cells therapies as an intervention while delineating challenges and future directions for this therapy for HLHS and other congenital heart diseases.
Collapse
Affiliation(s)
- Kevin Williams
- Department of Pediatrics, University of Miami Miller School of Medicine. Miami FL, USA; Batchelor Children's Research Institute University of Miami Miller School of Medicine. Miami FL, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami FL, USA
| | - Yee-Shuan Lee
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami FL, USA; Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine. Miami FL, USA.
| |
Collapse
|
35
|
Administration of stem cells against cardiovascular diseases with a focus on molecular mechanisms: Current knowledge and prospects. Tissue Cell 2023; 81:102030. [PMID: 36709696 DOI: 10.1016/j.tice.2023.102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Cardiovascular diseases (CVDs) are a serious global concern for public and human health. Despite the emergence of significant therapeutic advances, it is still the leading cause of death and disability worldwide. As a result, extensive efforts are underway to develop practical therapeutic approaches. Stem cell-based therapies could be considered a promising strategy for the treatment of CVDs. The efficacy of stem cell-based therapeutic approaches is demonstrated through recent laboratory and clinical studies due to their inherent regenerative properties, proliferative nature, and their capacity to differentiate into different cells such as cardiomyocytes. These properties could improve cardiovascular functioning leading to heart regeneration. The two most common types of stem cells with the potential to cure heart diseases are induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs). Several studies have demonstrated the use, efficacy, and safety of MSC and iPSCs-based therapies for the treatment of CVDs. In this study, we explain the application of stem cells, especially iPSCs and MSCs, in the treatment of CVDs with a focus on cellular and molecular mechanisms and then discuss the advantages, disadvantages, and perspectives of using this technology in the treatment of these diseases.
Collapse
|
36
|
Strzelec M, Detka J, Mieszczak P, Sobocińska MK, Majka M. Immunomodulation—a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Front Immunol 2023; 14:1127704. [PMID: 36969193 PMCID: PMC10033545 DOI: 10.3389/fimmu.2023.1127704] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, there has been a tremendous development of biotechnological, pharmacological, and medical techniques which can be implemented in the functional modulation of the immune system components. Immunomodulation has attracted much attention because it offers direct applications in both basic research and clinical therapy. Modulation of a non-adequate, amplified immune response enables to attenuate the clinical course of a disease and restore homeostasis. The potential targets to modulate immunity are as multiple as the components of the immune system, thus creating various possibilities for intervention. However, immunomodulation faces new challenges to design safer and more efficacious therapeutic compounds. This review offers a cross-sectional picture of the currently used and newest pharmacological interventions, genomic editing, and tools for regenerative medicine involving immunomodulation. We reviewed currently available experimental and clinical evidence to prove the efficiency, safety, and feasibility of immunomodulation in vitro and in vivo. We also reviewed the advantages and limitations of the described techniques. Despite its limitations, immunomodulation is considered as therapy itself or as an adjunct with promising results and developing potential.
Collapse
|
37
|
Kaushal S, Hare JM, Hoffman JR, Boyd RM, Ramdas KN, Pietris N, Kutty S, Tweddell JS, Husain SA, Menon SC, Lambert LM, Danford DA, Kligerman SJ, Hibino N, Korutla L, Vallabhajosyula P, Campbell MJ, Khan A, Naioti E, Yousefi K, Mehranfard D, McClain-Moss L, Oliva AA, Davis ME. Intramyocardial cell-based therapy with Lomecel-B during bidirectional cavopulmonary anastomosis for hypoplastic left heart syndrome: the ELPIS phase I trial. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead002. [PMID: 36950450 PMCID: PMC10026620 DOI: 10.1093/ehjopen/oead002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Aims Hypoplastic left heart syndrome (HLHS) survival relies on surgical reconstruction of the right ventricle (RV) to provide systemic circulation. This substantially increases the RV load, wall stress, maladaptive remodelling, and dysfunction, which in turn increases the risk of death or transplantation. Methods and results We conducted a phase 1 open-label multicentre trial to assess the safety and feasibility of Lomecel-B as an adjunct to second-stage HLHS surgical palliation. Lomecel-B, an investigational cell therapy consisting of allogeneic medicinal signalling cells (MSCs), was delivered via intramyocardial injections. The primary endpoint was safety, and measures of RV function for potential efficacy were obtained. Ten patients were treated. None experienced major adverse cardiac events. All were alive and transplant-free at 1-year post-treatment, and experienced growth comparable to healthy historical data. Cardiac magnetic resonance imaging (CMR) suggested improved tricuspid regurgitant fraction (TR RF) via qualitative rater assessment, and via significant quantitative improvements from baseline at 6 and 12 months post-treatment (P < 0.05). Global longitudinal strain (GLS) and RV ejection fraction (EF) showed no declines. To understand potential mechanisms of action, circulating exosomes from intramyocardially transplanted MSCs were examined. Computational modelling identified 54 MSC-specific exosome ribonucleic acids (RNAs) corresponding to changes in TR RF, including miR-215-3p, miR-374b-3p, and RNAs related to cell metabolism and MAPK signalling. Conclusion Intramyocardially delivered Lomecel-B appears safe in HLHS patients and may favourably affect RV performance. Circulating exosomes of transplanted MSC-specific provide novel insight into bioactivity. Conduct of a controlled phase trial is warranted and is underway.Trial registration number NCT03525418.
Collapse
Affiliation(s)
- Sunjay Kaushal
- The Heart Center, Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Joshua M Hare
- Longeveron Inc, 1951 NW 7th Avenue, Suite 520, Miami, FL 33136, USA
- Department of Medicine and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Jessica R Hoffman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Riley M Boyd
- The Heart Center, Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Kevin N Ramdas
- Longeveron Inc, 1951 NW 7th Avenue, Suite 520, Miami, FL 33136, USA
| | - Nicholas Pietris
- Division of Pediatric Cardiology, Department of Pediatrics, University of Maryland School of Medicine, 110 S. Paca Street, Baltimore, MD 21201, USA
| | - Shelby Kutty
- Helen B. Taussig Heart Center, The Johns Hopkins Hospital and Johns Hopkins University, 1800 Orleans St., Baltimore, MD 21287, USA
| | - James S Tweddell
- Heart Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - S Adil Husain
- Division of Pediatric Cardiothoracic Surgery, University of Utah/Primary Children's Medical Center, 295 Chipeta Way, Salt Lake City, Utah 84108, USA
| | - Shaji C Menon
- Department of Radiology, University of Utah/Primary Children's Medical Center, 295 Chipeta Way, Salt Lake City, UT 84108, USA
| | - Linda M Lambert
- Division of Pediatric Cardiology, University of Utah/Primary Children's Medical Center, 295 Chipeta Way, Salt Lake City, UT 84108, USA
| | - David A Danford
- Division of Cardiology, Children's Hospital & Medical Center, Nebraska Medicine, Department of Pediatrics, University of Nebraska, 983332 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Seth J Kligerman
- Department of Radiology, University of California San Diego, 200 W. Arbor Drive, San Diego, CA 92103, USA
| | - Narutoshi Hibino
- Department of Surgery, The University of Chicago Medical Center, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Laxminarayana Korutla
- Department of Surgery (Cardiac), Yale School of Medicine, Yale University, 789 Howard Avenue, New Haven, CT 06510, USA
| | - Prashanth Vallabhajosyula
- Department of Surgery (Cardiac), Yale School of Medicine, Yale University, 789 Howard Avenue, New Haven, CT 06510, USA
| | - Michael J Campbell
- Department of Pediatrics, Duke University School of Medicine, 2301 Erwin Road, Durham, NC 27705, USA
| | - Aisha Khan
- Department of Medicine and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Eric Naioti
- Longeveron Inc, 1951 NW 7th Avenue, Suite 520, Miami, FL 33136, USA
| | - Keyvan Yousefi
- Longeveron Inc, 1951 NW 7th Avenue, Suite 520, Miami, FL 33136, USA
| | | | | | - Anthony A Oliva
- Longeveron Inc, 1951 NW 7th Avenue, Suite 520, Miami, FL 33136, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, 313 Ferst Drive, Atlanta, GA 30332, USA
| |
Collapse
|
38
|
Bruschettini M, Badura A, Romantsik O. Stem cell‐based interventions for the treatment of stroke in newborn infants. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2023; 2023:CD015582. [PMCID: PMC9933426 DOI: 10.1002/14651858.cd015582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To evaluate the benefits and harms of stem cell‐based interventions for the treatment of stroke in newborn infants compared to control (placebo or no treatment) or stem‐cell based interventions of a different type or source.
Collapse
Affiliation(s)
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, PaediatricsLund University, Skåne University HospitalLundSweden,Cochrane SwedenLund University, Skåne University HospitalLundSweden
| | | | - Olga Romantsik
- Department of Clinical Sciences Lund, PaediatricsLund University, Skåne University HospitalLundSweden
| |
Collapse
|
39
|
El Hadi H, Freund A, Desch S, Thiele H, Majunke N. Hypertrophic, Dilated, and Arrhythmogenic Cardiomyopathy: Where Are We? Biomedicines 2023; 11:biomedicines11020524. [PMID: 36831060 PMCID: PMC9953324 DOI: 10.3390/biomedicines11020524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Cardiomyopathies are a heterogeneous group of structural, mechanical, and electrical heart muscle disorders which often correlate with life-threatening arrhythmias and progressive heart failure accounting for significant cardiovascular morbidity and mortality. Currently, cardiomyopathies still represent a leading reason for heart transplantation worldwide. The last years have brought remarkable advances in the field of cardiomyopathies especially in terms of understanding the molecular basis as well as the diagnostic evaluation and management. Although most cardiomyopathy treatments had long focused on symptom management, much of the current research efforts aim to identify and act on the disease-driving mechanisms. Regarding risk assessment and primary prevention of sudden cardiac death, additional data are still pending in order to pave the way for a more refined and early patient selection for defibrillator implantation. This review summarizes the current knowledge of hypertrophic, dilated and arrhythmogenic cardiomyopathy with a particular emphasis on their pathophysiology, clinical features, and diagnostic approach. Furthermore, the relevant ongoing studies investigating novel management approaches and main gaps in knowledge are highlighted.
Collapse
Affiliation(s)
- Hamza El Hadi
- Correspondence: (H.E.H.); (N.M.); Tel.: +49-341-865-142 (H.E.H. & N.M.); Fax: +49-341-865-1461 (N.M.)
| | | | | | | | - Nicolas Majunke
- Correspondence: (H.E.H.); (N.M.); Tel.: +49-341-865-142 (H.E.H. & N.M.); Fax: +49-341-865-1461 (N.M.)
| |
Collapse
|
40
|
Qi T, Xu X, Guo Y, Xia Y, Peng L, Li C, Ding F, Gao C, Fan M, Yu M, Zhao H, He Y, Li W, Hai C, Gao E, Zhang X, Gao F, Fan Y, Yan W, Tao L. CSF2RB overexpression promotes the protective effects of mesenchymal stromal cells against ischemic heart injury. Theranostics 2023; 13:1759-1773. [PMID: 37064880 PMCID: PMC10091875 DOI: 10.7150/thno.81336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/26/2023] [Indexed: 04/18/2023] Open
Abstract
Aims: The invasive intramyocardial injection of mesenchymal stromal cells (MSCs) allows for limited repeat injections and shows poor therapeutic efficacy against ischemic heart failure. Intravenous injection is an alternative method because this route allows for repeated, noninvasive, and easy delivery. However, the lack of targeting of MSCs hinders the ability of these cells to accumulate in the ischemic area after intravenous injections. We investigated whether and how the overexpression of colony-stimulating factor 2 receptor beta subunit (CSF2RB) may regulate the cardiac homing of MSCs and their cardioprotective effects against ischemic heart failure. Methods and Results: Adult mice were subjected to myocardial ischemia/reperfusion (MI/R) or sham operations. We observed significantly higher CSF2 protein expression and secretion by the ischemic heart from 1 day to 2 weeks after MI/R. Mouse adipose tissue-derived MSCs (ADSCs) were infected with adenovirus harboring CSF2RB or control adenovirus. Enhanced green fluorescent protein (EGFP)-labeled ADSCs were intravenously injected into MI/R mice every three days for a total of 7 times. Compared with ADSCs infected with control adenovirus, intravenously delivered ADSCs overexpressing CSF2RB exhibited markedly increased cardiac homing. Histological analysis revealed that CSF2RB overexpression significantly enhanced the ADSC-mediated proangiogenic, antiapoptotic, and antifibrotic effects. More importantly, ADSCs overexpressing CSF2RB significantly increased the left ventricular ejection fraction and cardiac contractility/relaxation in MI/R mice. In vitro experiments demonstrated that CSF2RB overexpression increases the migratory capacity and reduces the hypoxia/reoxygenation-induced apoptosis of ADSCs. We identified STAT5 phosphorylation as the key mechanism underlying the effects of CSF2RB on promoting ADSC migration and inhibiting ADSC apoptosis. RNA sequencing followed by cause-effect analysis revealed that CSF2RB overexpression increases the expression of the ubiquitin ligase RNF4. Coimmunoprecipitation and coimmunostaining experiments showed that RNF4 binds to phosphorylated STAT5. RNF4 knockdown reduced STAT5 phosphorylation as well as the antiapoptotic and promigratory actions of ADSCs overexpressing CSF2RB. Conclusions: We demonstrate for the first time that CSF2RB overexpression optimizes the efficacy of intravenously delivered MSCs in the treatment of ischemic heart injury by increasing the response of the MSCs to a CSF2 gradient and CSF2RB-dependent STAT5/RNF4 activation.
Collapse
Affiliation(s)
- Tingting Qi
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoming Xu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yongzhen Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- School of Public Management, Northwest University, Xi'an 710127, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lu Peng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Fengyue Ding
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Chao Gao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Miaomiao Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Min Yu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yuan He
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wenli Li
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an 710032, China
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Chunxu Hai
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an 710032, China
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xing Zhang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yanhong Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- ✉ Corresponding authors: Ling Tao, MD, PhD, Professor and Chief of Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84771692; +86-29-84775183; Fax: +86-29-84771692; E-mail: . Wenjun Yan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692; E-mail: . Yanhong Fan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692;
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- ✉ Corresponding authors: Ling Tao, MD, PhD, Professor and Chief of Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84771692; +86-29-84775183; Fax: +86-29-84771692; E-mail: . Wenjun Yan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692; E-mail: . Yanhong Fan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692;
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- ✉ Corresponding authors: Ling Tao, MD, PhD, Professor and Chief of Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84771692; +86-29-84775183; Fax: +86-29-84771692; E-mail: . Wenjun Yan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692; E-mail: . Yanhong Fan, MD, PhD, Associate Professor, Department of Cardiology, Xijing Hospital, The Fourth Military Medical University. 127 West Changle Rd, Xi'an, China, 710032. Tel.: +86-29-84775183; Fax: +86-29-84771692;
| |
Collapse
|
41
|
Harding D, Chong MHA, Lahoti N, Bigogno CM, Prema R, Mohiddin SA, Marelli-Berg F. Dilated cardiomyopathy and chronic cardiac inflammation: Pathogenesis, diagnosis and therapy. J Intern Med 2023; 293:23-47. [PMID: 36030368 DOI: 10.1111/joim.13556] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dilated cardiomyopathy (DCM) is typically defined by left ventricular dilation and systolic dysfunction in the absence of a clear precipitant. Idiopathic disease is common; up to 50% of patients with DCM have no cause found despite imaging, genetic and biopsy assessments. Treatment remains focused on managing symptoms, reducing the risk of sudden cardiac death and ameliorating the structural and electrical complications of disease progression. In the absence of aetiology-specific treatments, the condition remains associated with a poor prognosis; mortality is approximately 40% at 10 years. The role of immune-mediated inflammatory injury in the development and progression of DCM was first proposed over 30 years ago. Despite the subsequent failures of three large clinical trials of immunosuppressive treatment (ATTACH, RENEWAL and the Myocarditis Treatment Trial), evidence for an abnormal adaptive immune response in DCM remains significant. In this review, we summarise and discuss available evidence supporting immune dysfunction in DCM, with a specific focus on cellular immunity. We also highlight current clinical and experimental treatments. We propose that the success of future immunosuppressive treatment trials in DCM will be dependent on the deep immunophenotyping of patients, to identify those with active inflammation and/or an abnormal immune response who are most likely to respond to therapy.
Collapse
Affiliation(s)
- Daniel Harding
- Centre for Biochemical Pharmacology, William Harvey Research Institute, London, UK
| | - Ming H A Chong
- Barts and The London School of Medicine and Dentistry, London, UK
| | - Nishant Lahoti
- Conquest Hospital, East Sussex Healthcare NHS Trust, St Leonards-on-Sea, UK
| | - Carola M Bigogno
- Barts and The London School of Medicine and Dentistry, London, UK
| | - Roshni Prema
- University Hospital, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | | | | |
Collapse
|
42
|
Papastamos C, Antonopoulos AS, Simantiris S, Koumallos N, Theofilis P, Sagris M, Tsioufis K, Androulakis E, Tousoulis D. Stem Cell-based Therapies in Cardiovascular Diseases: From Pathophysiology to Clinical Outcomes. Curr Pharm Des 2023; 29:2795-2801. [PMID: 37641986 DOI: 10.2174/1381612829666230828102130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/18/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023]
Abstract
Over 20 years of intensified research in the field of stem cells brought about unprecedented possibilities in treating heart diseases. The investigators were initially fascinated by the idea of regenerating the lost myocardium and replacing it with new functional cardiomyocytes, but this was extremely challenging. However, the multifactorial effects of stem cell-based therapies beyond mere cardiomyocyte generation, caused by paracrine signaling, would open up new possibilities in treating cardiovascular diseases. To date, there is a strong body of evidence that the anti-inflammatory, anti-apoptotic, and immunomodulatory effects of stem cell therapy may alleviate atherosclerosis progression. In the present review, our objective is to provide a brief overview of the stem cell-based therapeutic options. We aim to delineate the pathophysiological mechanisms of their beneficial effects in cardiovascular diseases especially in coronary artery disease and to highlight some conclusions from important clinical studies in the field of regenerative medicine in cardiovascular diseases and how we could further move onwards.
Collapse
Affiliation(s)
- Charalampos Papastamos
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexios S Antonopoulos
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyridon Simantiris
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Koumallos
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Theofilis
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marios Sagris
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Dimitris Tousoulis
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
43
|
Niebergall-Roth E, Frank NY, Ganss C, Frank MH, Kluth MA. Skin-Derived ABCB5 + Mesenchymal Stem Cells for High-Medical-Need Inflammatory Diseases: From Discovery to Entering Clinical Routine. Int J Mol Sci 2022; 24:66. [PMID: 36613507 PMCID: PMC9820160 DOI: 10.3390/ijms24010066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The ATP-binding cassette superfamily member ABCB5 identifies a subset of skin-resident mesenchymal stem cells (MSCs) that exhibit potent immunomodulatory and wound healing-promoting capacities along with superior homing ability. The ABCB5+ MSCs can be easily accessed from discarded skin samples, expanded, and delivered as a highly homogenous medicinal product with standardized potency. A range of preclinical studies has suggested therapeutic efficacy of ABCB5+ MSCs in a variety of currently uncurable skin and non-skin inflammatory diseases, which has been substantiated thus far by distinct clinical trials in chronic skin wounds or recessive dystrophic epidermolysis bullosa. Therefore, skin-derived ABCB5+ MSCs have the potential to provide a breakthrough at the forefront of MSC-based therapies striving to fulfill current unmet medical needs. The most recent milestones in this regard are the approval of a phase III pivotal trial of ABCB5+ MSCs for treatment of recessive dystrophic and junctional epidermolysis bullosa by the US Food and Drug Administration, and national market access of ABCB5+ MSCs (AMESANAR®) for therapy-refractory chronic venous ulcers under the national hospital exemption pathway in Germany.
Collapse
Affiliation(s)
| | - Natasha Y. Frank
- Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Ganss
- TICEBA GmbH, 69120 Heidelberg, Germany
- RHEACELL GmbH & Co. KG, 69120 Heidelberg, Germany
| | - Markus H. Frank
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
| | - Mark A. Kluth
- TICEBA GmbH, 69120 Heidelberg, Germany
- RHEACELL GmbH & Co. KG, 69120 Heidelberg, Germany
| |
Collapse
|
44
|
Banovic M, Poglajen G, Vrtovec B, Ristic A. Contemporary Challenges of Regenerative Therapy in Patients with Ischemic and Non-Ischemic Heart Failure. J Cardiovasc Dev Dis 2022; 9:jcdd9120429. [PMID: 36547426 PMCID: PMC9783726 DOI: 10.3390/jcdd9120429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2022] Open
Abstract
It has now been almost 20 years since first clinical trials of stem cell therapy for heart repair were initiated. While initial preclinical data were promising and suggested that stem cells may be able to directly restore a diseased myocardium, this was never unequivocally confirmed in the clinical setting. Clinical trials of cell therapy did show the process to be feasible and safe. However, the clinical benefits of this treatment modality in patients with ischemic and non-ischemic heart failure have not been consistently confirmed. What is more, in the rapidly developing field of stem cell therapy in patients with heart failure, relevant questions regarding clinical trials' protocol streamlining, optimal patient selection, stem cell type and dose, and the mode of cell delivery remain largely unanswered. Recently, novel approaches to myocardial regeneration, including the use of pluripotent and allogeneic stem cells and cell-free therapeutic approaches, have been proposed. Thus, in this review, we aim to outline current knowledge and highlight contemporary challenges and dilemmas in clinical aspects of stem cell and regenerative therapy in patients with chronic ischemic and non-ischemic heart failure.
Collapse
Affiliation(s)
- Marko Banovic
- Cardiology Department, University Clinical Center of Serbia, 11000 Beograd, Serbia
- Belgrade Medical School, 11000 Belgrade, Serbia
- Correspondence: (M.B.); (G.P.)
| | - Gregor Poglajen
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Medical Faculty Ljubljana, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (M.B.); (G.P.)
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Department of Internal Medicine, Medical Faculty Ljubljana, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Arsen Ristic
- Cardiology Department, University Clinical Center of Serbia, 11000 Beograd, Serbia
- Belgrade Medical School, 11000 Belgrade, Serbia
| |
Collapse
|
45
|
Petrosyan A, Martins PN, Solez K, Uygun BE, Gorantla VS, Orlando G. Regenerative medicine applications: An overview of clinical trials. Front Bioeng Biotechnol 2022; 10:942750. [PMID: 36507264 PMCID: PMC9732032 DOI: 10.3389/fbioe.2022.942750] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Insights into the use of cellular therapeutics, extracellular vesicles (EVs), and tissue engineering strategies for regenerative medicine applications are continually emerging with a focus on personalized, patient-specific treatments. Multiple pre-clinical and clinical trials have demonstrated the strong potential of cellular therapies, such as stem cells, immune cells, and EVs, to modulate inflammatory immune responses and promote neoangiogenic regeneration in diseased organs, damaged grafts, and inflammatory diseases, including COVID-19. Over 5,000 registered clinical trials on ClinicalTrials.gov involve stem cell therapies across various organs such as lung, kidney, heart, and liver, among other applications. A vast majority of stem cell clinical trials have been focused on these therapies' safety and effectiveness. Advances in our understanding of stem cell heterogeneity, dosage specificity, and ex vivo manipulation of stem cell activity have shed light on the potential benefits of cellular therapies and supported expansion into clinical indications such as optimizing organ preservation before transplantation. Standardization of manufacturing protocols of tissue-engineered grafts is a critical first step towards the ultimate goal of whole organ engineering. Although various challenges and uncertainties are present in applying cellular and tissue engineering therapies, these fields' prospect remains promising for customized patient-specific treatments. Here we will review novel regenerative medicine applications involving cellular therapies, EVs, and tissue-engineered constructs currently investigated in the clinic to mitigate diseases and possible use of cellular therapeutics for solid organ transplantation. We will discuss how these strategies may help advance the therapeutic potential of regenerative and transplant medicine.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Division of Urology, Children’s Hospital Los Angeles, Saban Research Institute, Los Angeles, CA, United States
| | - Paulo N. Martins
- Department of Surgery, Transplant Division, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, United States
| | - Kim Solez
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Basak E. Uygun
- Massachusetts General Hospital, Shriners Hospitals for Children in Boston and Harvard Medical School, Boston, MA, United States
| | - Vijay S. Gorantla
- Wake Forest Baptist Medical Center and Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Giuseppe Orlando
- Wake Forest Baptist Medical Center and Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| |
Collapse
|
46
|
Optimal Intravenous Administration Procedure for Efficient Delivery of Canine Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms232314681. [PMID: 36499004 PMCID: PMC9740176 DOI: 10.3390/ijms232314681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Mesenchymal stem cells (MSC) are currently being investigated for their therapeutic applications in a wide range of diseases. Although many studies examined peripheral venous administration of MSC, few have investigated the detailed intravenous administration procedures of MSC from their preparation until they enter the body. The current study therefore aimed to explore the most efficient infusion procedure for MSC delivery by preparing and infusing them under various conditions. Canine adipose-derived mesenchymal stem cells (cADSC) were infused using different infusion apparatuses, suspension solutions, allogenic serum supplementation, infusion time and rates, and cell densities, respectively. Live and dead cell counts were then assessed by manual measurements and flow cytometry. Efficiency of live- and dead-cell infusion and cell viability were calculated from the measured cell counts and compared under each condition. Efficiency of live-cell infusion differed significantly according to the infusion apparatus, infusion rate, and combination of cell density and serum supplementation. Cell viability after infusion differed significantly between the infusion apparatuses. The optimal infusion procedure resulting in the highest cell delivery and viability involved suspending cADSC in normal saline supplemented with 5% allogenic serum at a density of 5 × 105 cells/mL, and infusing them using an automatic infusion device for 15 min. This procedure is therefore recommended as the standard procedure for the intravenous administration of ADSC in terms of cell-delivery efficiency.
Collapse
|
47
|
Xuan Z, Zachar V, Pennisi CP. Sources, Selection, and Microenvironmental Preconditioning of Cells for Urethral Tissue Engineering. Int J Mol Sci 2022; 23:14074. [PMID: 36430557 PMCID: PMC9697333 DOI: 10.3390/ijms232214074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Urethral stricture is a common urinary tract disorder in men that can be caused by iatrogenic causes, trauma, inflammation, or infection and often requires reconstructive surgery. The current therapeutic approach for complex urethral strictures usually involves reconstruction with autologous tissue from the oral mucosa. With the goal of overcoming the lack of sufficient autologous tissue and donor site morbidity, research over the past two decades has focused on cell-based tissue-engineered substitutes. While the main focus has been on autologous cells from the penile tissue, bladder, and oral cavity, stem cells from sources such as adipose tissue and urine are competing candidates for future urethral regeneration due to their ease of collection, high proliferative capacity, maturation potential, and paracrine function. This review addresses the sources, advantages, and limitations of cells for tissue engineering in the urethra and discusses recent approaches to improve cell survival, growth, and differentiation by mimicking the mechanical and biophysical properties of the extracellular environment.
Collapse
Affiliation(s)
| | | | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
48
|
Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, Nguyen GH, Le PTT, Hoang VT, Forsyth NR, Heke M, Nguyen LT. Stem cell-based therapy for human diseases. Signal Transduct Target Ther 2022; 7:272. [PMID: 35933430 PMCID: PMC9357075 DOI: 10.1038/s41392-022-01134-4] [Citation(s) in RCA: 435] [Impact Index Per Article: 145.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023] Open
Abstract
Recent advancements in stem cell technology open a new door for patients suffering from diseases and disorders that have yet to be treated. Stem cell-based therapy, including human pluripotent stem cells (hPSCs) and multipotent mesenchymal stem cells (MSCs), has recently emerged as a key player in regenerative medicine. hPSCs are defined as self-renewable cell types conferring the ability to differentiate into various cellular phenotypes of the human body, including three germ layers. MSCs are multipotent progenitor cells possessing self-renewal ability (limited in vitro) and differentiation potential into mesenchymal lineages, according to the International Society for Cell and Gene Therapy (ISCT). This review provides an update on recent clinical applications using either hPSCs or MSCs derived from bone marrow (BM), adipose tissue (AT), or the umbilical cord (UC) for the treatment of human diseases, including neurological disorders, pulmonary dysfunctions, metabolic/endocrine-related diseases, reproductive disorders, skin burns, and cardiovascular conditions. Moreover, we discuss our own clinical trial experiences on targeted therapies using MSCs in a clinical setting, and we propose and discuss the MSC tissue origin concept and how MSC origin may contribute to the role of MSCs in downstream applications, with the ultimate objective of facilitating translational research in regenerative medicine into clinical applications. The mechanisms discussed here support the proposed hypothesis that BM-MSCs are potentially good candidates for brain and spinal cord injury treatment, AT-MSCs are potentially good candidates for reproductive disorder treatment and skin regeneration, and UC-MSCs are potentially good candidates for pulmonary disease and acute respiratory distress syndrome treatment.
Collapse
Affiliation(s)
- Duc M Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam.
| | - Phuong T Pham
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trung Q Bach
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Anh T L Ngo
- Department of Cellular Therapy, Vinmec High-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Quyen T Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trang T K Phan
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Giang H Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Phuong T T Le
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Van T Hoang
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Nicholas R Forsyth
- Institute for Science & Technology in Medicine, Keele University, Keele, UK
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Liem Thanh Nguyen
- Department of Research and Development, Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
49
|
Margiana R, Markov A, Zekiy AO, Hamza MU, Al-Dabbagh KA, Al-Zubaidi SH, Hameed NM, Ahmad I, Sivaraman R, Kzar HH, Al-Gazally ME, Mustafa YF, Siahmansouri H. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res Ther 2022; 13:366. [PMID: 35902958 PMCID: PMC9330677 DOI: 10.1186/s13287-022-03054-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 12/16/2022] Open
Abstract
The multipotency property of mesenchymal stem cells (MSCs) has attained worldwide consideration because of their immense potential for immunomodulation and their therapeutic function in tissue regeneration. MSCs can migrate to tissue injury areas to contribute to immune modulation, secrete anti-inflammatory cytokines and hide themselves from the immune system. Certainly, various investigations have revealed anti-inflammatory, anti-aging, reconstruction, and wound healing potentials of MSCs in many in vitro and in vivo models. Moreover, current progresses in the field of MSCs biology have facilitated the progress of particular guidelines and quality control approaches, which eventually lead to clinical application of MSCs. In this literature, we provided a brief overview of immunoregulatory characteristics and immunosuppressive activities of MSCs. In addition, we discussed the enhancement, utilization, and therapeutic responses of MSCs in neural, liver, kidney, bone, heart diseases, and wound healing.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Alexander Markov
- Tyumen State Medical University, Tyumen, Russian Federation.,Tyumen Industrial University, Tyumen, Russian Federation
| | - Angelina O Zekiy
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | | | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Baghdad, Iraq
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - R Sivaraman
- Department of Mathematics, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, University of Madras, Chennai, India
| | - Hamzah H Kzar
- Veterinary Medicine College, Al-Qasim Green University, Al-Qasim, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
50
|
Yedavilli S, Singh AD, Singh D, Samal R. Nano-Messengers of the Heart: Promising Theranostic Candidates for Cardiovascular Maladies. Front Physiol 2022; 13:895322. [PMID: 35899033 PMCID: PMC9313536 DOI: 10.3389/fphys.2022.895322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Till date, cardiovascular diseases remain a leading cause of morbidity and mortality across the globe. Several commonly used treatment methods are unable to offer safety from future complications and longevity to the patients. Therefore, better and more effective treatment measures are needed. A potential cutting-edge technology comprises stem cell-derived exosomes. These nanobodies secreted by cells are intended to transfer molecular cargo to other cells for the establishment of intercellular communication and homeostasis. They carry DNA, RNA, lipids, and proteins; many of these molecules are of diagnostic and therapeutic potential. Several stem cell exosomal derivatives have been found to mimic the cardioprotective attributes of their parent stem cells, thus holding the potential to act analogous to stem cell therapies. Their translational value remains high as they have minimal immunogenicity, toxicity, and teratogenicity. The current review highlights the potential of various stem cell exosomes in cardiac repair, emphasizing the recent advancements made in the development of cell-free therapeutics, particularly as biomarkers and as carriers of therapeutic molecules. With the use of genetic engineering and biomimetics, the field of exosome research for heart treatment is expected to solve various theranostic requirements in the field paving its way to the clinics.
Collapse
Affiliation(s)
- Sneha Yedavilli
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Damini Singh
- Environmental Pollution Analysis Lab, Bhiwadi, India
| | - Rasmita Samal
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
- *Correspondence: Rasmita Samal,
| |
Collapse
|