1
|
Castelli EC, Paes GS, da Silva IM, Moreau P, Donadi EA. The + 3010/C single nucleotide polymorphism (rs1710) at the HLA-G 3' untranslated region is associated with a short transcript exhibiting a deletion of 92 nucleotides. Immunogenetics 2023; 75:155-160. [PMID: 36879172 DOI: 10.1007/s00251-023-01297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023]
Abstract
The physiological expression of HLA-G is mainly observed in the placenta, playing an essential role in maternal-fetal tolerance. Among the HLA-G mRNA alternative transcripts, the one lacking 92 bases at the HLA-G 3' untranslated region (3'UTR), the 92bDel transcript, is more stable, is associated with increased HLA-G soluble levels, and was observed in individuals presenting a 14 bp insertion (14 bp+) at the 3'UTR. We investigated the presence of the 92bDel transcript in placenta samples, correlating its expression levels with the HLA-G polymorphisms at the 3'UTR. The 14 bp+ allele correlates with the presence of the 92bDel transcript. However, the polymorphism triggering this alternative splicing is the + 3010/C allele (rs1710, allele C). Most 14 bp+ haplotypes (UTR-2/-5/-7) present allele + 3010/C. However, 14 bp- haplotypes such as UTR-3 are also associated with + 3010/C, and the 92bDel transcript can be detected in homozygous samples for the 14 bp- allele carrying at least one copy of UTR-3. The UTR-3 haplotype is associated with alleles G*01:04 and the HLA-G lineage HG0104, which is a high-expressing lineage. The only HLA-G lineage that is not likely to produce this transcript is HG010101, associated with the + 3010/G allele. This functional difference may be advantageous, considering the high worldwide frequency of the HG010101 lineage. Therefore, HLA-G lineages are functionally distinct regarding the 92bDel transcript expression, and the 3010/C allele triggers the alternative splicing that produces this shorter and more stable transcript.
Collapse
Affiliation(s)
- Erick C Castelli
- Department of Pathology, School of Medicine, São Paulo State University (Unesp), Botucatu, Brazil.
- Molecular Genetics and Bioinformatics Laboratory (GeMBio) - Experimental Research Unit, School of Medicine, São Paulo State University (Unesp), Botucatu, Brazil.
| | - Gabriela Sato Paes
- Molecular Genetics and Bioinformatics Laboratory (GeMBio) - Experimental Research Unit, School of Medicine, São Paulo State University (Unesp), Botucatu, Brazil
| | - Isabelle Mira da Silva
- Molecular Genetics and Bioinformatics Laboratory (GeMBio) - Experimental Research Unit, School of Medicine, São Paulo State University (Unesp), Botucatu, Brazil
| | - Philippe Moreau
- Commissariat À L'Energie Atomique Et Aux Energies Alternatives, Direction de La Recherche Fondamentale, Institut de Biologie François Jacob, Service de Recherches en Hémato-ImmunologieHôpital Saint-Louis, Paris, France
- U976 HIPI Unit, ISRL, Université Paris Cité, Paris, France
| | - Eduardo A Donadi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, CEP, 14049-900, Brazil
| |
Collapse
|
2
|
Non-Coding RNAs in Pulmonary Diseases: Comparison of Different Airway-Derived Biosamples. Int J Mol Sci 2023; 24:ijms24032006. [PMID: 36768329 PMCID: PMC9916756 DOI: 10.3390/ijms24032006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Due to their structural conservation and functional role in critical signalling pathways, non-coding RNA (ncRNA) is a promising biomarker and modulator of pathological conditions. Most research has focussed on the role of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). These molecules have been investigated both in a cellular and an extracellular context. Sources of ncRNAs may include organ-specific body fluids. Therefore, studies on ncRNAs in respiratory diseases include those on sputum, bronchoalveolar lavage fluid (BALF) and exhaled breath condensate (EBC). It is worth identifying the limitations of these biosamples in terms of ncRNA abundance, processing and diagnostic potential. This review describes the progress in the literature on the role of ncRNAs in the pathogenesis and progression of severe respiratory diseases, including cystic fibrosis, asthma and interstitial lung disease. We showed that there is a deficit of information on lncRNAs and circRNAs in selected diseases, despite attempts to functionally bind them to miRNAs. miRNAs remain the most well-studied, but only a few investigations have been conducted on the least invasive biosample material, i.e., EBC. To summarise the studies conducted to date, we also performed a preliminary in silico analysis of the reported miRNAs, demonstrating the complexity of their role and interactions in selected respiratory diseases.
Collapse
|
3
|
HLA-G in asthma and its potential as an effective therapeutic agent. Allergol Immunopathol (Madr) 2023; 51:22-29. [PMID: 36617818 DOI: 10.15586/aei.v51i1.650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/06/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Asthma is a heterogeneous disease. Severity of asthma and sensitivity to medications vary across asthma subtypes. Human leukocyte antigen (HLA)-G has a wide range of functions in normal and pathological physiology. Due to its powerful immune function, HLA-G participates in the pathogenesis of different asthma phenotypes by regulating the activity and function of various immune cells. The mechanism of HLA-G in asthma is not fully clear, and there is no consensus on its mechanism in asthma. Further studies are needed to explore the role of HLA-G in different phenotypes of human asthma. METHODS Observational study. RESULTS HLA-G is an important immunomodulatory factor in asthma. Studies have found different levels of HLA-G in patients with different asthma subtypes and healthy controls, but other studies have come to the opposite conclusion. CONCLUSION We speculate that further study on the mechanism of HLA-G in asthma pheno-types may explain some of the contradictions in current studies. Findings should provide information regarding the potential of HLA-G as a novel target for asthma diagnosis and treatment.
Collapse
|
4
|
DNA methylation signatures in airway cells from adult children of asthmatic mothers reflect subtypes of severe asthma. Proc Natl Acad Sci U S A 2022; 119:e2116467119. [PMID: 35666868 PMCID: PMC9214527 DOI: 10.1073/pnas.2116467119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Maternal asthma is one of the most replicated risk factors for childhood-onset asthma. However, the underlying mechanisms are unknown. We identified DNA methylation signatures in bronchial epithelial cells from adults with asthma that were specific to those with a mother with asthma. These maternal asthma-associated methylation signatures were correlated with distinct gene regulatory pathways and clinical features. Genes in 16 pathways discriminated cases with and without maternal asthma and suggested impaired T cell signaling and responses to viral and bacterial pathogens in asthmatic children of an asthmatic mother. Our findings suggest that the prenatal environment in pregnancies of mothers with asthma alters epigenetically mediated developmental programs that may lead to severe asthma in their children through diverse gene regulatory pathways. Maternal asthma (MA) is among the most consistent risk factors for asthma in children. Possible mechanisms for this observation are epigenetic modifications in utero that have lasting effects on developmental programs in children of mothers with asthma. To test this hypothesis, we performed differential DNA methylation analyses of 398,186 individual CpG sites in primary bronchial epithelial cells (BECs) from 42 nonasthma controls and 88 asthma cases, including 56 without MA (NMA) and 32 with MA. We used weighted gene coexpression network analysis (WGCNA) of 69 and 554 differentially methylated CpGs (DMCs) that were specific to NMA and MA cases, respectively, compared with controls. WGCNA grouped 66 NMA-DMCs and 203 MA-DMCs into two and five comethylation modules, respectively. The eigenvector of one MA-associated module (turquoise) was uniquely correlated with 85 genes expressed in BECs and enriched for 36 pathways, 16 of which discriminated between NMA and MA using machine learning. Genes in all 16 pathways were decreased in MA compared with NMA cases (P = 7.1 × 10−3), a finding that replicated in nasal epithelial cells from an independent cohort (P = 0.02). Functional interpretation of these pathways suggested impaired T cell signaling and responses to viral and bacterial pathogens. The MA-associated turquoise module eigenvector was additionally correlated with clinical features of severe asthma and reflective of type 2 (T2)-low asthma (i.e., low total serum immunoglobulin E, fractional exhaled nitric oxide, and eosinophilia). Overall, these data suggest that MA alters diverse epigenetically mediated pathways that lead to distinct subtypes of severe asthma in adults, including hard-to-treat T2-low asthma.
Collapse
|
5
|
Negrini S, Contini P, Murdaca G, Puppo F. HLA-G in Allergy: Does It Play an Immunoregulatory Role? Front Immunol 2022; 12:789684. [PMID: 35082780 PMCID: PMC8784385 DOI: 10.3389/fimmu.2021.789684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
Allergy is an inflammatory process determined by a cascade of immune events characterized by T-helper 2 lymphocytes polarization leading to interleukin-4 upregulation, IgE secretion, and mast cell and eosinophil activation. HLA-G molecules, both in membrane-bound and in soluble forms, are known to play a key immunoregulatory role and their involvement in allergic diseases is supported by increasing literature data. HLA-G expression and secretion is specifically induced in peripheral blood mononuclear cells of allergic patients after in vitro incubation with the causal allergen. Elevated levels of soluble HLA-G molecules are detected in serum of patients with allergic rhinitis correlating with allergen-specific IgE levels, clinical severity, drug consumption and response to allergen-specific immunotherapy. HLA-G genetic polymorphisms confer susceptibility to allergic asthma development and high levels of soluble HLA-G molecules are found in plasma and bronchoalveolar lavage fluid of patients with allergic asthma correlating with allergen-specific IgE levels. Interestingly, allergic pregnant women have lower plasma sHLA-G levels than non-allergic women during the 3rd trimester of pregnancy and at delivery. Finally, in allergic patients with atopic dermatitis HLA-G molecules are expressed by T cells, monocytes-macrophages and Langerhans cells infiltrating the dermis. Although at present is difficult to completely define the role of HLA-G molecules in allergic diseases, it may be suggested that they are specifically expressed and secreted by immune cells during the allergic reaction in an attempt to suppress allergic inflammation.
Collapse
Affiliation(s)
| | | | | | - Francesco Puppo
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
6
|
Verma AK, Goyal Y, Bhatt D, Dev K, Beg MMA. MicroRNA: Biogenesis and potential role as biomarkers in lung diseases. Meta Gene 2021; 29:100920. [DOI: 10.1016/j.mgene.2021.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
7
|
Magnaye KM, Naughton KA, Huffman J, Hogarth DK, Naureckas ET, White SR, Ober C. A-to-I editing of miR-200b-3p in airway cells is associated with moderate-to-severe asthma. Eur Respir J 2021; 58:13993003.03862-2020. [PMID: 33446603 DOI: 10.1183/13993003.03862-2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/19/2020] [Indexed: 11/05/2022]
Abstract
BACKGROUND Asthma is a chronic lung disease characterised by persistent airway inflammation. Altered microRNA (miRNA)-mediated gene silencing in bronchial epithelial cells (BECs) has been reported in asthma, yet adenosine deaminase acting on RNA (ADAR)-mediated miRNA editing in asthma remains unexplored. METHODS We first identified adenosine to inosine (A-to-I) edited sites in miRNAs in BECs from 142 adult asthma cases and controls. A-to-I edited sites were tested for associations with asthma severity and clinical measures of asthma. Paired RNA sequencing data were used to perform pathway enrichments and test for associations with bioinformatically predicted target genes of the unedited and edited miRNAs. RESULTS Of 19 A-to-I edited sites detected in these miRNAs, one site at position 5 of miR-200b-3p was edited less frequently in cases compared with controls (pcorrected=0.013), and especially compared with cases with moderate (pcorrected=0.029) and severe (pcorrected=3.9×10-4), but not mild (pcorrected=0.38), asthma. Bioinformatic prediction revealed 232 target genes of the edited miR-200b-3p, which were enriched for both interleukin-4 and interferon-γ signalling pathways, and included the SOCS1 (suppressor of cytokine signalling 1) gene. SOCS1 was more highly expressed in moderate (pcorrected=0.017) and severe (pcorrected=5.4×10-3) asthma cases compared with controls. Moreover, both miR-200b-3p editing and SOCS1 were associated with bronchoalveolar lavage eosinophil levels. CONCLUSIONS Reduced A-to-I editing of position 5 of miR-200b-3p in lower airway cells from moderate-to-severe asthmatic subjects may lead to overexpression of SOCS1 and impaired cytokine signalling. We propose ADAR-mediated editing as an epigenetic mechanism contributing to features of moderate-to-severe asthma in adulthood.
Collapse
Affiliation(s)
- Kevin M Magnaye
- Dept of Human Genetics, University of Chicago, Chicago, IL, USA.,These two authors contributed equally to this article as lead authors and supervised the work
| | | | - Janel Huffman
- Dept of Human Genetics, University of Chicago, Chicago, IL, USA
| | - D Kyle Hogarth
- Dept of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Steven R White
- Dept of Medicine, University of Chicago, Chicago, IL, USA
| | - Carole Ober
- Dept of Human Genetics, University of Chicago, Chicago, IL, USA .,These two authors contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
8
|
Xu L, Yi M, Tan Y, Yi Z, Zhang Y. A comprehensive analysis of microRNAs as diagnostic biomarkers for asthma. Ther Adv Respir Dis 2020; 14:1753466620981863. [PMID: 33357010 PMCID: PMC7768876 DOI: 10.1177/1753466620981863] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: It is unclear whether microRNAs could be a potential diagnostic biomarker for asthma or not. The objective of this study is to figure out the diagnostic value of microRNAs in asthma. Methods: Literature retrieval, screening of publications, specific data extraction, and quality evaluation were conducted according to the standard criteria. Stata 14.0 software was used to analyze the diagnostic value of microRNA for asthma, including the combined sensitivity (Sen), specificity (Spe), the area under the curve (AUC), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR). Results: A total of 72 studies, containing 4143 cases and 2188 controls, were included for this comprehensive analysis. None of the included publications were rated low in quality. We summarized that, compared with controls, more than 100 miRNAs were reported differently expressed in asthma, although the expression trends were inconsistent. Besides, there were five studies among these 72 articles that applied the diagnostic evaluation of microRNAs in asthma. We found that the pooled Sen, Spe, and AUC for the combination of miR-185-5p, miR-155, let-7a, miR-21, miR-320a, miR-1246, miR-144-5p, and miR-1165-3p in asthma were 0.87 (95%CI: 0.72–0.95), 0.84 (95%CI: 0.74–0.91), and 0.93 (95%CI: 0.89–0.94) individually, and the PLR, NLR, and DOR were 5.5 (95%CI: 3.1–9.7), 0.15 (95%CI: 0.07–0.36), and 35 (95%CI: 10–127) in asthma, respectively. In terms of subgroup analyses, we found that the Sen for these combination miRNAs from serum was higher than that in plasma, while the Spe in plasma worked better than that in serum. Furthermore, compared with children, the combination of above miRNAs from adults had higher Spe and similar Sen. Conclusions: From our analysis, the combination of miR-185-5p, miR-155, let-7a, miR-21, miR-320a, miR-1246, miR-144-5p, and miR-1165-3p from peripheral blood could potentially act as a diagnostic biomarker for asthma. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Li Xu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,School of Life Sciences, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Minhan Yi
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yun Tan
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zixun Yi
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
9
|
Chitnis NS, Shieh M, Monos D. Regulatory noncoding RNAs and the major histocompatibility complex. Hum Immunol 2020; 82:532-540. [PMID: 32636038 DOI: 10.1016/j.humimm.2020.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Abstract
The Major Histocompatibility Complex (MHC) is a 4 Mbp genomic region located on the short arm of chromosome 6. The MHC region contains many key immune-related genes such as Human Leukocyte Antigens (HLAs). There has been a growing realization that, apart from MHC encoded proteins, RNAs derived from noncoding regions of the MHC-specifically microRNAs (miRNAs) and long noncoding RNAs (lncRNAs)-play a significant role in cellular regulation. Furthermore, regulatory noncoding RNAs (ncRNAs) derived from other parts of the genome fine-tune the expression of many immune-related MHC proteins. Although the field of ncRNAs of the MHC is a research area that is still in its infancy, ncRNA regulation of MHC genes has already been shown to be vital for immune function, healthy pregnancy and cellular homeostasis. Dysregulation of this intricate network of ncRNAs can lead to serious perturbations in homeostasis and subsequent disease.
Collapse
Affiliation(s)
- Nilesh Sunil Chitnis
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mengkai Shieh
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Dimitri Monos
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Vince N, Limou S, Daya M, Morii W, Rafaels N, Geffard E, Douillard V, Walencik A, Boorgula MP, Chavan S, Vergara C, Ortega VE, Wilson JG, Lange LA, Watson H, Nicolae DL, Meyers DA, Hansel NN, Ford JG, Faruque MU, Bleecker ER, Campbell M, Beaty TH, Ruczinski I, Mathias RA, Taub MA, Ober C, Noguchi E, Barnes KC, Torgerson D, Gourraud PA. Association of HLA-DRB1∗09:01 with tIgE levels among African-ancestry individuals with asthma. J Allergy Clin Immunol 2020; 146:147-155. [PMID: 31981624 DOI: 10.1016/j.jaci.2020.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 12/05/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Asthma is a complex chronic inflammatory disease of the airways. Association studies between HLA and asthma were first reported in the 1970s, and yet, the precise role of HLA alleles in asthma is not fully understood. Numerous genome-wide association studies were recently conducted on asthma, but were always limited to simple genetic markers (single nucleotide polymorphisms) and not complex HLA gene polymorphisms (alleles/haplotypes), therefore not capturing the biological relevance of this complex locus for asthma pathogenesis. OBJECTIVE To run the first HLA-centric association study with asthma and specific asthma-related phenotypes in a large cohort of African-ancestry individuals. METHODS We collected high-density genomics data for the Consortium on Asthma among African-ancestry Populations in the Americas (N = 4993) participants. Using computer-intensive machine-learning attribute bagging methods to infer HLA alleles, and Easy-HLA to infer HLA 5-gene haplotypes, we conducted a high-throughput HLA-centric association study of asthma susceptibility and total serum IgE (tIgE) levels in subjects with and without asthma. RESULTS Among the 1607 individuals with asthma, 972 had available tIgE levels, with a mean tIgE level of 198.7 IU/mL. We could not identify any association with asthma susceptibility. However, we showed that HLA-DRB1∗09:01 was associated with increased tIgE levels (P = 8.5 × 10-4; weighted effect size, 0.51 [0.15-0.87]). CONCLUSIONS We identified for the first time an HLA allele associated with tIgE levels in African-ancestry individuals with asthma. Our report emphasizes that by leveraging powerful computational machine-learning methods, specific/extreme phenotypes, and population diversity, we can explore HLA gene polymorphisms in depth and reveal the full extent of complex disease associations.
Collapse
Affiliation(s)
- Nicolas Vince
- Université de Nantes, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Nantes, France
| | - Sophie Limou
- Université de Nantes, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Nantes, France; Ecole Centrale de Nantes, Nantes, France
| | - Michelle Daya
- Department of Medicine, University of Colorado Denver, Aurora, Colo
| | - Wataru Morii
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Nicholas Rafaels
- Department of Medicine, University of Colorado Denver, Aurora, Colo
| | - Estelle Geffard
- Université de Nantes, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Nantes, France
| | - Venceslas Douillard
- Université de Nantes, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Nantes, France
| | - Alexandre Walencik
- Université de Nantes, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Nantes, France
| | | | - Sameer Chavan
- Department of Medicine, University of Colorado Denver, Aurora, Colo
| | | | - Victor E Ortega
- Department of Internal Medicine, Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Miss
| | - Leslie A Lange
- Department of Medicine, University of Colorado Denver, Aurora, Colo
| | - Harold Watson
- Faculty of Medical Sciences Cave Hill Campus, The University of the West Indies, Bridgetown, Barbados
| | - Dan L Nicolae
- Department of Medicine, University of Chicago, Chicago, Ill
| | - Deborah A Meyers
- Department of Medicine, University of Arizona College of Medicine, Tucson, Ariz
| | - Nadia N Hansel
- Department of Medicine, Johns Hopkins University, Baltimore, Md
| | - Jean G Ford
- Department of Medicine, Einstein Medical Center, Philadelphia, Pa
| | - Mezbah U Faruque
- National Human Genome Center, Howard University College of Medicine, Washington, DC
| | - Eugene R Bleecker
- Department of Medicine, University of Arizona College of Medicine, Tucson, Ariz
| | - Monica Campbell
- Department of Medicine, University of Colorado Denver, Aurora, Colo
| | - Terri H Beaty
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University, Baltimore, Md; Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| | - Margaret A Taub
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Emiko Noguchi
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | | | - Dara Torgerson
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Pierre-Antoine Gourraud
- Université de Nantes, Centrale Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Nantes, France.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Asthma is one of the most common chronic respiratory diseases linked with increased morbidity and healthcare utilization. The underlying pathophysiological processes and causal relationships of asthma with epigenetic mechanisms are partially understood. Here we review human studies of epigenetic mechanisms in asthma, with a special focus on DNA methylation. RECENT FINDINGS Epigenetic studies of childhood asthma have identified specific methylation signatures associated with allergic inflammation in the airway and immune cells, demonstrating a regulatory role for methylation in asthma pathogenesis. Despite these novel findings, additional research in the role of epigenetic mechanisms underlying asthma endotypes is needed. Similarly, studies of histone modifications are also lacking in asthma. Future studies of epigenetic mechanisms in asthma will benefit from data integration in well phenotyped cohorts. This review provides an overview of the current literature on epigenetic studies in human asthma, with special emphasis on methylation and childhood asthma.
Collapse
Affiliation(s)
- Jose L Gomez
- Pulmonary, Critical Care and Sleep, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
12
|
Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther 2019; 4:45. [PMID: 31637021 PMCID: PMC6799822 DOI: 10.1038/s41392-019-0079-0] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Asthma is chronic inflammation of the airways characterized by airway hyper-responsiveness, wheezing, cough, and dyspnea. Asthma affects >350 million people worldwide. The Th2 immune response is a major contributor to the pathophysiology of asthma. Targeted therapy modulating cell signaling pathways can be a powerful strategy to design new drugs to treat asthma. The potential molecular pathways that can be targeted include IL-4-IL-13-JAK-STAT-MAP kinases, adiponectin-iNOS-NF-κB, PGD2-CRTH2, IFNs-RIG, Wnt/β-catenin-FAM13A, FOXC1-miR-PI3K/AKT, JNK-Gal-7, Nrf2-ROS, Foxp3-RORγt, CysLTR, AMP, Fas-FasL, PTHrP/PPARγ, PAI-1, FcɛRI-LAT-SLP-76, Tim-3-Gal-9, TLRs-MyD88, PAR2, and Keap1/Nrf2/ARE. Therapeutic drugs can be designed to target one or more of these pathways to treat asthma.
Collapse
Affiliation(s)
- Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
13
|
Shi K, Ge MN, Chen XQ. Coordinated DNA Methylation and Gene Expression Data for Identification of the Critical Genes Associated with Childhood Atopic Asthma. J Comput Biol 2019; 27:109-120. [PMID: 31460781 DOI: 10.1089/cmb.2019.0194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Asthma is a chronic inflammatory disorder of airways that involves in many cells and factors. This study aimed to screen critical genes and miRNAs involved in childhood atopic asthma. DNA methylation and gene expression data (access numbers GSE65163 and GSE65204) were downloaded from Gene Expression Omnibus (GEO) database, which included 72 atopic asthmatic subject samples and 69 healthy samples. The differentially expressed genes (DEGs) with DNA methylation changes were identified, followed by Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Gene coexpression network and miRNA-target gene regulatory networks were then constructed. Besides, we screened critical drug molecules that have high correlation with atopic asthma in children. A total of 146 critical DEGs with DNA methylation changes were screened from atopic asthmatic samples compared with healthy control samples. GO and KEGG pathway enrichment analysis showed that the critical genes were mainly related to 20 GO terms and 13 KEGG pathways. In the coexpression network, tumor necrosis factor (TNF) and major histocompatibility complex, class II, DP alpha 1 (HLA-DPA1) were identified that were significantly related to immune response process. Analysis of miRNA-target gene network showed that hsa-miR-148b had the highest number of target genes(degree = 21). Besides, we found that Alsterpaullone had a correlation value closest to -1 (correlation = -0.884, p = 0.0031), which indicated that the agent might be considered as a potential agent that antagonized to asthma. The dysregulation of TNF, HLA-DPA1, and miR-148b might be related to the immune response of childhood atopic asthma.
Collapse
Affiliation(s)
- Ke Shi
- Department of Pediatrics and No. 904th Hospital of the Joint Logistics Support Force of PLA, Wuxi, China
| | - Meng-Na Ge
- Department of Pharmacy, No. 904th Hospital of the Joint Logistics Support Force of PLA, Wuxi, China
| | - Xiao-Qiao Chen
- Department of Pediatrics and No. 904th Hospital of the Joint Logistics Support Force of PLA, Wuxi, China
| |
Collapse
|
14
|
White SR, Laxman B, Naureckas ET, Hogarth DK, Solway J, Sperling AI, Ober C. Evidence for an IL-6-high asthma phenotype in asthmatic patients of African ancestry. J Allergy Clin Immunol 2019; 144:304-306.e4. [PMID: 31029772 PMCID: PMC6612296 DOI: 10.1016/j.jaci.2019.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/14/2019] [Accepted: 04/17/2019] [Indexed: 01/06/2023]
Abstract
High circulating IL-6 may define a phenotype of asthma associated with obesity and systemic inflammation. We demonstrate that circulating IL-6 is higher in African-American patients with asthma, and that race-specific thresholds should be considered.
Collapse
Affiliation(s)
- Steven R White
- Department of Medicine, University of Chicago, Chicago, Ill.
| | | | | | - D Kyle Hogarth
- Department of Medicine, University of Chicago, Chicago, Ill
| | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, Ill
| | | | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill
| |
Collapse
|
15
|
Tian M, Ji Y, Wang T, Zhang W, Zhou Y, Cui Y. Changes in circulating microRNA-126 levels are associated with immune imbalance in children with acute asthma. Int J Immunopathol Pharmacol 2018; 32:2058738418779243. [PMID: 29809062 PMCID: PMC5977433 DOI: 10.1177/2058738418779243] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Regulation of the immune response in asthma is complex. MicroRNA-126 (miR-126) expression has been implicated in this response, so we sought to determine the clinical significance of miR-126 measured in the peripheral blood. A total of 80 children with acute asthma were selected to participate in the study and were compared to 80 healthy children. The relative circulating miR-126 levels, interleukin (IL)-4 levels, and the Th17 cell percentage in the peripheral blood of children in the case group were significantly higher than those in the control group, while the interferon (IFN)-γ levels and the CD4+CD25+Treg cell percentage were significantly lower than those in the control group. Along with the aggravation of the disease, the relative levels of miR-126 and IL-4 and the percentage of Th17 cells increased gradually, while the IFN-γ levels and the CD4+CD25+Treg cell percentage decreased. The relative level of miR-126 in the peripheral blood of children with asthma was positively correlated with IL-4 and the Th17 cell percentage and was negatively correlated with IFN-γ levels, CD4+CD25+Treg cell percentage and lung function indicators. The relative level of miR-126 was correlated with the Th17 cell percentage in the peripheral blood, forced vital capacity (FVC), and forced expiratory flow (FEF)75% of the children with asthma. The relative levels of miR-126 and IL-4 and the Th17 cell percentage were positively correlated with the severity of the asthma, while IFN-γ levels and the CD4+CD25+Treg cell percentage were negatively correlated with the severity of the asthma. CD4+CD25+Treg cell percentage and relative miR-126 levels were of the most predictive value in the diagnosis of asthma. Our findings show that the overexpression of miR-126 in acute asthma is correlated with signs of immune imbalance and is predictive of the severity of the disease, suggesting that it could be used as a potential serological marker for asthma diagnosis and evaluation.
Collapse
Affiliation(s)
- Man Tian
- 1 Department of Respiratory, Children's Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Yong Ji
- 2 Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital, Nanjing Medical University, Wuxi, P.R. China
| | - Tingting Wang
- 3 Department of Clinical Laboratory, The Affiliated Wuxi People's Hospital, Nanjing Medical University, Wuxi, P.R. China
| | - Wenxin Zhang
- 1 Department of Respiratory, Children's Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Ying Zhou
- 4 Department of Pediatrics Laboratory, The Affiliated Wuxi People's Hospital, Nanjing Medical University, Wuxi, P.R. China
| | - Yubao Cui
- 3 Department of Clinical Laboratory, The Affiliated Wuxi People's Hospital, Nanjing Medical University, Wuxi, P.R. China
| |
Collapse
|
16
|
Fekonja S, Korošec P, Rijavec M, Jeseničnik T, Kunej T. Asthma MicroRNA Regulome Development Using Validated miRNA-Target Interaction Visualization. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:607-615. [PMID: 30124362 DOI: 10.1089/omi.2018.0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Asthma is a common multifactorial complex disease caused by an interaction of genetic and environmental factors. There are no robust biomarkers or molecular diagnostics for asthma or its detailed phenotypic stratification in the clinic. Regulatory and epigenomic factors are priority candidates for asthma biomarker discovery and translational research because this common disease emerges in association with host/environment interactions. In this context, epigenomic molecular events such as microRNA (miRNA) silencing affect asthma susceptibility and severity. We report here an analysis of the miRNAs in the literature, their targets associated with asthma, and present the findings organized as an miRNA-target network, an miRNA regulome of asthma. The miRNA-target interactions in asthma were extracted from the PubMed and the Web of Science databases, while the miRNA-target network was visualized with the Cytoscape tool. Genomic locations of miRNA and target genes were displayed using the Ensembl Whole Genome tool. We cataloged miRNAs associated with asthma and their experimentally validated targets, retrieving 48 miRNAs associated with asthma, and 54 experimentally validated miRNA targets. Four central molecules involved in 34.5% of all interactions were identified in the network. The miRNA-target pairs were constructed as an asthma-associated miRNA-target regulatory network. The network revealed subnetworks pointing toward potential asthma biomarker candidates. The asthma miRNA regulome reported here offers a strong foundation for future translational research and systems medicine applications for asthma diagnostic and therapeutic innovation. Developed protocol for constructing miRNA regulome could now be used for biomarker development in multifactorial diseases.
Collapse
Affiliation(s)
- Simon Fekonja
- 1 Department of Animal Science, Biotechnical Faculty, University of Ljubljana , Domžale, Slovenia
| | - Peter Korošec
- 2 Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnick, Golnik, Slovenia
| | - Matija Rijavec
- 2 Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnick, Golnik, Slovenia
| | - Taja Jeseničnik
- 3 Agronomy Department, Biotechnical Faculty, University of Ljubljana , Jamnikarjeva, Ljubljana, Slovenia
| | - Tanja Kunej
- 1 Department of Animal Science, Biotechnical Faculty, University of Ljubljana , Domžale, Slovenia
| |
Collapse
|
17
|
Ribeyre C, Carlini F, René C, Jordier F, Picard C, Chiaroni J, Abi-Rached L, Gouret P, Marin G, Molinari N, Chanez P, Paganini J, Gras D, Di Cristofaro J. HLA-G Haplotypes Are Differentially Associated with Asthmatic Features. Front Immunol 2018. [PMID: 29527207 PMCID: PMC5829031 DOI: 10.3389/fimmu.2018.00278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Human leukocyte antigen (HLA)-G, a HLA class Ib molecule, interacts with receptors on lymphocytes such as T cells, B cells, and natural killer cells to influence immune responses. Unlike classical HLA molecules, HLA-G expression is not found on all somatic cells, but restricted to tissue sites, including human bronchial epithelium cells (HBEC). Individual variation in HLA-G expression is linked to its genetic polymorphism and has been associated with many pathological situations such as asthma, which is characterized by epithelium abnormalities and inflammatory cell activation. Studies reported both higher and equivalent soluble HLA-G (sHLA-G) expression in different cohorts of asthmatic patients. In particular, we recently described impaired local expression of HLA-G and abnormal profiles for alternatively spliced isoforms in HBEC from asthmatic patients. sHLA-G dosage is challenging because of its many levels of polymorphism (dimerization, association with β2-microglobulin, and alternative splicing), thus many clinical studies focused on HLA-G single-nucleotide polymorphisms as predictive biomarkers, but few analyzed HLA-G haplotypes. Here, we aimed to characterize HLA-G haplotypes and describe their association with asthmatic clinical features and sHLA-G peripheral expression and to describe variations in transcription factor (TF) binding sites and alternative splicing sites. HLA-G haplotypes were differentially distributed in 330 healthy and 580 asthmatic individuals. Furthermore, HLA-G haplotypes were associated with asthmatic clinical features showed. However, we did not confirm an association between sHLA-G and genetic, biological, or clinical parameters. HLA-G haplotypes were phylogenetically split into distinct groups, with each group displaying particular variations in TF binding or RNA splicing sites that could reflect differential HLA-G qualitative or quantitative expression, with tissue-dependent specificities. Our results, based on a multicenter cohort, thus support the pertinence of HLA-G haplotypes as predictive genetic markers for asthma.
Collapse
Affiliation(s)
- Camille Ribeyre
- UMR7268 Anthropologie bio-culturelle, Droit, Ethique et Santé (ADES), "Biologie des Groupes Sanguins", Aix Marseille Université, CNRS, Établissement Français du Sang (EFS), Marseille, France
| | - Federico Carlini
- UMR7268 Anthropologie bio-culturelle, Droit, Ethique et Santé (ADES), "Biologie des Groupes Sanguins", Aix Marseille Université, CNRS, Établissement Français du Sang (EFS), Marseille, France
| | - Céline René
- Department of Immunology, CHRU de Montpellier, University Hospital Saint-Eloi, Montpellier, France.,Faculté de Médecine, University of Montpellier 1, Montpellier, France
| | - François Jordier
- UMR7268 Anthropologie bio-culturelle, Droit, Ethique et Santé (ADES), "Biologie des Groupes Sanguins", Aix Marseille Université, CNRS, Établissement Français du Sang (EFS), Marseille, France.,Établissement Français du Sang Alpes Méditerranée, Marseille, France
| | - Christophe Picard
- UMR7268 Anthropologie bio-culturelle, Droit, Ethique et Santé (ADES), "Biologie des Groupes Sanguins", Aix Marseille Université, CNRS, Établissement Français du Sang (EFS), Marseille, France.,Établissement Français du Sang Alpes Méditerranée, Marseille, France
| | - Jacques Chiaroni
- UMR7268 Anthropologie bio-culturelle, Droit, Ethique et Santé (ADES), "Biologie des Groupes Sanguins", Aix Marseille Université, CNRS, Établissement Français du Sang (EFS), Marseille, France.,Établissement Français du Sang Alpes Méditerranée, Marseille, France
| | - Laurent Abi-Rached
- Equipe ATIP, URMITE UM63 CNRS 7278 IRD 198 INSERM 1095, IHU Méditerranée Infection, Aix Marseille Université, Marseille, France
| | | | - Grégory Marin
- Institut Montpelliérain Alexander Grothendieck, CNRS, University of Montpellier, Montpellier, France.,Department of Statistics, University of Montpellier Hospitals, Montpellier, France
| | - Nicolas Molinari
- Institut Montpelliérain Alexander Grothendieck, CNRS, University of Montpellier, Montpellier, France.,Department of Statistics, University of Montpellier Hospitals, Montpellier, France
| | - Pascal Chanez
- Clinique des Bronches, Allergie et Sommeil, AP-HM Hôpital Nord, Marseille, France.,INSERM U1067, CNRS UMR 7333, Aix Marseille Université, Marseille, France
| | | | - Delphine Gras
- INSERM U1067, CNRS UMR 7333, Aix Marseille Université, Marseille, France
| | - Julie Di Cristofaro
- UMR7268 Anthropologie bio-culturelle, Droit, Ethique et Santé (ADES), "Biologie des Groupes Sanguins", Aix Marseille Université, CNRS, Établissement Français du Sang (EFS), Marseille, France.,Établissement Français du Sang Alpes Méditerranée, Marseille, France
| |
Collapse
|
18
|
Is MicroRNA-127 a Novel Biomarker for Acute Pancreatitis with Lung Injury? DISEASE MARKERS 2017; 2017:1204295. [PMID: 29434409 PMCID: PMC5757136 DOI: 10.1155/2017/1204295] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/23/2017] [Accepted: 10/15/2017] [Indexed: 02/05/2023]
Abstract
Background and Aims The aim of this study was to determine the expression of microRNA-127 (miR-127) in both rat models and patients of acute pancreatitis (AP) with lung injury (LI). Methods Rats were administrated with retrograde cholangiopancreatography injection of 0.5% or 3.5% sodium taurocholate to induce AP with mild or severe LI and were sacrificed at 6, 12, and 24 h. Rats from the control group received a laparotomy only. Plasma from a prospective cohort of AP patients was collected. The levels of miR-127 in the tissues and plasma were detected using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results The upregulation of miR-127 in the lungs of rats was detected in the groups of AP with severe LI at 6 h and 24 h, whereas it was scarcely detectable in plasma. In the pilot study that included 18 AP patients and 5 healthy volunteers, the plasma miR-127 level was significantly downregulated in AP patients with respiratory failure compared with the healthy volunteers (P = 0.014) and those without respiratory failure (P = 0.043). Conclusion miR-127 might serve as a potential marker for the identification of AP with LI.
Collapse
|
19
|
Interaction network of coexpressed mRNA, miRNA, and lncRNA activated by TGF‑β1 regulates EMT in human pulmonary epithelial cell. Mol Med Rep 2017; 16:8045-8054. [PMID: 28983614 PMCID: PMC5779888 DOI: 10.3892/mmr.2017.7653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/15/2017] [Indexed: 11/05/2022] Open
Abstract
Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), play increasingly important roles in pathological processes involved in disease development. However, whether mRNAs interact with miRNAs and lncRNAs to form an interacting regulatory network in diseases remains unknown. In this study, the interaction of coexpressed mRNAs, miRNAs and lncRNAs during tumor growth factor-β1-activated (TGF-β1) epithelial-mesenchymal transition (EMT) was systematically analyzed in human alveolar epithelial cells. For EMT regulation, 24 mRNAs, 11 miRNAs and 33 lncRNAs were coexpressed, and interacted with one another. The interaction among coexpressed mRNAs, miRNAs and lncRNAs were further analyzed, and the results showed the lack of competing endogenous RNAs (ceRNAs) among them. The mutual regulation may be correlated with other modes, such as histone modification and transcription factor recruitment. However, the possibility of ceRNA existence cannot be ignored because of the generally low abundance of lncRNAs and frequent promiscuity of protein-RNA interactions. Thus, conclusions need further experimental identification and validation. In this context, disrupting many altered disease pathways remains one of the challenges in obtaining effective pathway-based therapy. The reason being that one specific mRNA, miRNA or lncRNA may target multiple genes that are potentially implicated in a disease. Nevertheless, the results of the present study provide basic mechanistic information, possible biomarkers and novel treatment strategies for diseases, particularly pulmonary tumor and fibrosis.
Collapse
|
20
|
Hahn EC, Zambra FMB, Kamada AJ, Delongui F, Grion CMC, Reiche EMV, Chies JAB. Association of HLA-G 3'UTR polymorphisms and haplotypes with severe sepsis in a Brazilian population. Hum Immunol 2017; 78:718-723. [PMID: 28941746 DOI: 10.1016/j.humimm.2017.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/16/2017] [Accepted: 09/19/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND The human leukocyte antigen G (HLA-G) is a molecule involved in immune system modulation, acting in the maintenance of a state of immune tolerance. Some polymorphisms in the HLA-G gene 3' untranslated region (3'UTR) were associated to distinct levels of HLA-G expression and to sepsis development. In the present study, haplotypes and polymorphisms of the HLA-G 3'UTR were analyzed in Brazilian septic patients. METHODS The HLA-G 3'UTR was amplified by PCR, sequenced and eight polymorphisms were genotyped (the 14bp insertion/deletion, +3003T/C, +3010C/G, +3027A/C, +3035C/T, +3142G/C, +3187A/G and+3196C/G) in DNA samples from septic patients (with severe sepsis or septic shock) and controls. The haplotypes were inferred and association tests were performed through Chi square test and binary logistic regression. RESULTS The+3027AC genotype was associated asa risk factor to sepsis development (OR 3.17, PBonferroni 0.048). Further, the presence of the UTR-7 haplotype (OR 2.97, PBonferroni 0.018), and of 14bp-Ins_+3142G_+3187A haplotype (OR 2.39, PBonferroni 0.045) were associated with sepsis, conferring susceptibility. CONCLUSION Our data confirm an important role of HLA-G 3'UTR polymorphisms in the development of severe forms of sepsis (severe sepsis and septic shock). The genotyping of HLA-G genetic variants and haplotypes could be useful as a prediction tool of increased risk to severe sepsis.
Collapse
Affiliation(s)
- Eriza Cristina Hahn
- Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| | - Francis Maria Báo Zambra
- Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| | - Anselmo Jiro Kamada
- Department of Genetics, Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil.
| | - Francieli Delongui
- Department of Pathology, Clinical Analysis and Toxicology, Universidade Estadual de Londrina - UEL, PR, Brazil.
| | - Cíntia Magalhães Carvalho Grion
- Department of Clinical Medicine, Health Sciences Center, University Hospital, Universidade Estadual de Londrina - UEL, PR, Brazil.
| | - Edna Maria Vissoci Reiche
- Department of Pathology, Clinical Analysis and Toxicology, Universidade Estadual de Londrina - UEL, PR, Brazil.
| | - José Artur Bogo Chies
- Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
White SR, Nicodemus-Johnson J, Laxman B, Denner DR, Naureckas ET, Hogarth DK, Stern R, Minc A, Solway J, Sperling A, Ober C. Elevated levels of soluble humanleukocyte antigen-G in the airways are a marker for a low-inflammatory endotype of asthma. J Allergy Clin Immunol 2017; 140:857-860. [PMID: 28363527 DOI: 10.1016/j.jaci.2017.02.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/03/2017] [Accepted: 02/22/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Steven R White
- Department of Medicine, University of Chicago, Chicago, Ill.
| | | | | | - Darcy R Denner
- Department of Medicine, University of Chicago, Chicago, Ill
| | | | - D Kyle Hogarth
- Department of Medicine, University of Chicago, Chicago, Ill
| | - Randi Stern
- Department of Medicine, University of Chicago, Chicago, Ill
| | - Alexa Minc
- Department of Medicine, University of Chicago, Chicago, Ill
| | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, Ill
| | - Anne Sperling
- Department of Medicine, University of Chicago, Chicago, Ill
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill
| |
Collapse
|
22
|
Carlini F, Picard C, Garulli C, Piquemal D, Roubertoux P, Chiaroni J, Chanez P, Gras D, Di Cristofaro J. Bronchial Epithelial Cells from Asthmatic Patients Display Less Functional HLA-G Isoform Expression. Front Immunol 2017; 8:6. [PMID: 28303134 PMCID: PMC5333864 DOI: 10.3389/fimmu.2017.00006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/03/2017] [Indexed: 11/13/2022] Open
Abstract
Not all asthmatic patients adequately respond to current available treatments, such as inhaled corticosteroids or omalizumab®. New treatments will aim to target the bronchial epithelium-immune response interaction using different pathways. HLA-G is involved in immunomodulation and may promote epithelial cell differentiation and proliferation. HLA-G protein has several isoforms generated by alternative splicing that might have differential functionalities. HLA-G protein expression and genetic polymorphisms have been reported to be associated with asthma. Our hypothesis is that bronchial epithelium from asthmatic patients displays less functional HLA-G isoforms. HLA-G transcriptional isoforms were quantified by real-time PCR in human bronchial epithelium cells (HBEC) grown in air-liquid interface culture obtained from five healthy controls (HC), seven patients with mild asthma (MA), and seven patients with severe asthma (SA). They were re-differentiated, and IL-13 exposure was used as a proxy for a pro-inflammatory cytokine. HLA-G protein expression was assessed by western blot analysis. HLA-G allele was typed by direct sequencing. Our results showed that both MA and SA display less functional HLA-G isoforms than HC (p < 0.05); in vitro HBEC re-differentiation from SA displays a particular isoform expression profile compared to MA and HC (p = 0.03); HLA-G*01:06 frequency in MA and SA was significantly higher than in the healthy population (p = 0.03 and p < 0.001, respectively); and IL-13 exposure had no impact on HLA-G expression. Our results support that an impaired expression of HLA-G isoforms in asthmatic patients could contribute to the loss of inflammation control and epithelium structural remodeling. Therefore, HLA-G might be an interesting alternative target for asthmatic patients not adequately responding to current drugs.
Collapse
Affiliation(s)
- Federico Carlini
- Etablissement Français du Sang Alpes Méditerranée , Marseille , France
| | - Christophe Picard
- Etablissement Français du Sang Alpes Méditerranée, Marseille, France; Aix-Marseille Univ, CNRS, EFS, ADES, "Biologie des Groupes Sanguins", Marseille, France
| | - Céline Garulli
- Aix-Marseille Univ, INSERM U1067 CNRS UMR 7333 , Marseille , France
| | | | - Pierre Roubertoux
- INSERM U491, Génétique Médicale et Développement, Aix-Marseille Université , Marseille , France
| | - Jacques Chiaroni
- Etablissement Français du Sang Alpes Méditerranée, Marseille, France; Aix-Marseille Univ, CNRS, EFS, ADES, "Biologie des Groupes Sanguins", Marseille, France
| | - Pascal Chanez
- Aix-Marseille Univ, INSERM U1067 CNRS UMR 7333, Marseille, France; Clinique des Bronches, Allergie et Sommeil, AP-HM Hôpital Nord, Marseille, France
| | - Delphine Gras
- Aix-Marseille Univ, INSERM U1067 CNRS UMR 7333 , Marseille , France
| | - Julie Di Cristofaro
- Etablissement Français du Sang Alpes Méditerranée, Marseille, France; Aix-Marseille Univ, CNRS, EFS, ADES, "Biologie des Groupes Sanguins", Marseille, France
| |
Collapse
|
23
|
Nicodemus-Johnson J, Myers RA, Sakabe NJ, Sobreira DR, Hogarth DK, Naureckas ET, Sperling AI, Solway J, White SR, Nobrega MA, Nicolae DL, Gilad Y, Ober C. DNA methylation in lung cells is associated with asthma endotypes and genetic risk. JCI Insight 2016; 1:e90151. [PMID: 27942592 DOI: 10.1172/jci.insight.90151] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The epigenome provides a substrate through which environmental exposures can exert their effects on gene expression and disease risk, but the relative importance of epigenetic variation on human disease onset and progression is poorly characterized. Asthma is a heterogeneous disease of the airways, for which both onset and clinical course result from interactions between host genotype and environmental exposures, yet little is known about the molecular mechanisms for these interactions. We assessed genome-wide DNA methylation using the Infinium Human Methylation 450K Bead Chip and characterized the transcriptome by RNA sequencing in primary airway epithelial cells from 74 asthmatic and 41 nonasthmatic adults. Asthma status was based on doctor's diagnosis and current medication use. Genotyping was performed using various Illumina platforms. Our study revealed a regulatory locus on chromosome 17q12-21 associated with asthma risk and epigenetic signatures of specific asthma endotypes and molecular networks. Overall, these data support a central role for DNA methylation in lung cells, which promotes distinct molecular pathways of asthma pathogenesis and modulates the effects of genetic variation on disease risk and clinical heterogeneity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Dan L Nicolae
- Department of Human Genetics.,Department of Medicine, and.,Department of Statistics, University of Chicago, Chicago, Illinois, USA
| | - Yoav Gilad
- Department of Human Genetics.,Department of Medicine, and
| | | |
Collapse
|
24
|
Contini P, Puppo F, Canonica GW, Murdaca G, Ciprandi G. Allergen-driven HLA-G expression and secretion in peripheral blood mononuclear cells from allergic rhinitis patients. Hum Immunol 2016; 77:1172-1178. [PMID: 27527921 DOI: 10.1016/j.humimm.2016.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 07/21/2016] [Accepted: 08/10/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND It has been reported that soluble HLA-G serum levels are increased in patients with pollen-induced allergic rhinitis and decrease after immunotherapy. However, no functional study has been conducted so far. The aim of this study was to evaluate the membrane expression and secretion of HLA-G molecules in peripheral blood mononuclear cells from allergic rhinitis patients after in vitro incubation with the causal allergen. METHODS AND RESULTS Twenty-two allergic rhinitis patients and ten healthy subjects were enrolled. Membrane HLA-G expression was determined by flow cytometry and soluble HLA-G in culture supernatant was determined by immunoenzymatic assay. HLA-G expression was detected in CD4+ (T-helper-2) cells and monocytes after in vitro stimulation with the causal allergen but not with non specific stimuli and non causal allergens. Accordingly, the release of soluble HLA-G in culture supernatant occurred only after the stimulation with the causal allergen. Collectively, these results were confirmed by Western blot analysis. CONCLUSIONS The present study provides the first in vitro evidence that in allergic patients HLA-G expression and secretion is specifically induced by the causal allergen. These data may add new insights into the pathogenetic mechanisms underlying allergic inflammation and allergen specific immunotherapy.
Collapse
Affiliation(s)
- Paola Contini
- Clinical Immunology, Department of Internal Medicine, University of Genoa & IRCCS-Azienda Ospedaliera Universitaria San Martino, 16132 Genoa, Italy
| | - Francesco Puppo
- Clinical Immunology, Department of Internal Medicine, University of Genoa & IRCCS-Azienda Ospedaliera Universitaria San Martino, 16132 Genoa, Italy.
| | - Giorgio Walter Canonica
- Allergy and Respiratory Diseases Units, Department of Internal Medicine, University of Genoa & IRCCS-Azienda Ospedaliera Universitaria San Martino, 16132 Genoa, Italy
| | - Giuseppe Murdaca
- Clinical Immunology, Department of Internal Medicine, University of Genoa & IRCCS-Azienda Ospedaliera Universitaria San Martino, 16132 Genoa, Italy
| | - Giorgio Ciprandi
- Allergy and Respiratory Diseases Units, Department of Internal Medicine, University of Genoa & IRCCS-Azienda Ospedaliera Universitaria San Martino, 16132 Genoa, Italy
| |
Collapse
|
25
|
Zambra FMB, Biolchi V, de Cerqueira CCS, Brum IS, Castelli EC, Chies JAB. Immunogenetics of prostate cancer and benign hyperplasia--the potential use of an HLA-G variant as a tag SNP for prostate cancer risk. HLA 2016; 87:79-88. [PMID: 26889902 DOI: 10.1111/tan.12741] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/06/2016] [Accepted: 01/13/2016] [Indexed: 12/14/2022]
Abstract
Human leukocyte antigen G (HLA-G) is an immunomodulatory molecule with important roles both physiologically as well as an escape mechanism of cancer cells. In this study, we evaluated the impact of eight polymorphisms at the 3' untranslated region (3'UTR) of the HLA-G gene in the development of prostate cancer (PCa) and benign prostatic hyperplasia (BPH). A total of 468 DNA samples of Brazilian men predominantly Euro-descendant with PCa (N = 187), BPH (N = 152) and healthy control individuals (N = 129) were evaluated. The HLA-G 3'UTR region was amplified by polymerase chain reaction (PCR), sequenced and genotyped to identify the 14 bp insertion/deletion (rs371194629), +3003T/C (rs1707), +3010C/G (rs1710), +3027A/C (rs17179101), +3035C/T (rs17179108), +3142G/C (rs1063320), +3187A/G (rs9380142) and +3196C/G (rs1610696) polymorphisms. Regression logistic and chi-square tests were performed to verify the influence of single nucleotide polymorphisms (SNPs) in PCa and/or BPH susceptibility, as well as in PCa progression (clinicopathological status). Our data showed the UTR-4 haplotype as a risk factor to PCa in comparison with control [odds ratio (OR) 2.35, 95% confidence interval (CI) 1.39-3.96, P adjusted = 0.003) and BPH groups (OR 1.82, 95% CI 1.15-2.86, P adjusted = 0.030). Further, the 'non-14bp Ins_ + 3142G_+3187A' haplotype (OR 1.56, 95% CI 1.10-2.20, P adjusted = 0.036), the +3003CT genotype (OR 4.44, 95% CI 1.33-4.50, P adjusted = 0.032) and the +3003C allele (OR 2.33, 95% CI 1.38-3.92, P adjusted = 0.016) also conferred susceptibility to PCa. Our data suggest an important influence of HLA-G 3'UTR polymorphisms in PCa susceptibility and support the use of the +3003 variant as a tag SNP for PCa risk.
Collapse
Affiliation(s)
- F M B Zambra
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - V Biolchi
- Centro de Ciências Biológicas e da Saúde, Centro Universitário Univates, Lajeado, RS, Brazil
| | - C C S de Cerqueira
- Consejo Nacional de Investigaciones Científicas y Tecnicas, Centro Nacional Patagonico, Puerto Madryn, Chubut, Argentina
| | - I S Brum
- Department of Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - E C Castelli
- Department of Pathology, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista - UNESP, Botucatu, SP, Brazil
| | - J A B Chies
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
26
|
Moheimani F, Hsu ACY, Reid AT, Williams T, Kicic A, Stick SM, Hansbro PM, Wark PAB, Knight DA. The genetic and epigenetic landscapes of the epithelium in asthma. Respir Res 2016; 17:119. [PMID: 27658857 PMCID: PMC5034566 DOI: 10.1186/s12931-016-0434-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/17/2016] [Indexed: 12/24/2022] Open
Abstract
Asthma is a global health problem with increasing prevalence. The airway epithelium is the initial barrier against inhaled noxious agents or aeroallergens. In asthma, the airway epithelium suffers from structural and functional abnormalities and as such, is more susceptible to normally innocuous environmental stimuli. The epithelial structural and functional impairments are now recognised as a significant contributing factor to asthma pathogenesis. Both genetic and environmental risk factors play important roles in the development of asthma with an increasing number of genes associated with asthma susceptibility being expressed in airway epithelium. Epigenetic factors that regulate airway epithelial structure and function are also an attractive area for assessment of susceptibility to asthma. In this review we provide a comprehensive discussion on genetic factors; from using linkage designs and candidate gene association studies to genome-wide association studies and whole genome sequencing, and epigenetic factors; DNA methylation, histone modifications, and non-coding RNAs (especially microRNAs), in airway epithelial cells that are functionally associated with asthma pathogenesis. Our aims were to introduce potential predictors or therapeutic targets for asthma in airway epithelium. Overall, we found very small overlap in asthma susceptibility genes identified with different technologies. Some potential biomarkers are IRAKM, PCDH1, ORMDL3/GSDMB, IL-33, CDHR3 and CST1 in airway epithelial cells. Recent studies on epigenetic regulatory factors have further provided novel insights to the field, particularly their effect on regulation of some of the asthma susceptibility genes (e.g. methylation of ADAM33). Among the epigenetic regulatory mechanisms, microRNA networks have been shown to regulate a major portion of post-transcriptional gene regulation. Particularly, miR-19a may have some therapeutic potential.
Collapse
Affiliation(s)
- Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia. .,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.
| | - Alan C-Y Hsu
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Andrew T Reid
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Teresa Williams
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Anthony Kicic
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, 6001, Western Australia, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | - Stephen M Stick
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, 6001, Western Australia, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Nedlands, 6009, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, HMRI building, The University of Newcastle, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
27
|
Kho AT, Sharma S, Davis JS, Spina J, Howard D, McEnroy K, Moore K, Sylvia J, Qiu W, Weiss ST, Tantisira KG. Circulating MicroRNAs: Association with Lung Function in Asthma. PLoS One 2016; 11:e0157998. [PMID: 27362794 PMCID: PMC4928864 DOI: 10.1371/journal.pone.0157998] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND MicroRNAs are key transcriptional and network regulators previously associated with asthma susceptibility. However, their role in relation to asthma severity has not been delineated. OBJECTIVE We hypothesized that circulating microRNAs could serve as biomarkers of changes in lung function in asthma patients. METHODS We isolated microRNAs from serum samples obtained at randomization for 160 participants of the Childhood Asthma Management Program. Using a TaqMan microRNA array containing 754 microRNA primers, we tested for the presence of known asthma microRNAs, and assessed the association of the individual microRNAs with lung function as measured by FEV1/FVC, FEV1% and FVC%. We further tested the subset of FEV1/FVC microRNAs for sex-specific and lung developmental associations. RESULTS Of the 108 well-detected circulating microRNAs, 74 (68.5%) had previously been linked to asthma susceptibility. We found 22 (20.3%), 4 (3.7%) and 8 (7.4%) microRNAs to be associated with FEV1/FVC, FEV1% and FVC%, respectively. 8 (of 22) FEV1/FVC, 3 (of 4) FEV1% and 1 (of 8) FVC% microRNAs had functionally validated target genes that have been linked via genome wide association studies to asthma and FEV1 change. Among the 22 FEV1/FVC microRNAs, 9 (40.9%) remain associated with FEV1/FVC in boys alone in a sex-stratified analysis (compared with 3 FEV1/FVC microRNAs in girls alone), 7 (31.8%) were associated with fetal lung development, and 3 (13.6%) in both. Ontology analyses revealed enrichment for pathways integral to asthma, including PPAR signaling, G-protein coupled signaling, actin and myosin binding, and respiratory system development. CONCLUSIONS Circulating microRNAs reflect asthma biology and are associated with lung function differences in asthmatics. They may represent biomarkers of asthma severity.
Collapse
Affiliation(s)
- Alvin T. Kho
- Children’s Hospital Informatics Program, Boston Children’s Hospital and Harvard Medical School, Boston MA 02115, United States of America
| | - Sunita Sharma
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, United States of America
| | - Joshua S. Davis
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
- Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Joseph Spina
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Dagnie Howard
- Oregon Health & Science University, Portland, OR 97239, United States of America
| | - Kevin McEnroy
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Kip Moore
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Jody Sylvia
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
- Partners Personalized Medicine, Partners HealthCare System, Boston, MA 02115, United States of America
| | - Kelan G. Tantisira
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
28
|
Denner DR, Sangwan N, Becker JB, Hogarth DK, Oldham J, Castillo J, Sperling AI, Solway J, Naureckas ET, Gilbert JA, White SR. Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways. J Allergy Clin Immunol 2015; 137:1398-1405.e3. [PMID: 26627545 DOI: 10.1016/j.jaci.2015.10.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/26/2015] [Accepted: 10/16/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND The lung has a diverse microbiome that is modest in biomass. This microbiome differs in asthmatic patients compared with control subjects, but the effects of clinical characteristics on the microbial community composition and structure are not clear. OBJECTIVES We examined whether the composition and structure of the lower airway microbiome correlated with clinical characteristics of chronic persistent asthma, including airflow obstruction, use of corticosteroid medications, and presence of airway eosinophilia. METHODS DNA was extracted from endobronchial brushings and bronchoalveolar lavage fluid collected from 39 asthmatic patients and 19 control subjects, along with negative control samples. 16S rRNA V4 amplicon sequencing was used to compare the relative abundance of bacterial genera with clinical characteristics. RESULTS Differential feature selection analysis revealed significant differences in microbial diversity between brush and lavage samples from asthmatic patients and control subjects. Lactobacillus, Pseudomonas, and Rickettsia species were significantly enriched in samples from asthmatic patients, whereas Prevotella, Streptococcus, and Veillonella species were enriched in brush samples from control subjects. Generalized linear models on brush samples demonstrated oral corticosteroid use as an important factor affecting the relative abundance of the taxa that were significantly enriched in asthmatic patients. In addition, bacterial α-diversity in brush samples from asthmatic patients was correlated with FEV1 and the proportion of lavage eosinophils. CONCLUSION The diversity and composition of the bronchial airway microbiome of asthmatic patients is distinct from that of nonasthmatic control subjects and influenced by worsening airflow obstruction and corticosteroid use.
Collapse
Affiliation(s)
- Darcy R Denner
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill
| | - Naseer Sangwan
- Biosciences Division (BIO), Argonne National Laboratory, Argonne, Ill
| | - Julia B Becker
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill
| | - D Kyle Hogarth
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill
| | - Justin Oldham
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill
| | - Jamee Castillo
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill
| | - Anne I Sperling
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill
| | - Julian Solway
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill
| | - Edward T Naureckas
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill
| | - Jack A Gilbert
- Biosciences Division (BIO), Argonne National Laboratory, Argonne, Ill; Departments of Ecology & Evolution and Surgery, University of Chicago, Chicago, Ill; Institute for Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Ill; Marine Biological Laboratory, Woods Hole, Mass
| | - Steven R White
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill.
| |
Collapse
|
29
|
Rutledge H, Baran-Gale J, de Villena FPM, Chesler EJ, Churchill GA, Sethupathy P, Kelada SNP. Identification of microRNAs associated with allergic airway disease using a genetically diverse mouse population. BMC Genomics 2015; 16:633. [PMID: 26303911 PMCID: PMC4548451 DOI: 10.1186/s12864-015-1732-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/29/2015] [Indexed: 12/17/2022] Open
Abstract
Background Allergic airway diseases (AADs) such as asthma are characterized in part by granulocytic airway inflammation. The gene regulatory networks that govern granulocyte recruitment are poorly understood, but evidence is accruing that microRNAs (miRNAs) play an important role. To identify miRNAs that may underlie AADs, we used two complementary approaches that leveraged the genotypic and phenotypic diversity of the Collaborative Cross (CC) mouse population. In the first approach, we sought to identify miRNA expression quantitative trait loci (eQTL) that overlap QTL for AAD-related phenotypes. Specifically, CC founder strains and incipient lines of the CC were sensitized and challenged with house dust mite allergen followed by measurement of granulocyte recruitment to the lung. Total lung RNA was isolated and miRNA was measured using arrays for CC founders and qRT-PCR for incipient CC lines. Results Among CC founders, 92 miRNAs were differentially expressed. We measured the expression of 40 of the most highly expressed of these 92 miRNAs in the incipient lines of the CC and identified 18 eQTL corresponding to 14 different miRNAs. Surprisingly, half of these eQTL were distal to the corresponding miRNAs, and even on different chromosomes. One of the largest-effect local miRNA eQTL was for miR-342-3p, for which we identified putative causal variants by bioinformatic analysis of the effects of single nucleotide polymorphisms on RNA structure. None of the miRNA eQTL co-localized with QTL for eosinophil or neutrophil recruitment. In the second approach, we constructed putative miRNA/mRNA regulatory networks and identified three miRNAs (miR-497, miR-351 and miR-31) as candidate master regulators of genes associated with neutrophil recruitment. Analysis of a dataset from human keratinocytes transfected with a miR-31 inhibitor revealed two target genes in common with miR-31 targets correlated with neutrophils, namely Oxsr1 and Nsf. Conclusions miRNA expression in the allergically inflamed murine lung is regulated by genetic loci that are smaller in effect size compared to mRNA eQTL and often act in trans. Thus our results indicate that the genetic architecture of miRNA expression is different from mRNA expression. We identified three miRNAs, miR-497, miR-351 and miR-31, that are candidate master regulators of genes associated with neutrophil recruitment. Because miR-31 is expressed in airway epithelia and is predicted to target genes with known links to neutrophilic inflammation, we suggest that miR-31 is a potentially novel regulator of airway inflammation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1732-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Holly Rutledge
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| | - Jeanette Baran-Gale
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA. .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA.
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA. .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA. .,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| | | | | | - Praveen Sethupathy
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA. .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA. .,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| | - Samir N P Kelada
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA. .,Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA. .,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA. .,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
30
|
Pua HH, Ansel KM. MicroRNA regulation of allergic inflammation and asthma. Curr Opin Immunol 2015; 36:101-8. [PMID: 26253882 DOI: 10.1016/j.coi.2015.07.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/13/2015] [Accepted: 07/17/2015] [Indexed: 12/18/2022]
Abstract
Allergic diseases are prevalent and clinically heterogeneous, and are the pathologic consequence of inappropriate or exaggerated type 2 immune responses. In this review, we explore the role of microRNAs (miRNAs) in regulating allergic inflammation. We discuss how miRNAs, acting through target genes to modulate gene expression networks, impact multiple facets of immune cell function critical for type 2 immune responses including cell survival, proliferation, differentiation, and effector functions. Human and mouse studies indicate that miRNAs are significant regulators of allergic immune responses. Finally, investigations of extracellular miRNAs offer promise for noninvasive biomarkers and therapeutic strategies for allergy and asthma.
Collapse
Affiliation(s)
- Heather H Pua
- Department of Pathology, San Francisco, CA, United States; Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, United States
| | - K Mark Ansel
- Department of Microbiology and Immunology, San Francisco, CA, United States; Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
31
|
Akdis CA, Akdis M. Mechanisms of allergen-specific immunotherapy and immune tolerance to allergens. World Allergy Organ J 2015; 8:17. [PMID: 26023323 PMCID: PMC4430874 DOI: 10.1186/s40413-015-0063-2] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 02/06/2015] [Indexed: 12/25/2022] Open
Abstract
Substantial progress in understanding mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumors, organ transplantation and chronic infections has led to a variety of targeted therapeutic approaches. Allergen-specific immunotherapy (AIT) has been used for 100 years as a desensitizing therapy for allergic diseases and represents the potentially curative and specific way of treatment. The mechanisms by which allergen-AIT has its mechanisms of action include the very early desensitization effects, modulation of T- and B-cell responses and related antibody isotypes as well as inhibition of migration of eosinophils, basophils and mast cells to tissues and release of their mediators. Regulatory T cells (Treg) have been identified as key regulators of immunological processes in peripheral tolerance to allergens. Skewing of allergen-specific effector T cells to a regulatory phenotype appears as a key event in the development of healthy immune response to allergens and successful outcome in AIT. Naturally occurring FoxP3+ CD4+CD25+ Treg cells and inducible type 1 Treg (Tr1) cells contribute to the control of allergen-specific immune responses in several major ways, which can be summarized as suppression of dendritic cells that support the generation of effector T cells; suppression of effector Th1, Th2 and Th17 cells; suppression of allergen-specific IgE, and induction of IgG4; suppression of mast cells, basophils and eosinophils and suppression of effector T cell migration to tissues. New strategies for immune intervention will likely include targeting of the molecular mechanisms of allergen tolerance and reciprocal regulation of effector and regulatory T cell subsets.
Collapse
Affiliation(s)
- Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Obere Strasse 22, CH7270 Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Obere Strasse 22, CH7270 Davos, Switzerland
| |
Collapse
|
32
|
Brugière O, Thabut G, Krawice-Radanne I, Rizzo R, Dauriat G, Danel C, Suberbielle C, Mal H, Stern M, Schilte C, Pretolani M, Carosella ED, Rouas-Freiss N. Role of HLA-G as a predictive marker of low risk of chronic rejection in lung transplant recipients: a clinical prospective study. Am J Transplant 2015; 15:461-71. [PMID: 25488753 DOI: 10.1111/ajt.12977] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 08/04/2014] [Accepted: 08/07/2014] [Indexed: 01/25/2023]
Abstract
Human leukocyte antigen G (HLA-G) expression is thought to be associated with a tolerance state following solid organ transplantation. In a lung transplant (LTx) recipient cohort, we assessed (1) the role of HLA-G expression as a predictor of graft acceptance, and (2) the relationship between (i) graft and peripheral HLA-G expression, (ii) HLA-G expression and humoral immunity and (iii) HLA-G expression and lung microenvironment. We prospectively enrolled 63 LTx recipients (median follow-up 3.26 years [min: 0.44-max: 5.03]). At 3 and 12 months post-LTx, we analyzed graft HLA-G expression by immunohistochemistry, plasma soluble HLA-G (sHLA-G) level by enzyme-linked immunosorbent assay, bronchoalveolar lavage fluid (BALF) levels of cytokines involved in chronic lung allograft dysfunction (CLAD) and anti-HLA antibodies (Abs) in serum. In a time-dependent Cox model, lung HLA-G expression had a protective effect on CLAD occurrence (hazard ratio: 0.13 [0.03-0.58]; p = 0.008). The same results were found when computing 3-month and 1-year conditional freedom from CLAD (p = 0.03 and 0.04, respectively [log-rank test]). Presence of anti-HLA Abs was inversely associated with graft HLA-G expression (p = 0.02). Increased BALF level of transforming growth factor-β was associated with high plasma sHLA-G level (p = 0.02). In conclusion, early graft HLA-G expression in LTx recipients with a stable condition was associated with graft acceptance in the long term.
Collapse
Affiliation(s)
- O Brugière
- Service de Pneumologie B et de Transplantation Pulmonaire, Centre Hospitalier Universitaire (CHU) Bichat-Claude Bernard, Paris, France; Faculté de Médecine Denis Diderot, Université Paris 7, Paris, France; Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France; DHU Fire, Paris, France; CEA, Institut des Maladies Emergentes et des Therapies Innovantes (IMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis, Paris, France; Sorbonne Paris Cité, University Paris Diderot, IUH, Hopital Saint-Louis, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Naidoo D, Wu AC, Brilliant MH, Denny J, Ingram C, Kitchner TE, Linneman JG, McGeachie MJ, Roden DM, Shaffer CM, Shah A, Weeke P, Weiss ST, Xu H, Medina MW. A polymorphism in HLA-G modifies statin benefit in asthma. THE PHARMACOGENOMICS JOURNAL 2014; 15:272-7. [PMID: 25266681 PMCID: PMC4379135 DOI: 10.1038/tpj.2014.55] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/04/2014] [Accepted: 08/13/2014] [Indexed: 11/16/2022]
Abstract
Several reports have shown that statin treatment benefits patients with asthma, however inconsistent effects have been observed. The mir-152 family (148a, 148b and 152) has been implicated in asthma. These microRNAs suppress HLA-G expression, and rs1063320, a common SNP in the HLA-G 3’UTR which is associated with asthma risk, modulates miRNA binding. We report that statins up-regulate mir-148b and 152, and affect HLA-G expression in an rs1063320 dependent fashion. In addition, we found that individuals who carried the G minor allele of rs1063320 had reduced asthma related exacerbations (emergency department visits, hospitalizations or oral steroid use) compared to non-carriers (p=0.03) in statin users ascertained in the Personalized Medicine Research Project at the Marshfield Clinic (n=421). These findings support the hypothesis that rs1063320 modifies the effect of statin benefit in asthma, and thus may contribute to variation in statin efficacy for the management of this disease.
Collapse
Affiliation(s)
- D Naidoo
- Atherosclerosis Research, Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - A C Wu
- Department of Population Medicine, Harvard Medical School, Boston, MA, USA
| | - M H Brilliant
- Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, WI, USA
| | - J Denny
- 1] Department of Medical Bioinformatics, Vanderbilt University School of Medicine, Nashville, TN, USA [2] Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - C Ingram
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - T E Kitchner
- Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, WI, USA
| | - J G Linneman
- Biomedical Informatics Research Center, Marshfield Clinic Research Foundation, Marshfield, WI, USA
| | - M J McGeachie
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - D M Roden
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - C M Shaffer
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - A Shah
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - P Weeke
- 1] Department of Medicine, Vanderbilt University, Nashville, TN, USA [2] Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark
| | - S T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - H Xu
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - M W Medina
- Atherosclerosis Research, Children's Hospital Oakland Research Institute, Oakland, CA, USA
| |
Collapse
|
35
|
Liu Y, Wang ZH, Zhen W, Lu SJ, Liu Z, Zou LY, Xu JJ. Association between genetic polymorphisms in the ADAM33 gene and asthma risk: a meta-analysis. DNA Cell Biol 2014; 33:793-801. [PMID: 25068505 DOI: 10.1089/dna.2013.2284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to evaluate the associations between the rs3918396 G>A and rs528557 C>G polymorphisms in the disinterring and metalloproteinase domain 33 (ADAM33) gene and asthma risk. We searched CISCOM, CINAHL, Web of Science, PubMed, Google Scholar, EBSCO, Cochrane Library, and CBM databases from inception through August 1st, 2013 without language restrictions. Meta-analysis was performed using the STATA 12.0 software. Crude odds ratios (ORs) with their 95% confidence intervals (95% CI) were calculated. Thirteen case-control studies were included with a total of 7104 asthma patients and 8172 healthy controls. Our meta-analysis results revealed that ADAM33 rs528557 C>G polymorphism was associated with an increased risk of asthma (all p<0.05). However, we found no correlation between the ADAM33 rs3918396 G>A polymorphism and asthma risk (all p>0.05). Subgroup analysis by ethnicity indicated that the ADAM33 rs528557 C>G polymorphism might be strongly associated with an increased risk of asthma among both Caucasian and Asian populations (All p<0.05). No significant association was found between the ADAM33 rs3918396 G>A polymorphism and the risk of asthma among the studied ethnicities (All p>0.05). The present meta-analysis suggests that the ADAM33 rs528557 C>G polymorphism may contribute to susceptibility to asthma. Thus, the ADAM33 rs528557 C>G polymorphism may be utilized as a biomarker for early diagnosis of asthma.
Collapse
Affiliation(s)
- Yu Liu
- 1 Department of Respiratory Medicine, The First Affiliated Hospital of Liaoning Medical University , Jinzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Immune-mediated pulmonary diseases are a group of diseases that resulted from immune imbalance initiated by allergens or of unknown causes. Inflammatory responses without restrictions cause tissue damage and remodeling, which leads to airway hyperactivity, destruction of alveolar architecture, and a resultant loss of lung function. Epigenetic mechanisms have been demonstrated to be involved in inflammation, autoimmunity, and cancer. Recent studies have identified that epigenetic changes also regulate molecular pathways in immune-mediated lung diseases. Aberrant DNA methylation status, dysregulation of histone modifications, as well as altered microRNAs expression could change transcription activity of genes involved in the development of immune-mediated pulmonary diseases, which contributes to skewed differentiation of T cells and proliferation and activation of myofibroblasts, leading to overproduction of inflammatory cytokines and excessive accumulation of extracellular matrix, respectively. Aside from this, epigenetics also explains how environmental exposure influence on gene transcription without genetic changes. It acts as a mediator of the interaction between environmental factors and genetic factors. Identification of the abnormal epigenetic marks in diseases provides novel biomarkers for prediction and diagnosis and affords novel therapeutic targets for those difficult clinical problems, such as steroid-resistance and rapidly progressing fibrosis. In this review, we summarized the latest experimental and translational epigenetic studies in immune-mediated pulmonary diseases, including asthma, idiopathic pulmonary fibrosis, tuberculosis, sarcoidosis, and silicosis.
Collapse
|
37
|
Novel insights into miRNA in lung and heart inflammatory diseases. Mediators Inflamm 2014; 2014:259131. [PMID: 24991086 PMCID: PMC4058468 DOI: 10.1155/2014/259131] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/03/2014] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding regulatory sequences that govern posttranscriptional inhibition of genes through binding mainly at regulatory regions. The regulatory mechanism of miRNAs are influenced by complex crosstalk among single nucleotide polymorphisms (SNPs) within miRNA seed region and epigenetic modifications. Circulating miRNAs exhibit potential characteristics as stable biomarker. Functionally, miRNAs are involved in basic regulatory mechanisms of cells including inflammation. Thus, miRNA dysregulation, resulting in aberrant expression of a gene, is suggested to play an important role in disease susceptibility. This review focuses on the role of miRNA as diagnostic marker in pathogenesis of lung inflammatory diseases and in cardiac remodelling events during inflammation. From recent reports, In this context, the information about the models in which miRNAs expression were investigated including types of biological samples, as well as on the methods for miRNA validation and prediction/definition of their gene targets are emphasized in the review. Besides disease pathogenesis, promising role of miRNAs in early disease diagnosis and prognostication is also discussed. However, some miRNAs are also indicated with protective role. Thus, identifications and usage of such potential miRNAs as well as disruption of disease susceptible miRNAs using antagonists, antagomirs, are imperative and may provide a novel therapeutic approach towards combating the disease progression.
Collapse
|
38
|
Szefler SJ. Advances in pediatric asthma in 2013: coordinating asthma care. J Allergy Clin Immunol 2014; 133:654-61. [PMID: 24581430 DOI: 10.1016/j.jaci.2014.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 01/06/2023]
Abstract
Last year's "Advances in pediatric asthma: moving toward asthma prevention" concluded that "We are well on our way to creating a pathway around wellness in asthma care and also to utilize new tools to predict the risk for asthma and take steps to not only prevent asthma exacerbations but also to prevent the early manifestations of the disease and thus prevent its evolution to severe asthma." This year's summary will focus on recent advances in pediatric asthma on prenatal and postnatal factors altering the natural history of asthma, assessment of asthma control, and new insights regarding potential therapeutic targets for altering the course of asthma in children, as indicated in Journal of Allergy and Clinical Immunology publications in 2013 and early 2014. Recent reports continue to shed light on methods to understand factors that influence the course of asthma, methods to assess and communicate levels of control, and new targets for intervention, as well as new immunomodulators. It will now be important to carefully assess risk factors for the development of asthma, as well as the risk for asthma exacerbations, and to improve the way we communicate this information in the health care system. This will allow parents, primary care physicians, specialists, and provider systems to more effectively intervene in altering the course of asthma and to further reduce asthma morbidity and mortality.
Collapse
Affiliation(s)
- Stanley J Szefler
- Pediatric Asthma Research Program, Section of Pediatric Pulmonary Medicine, Breathing Institute, Department of Pediatrics, Children's Hospital Colorado, and the Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colo.
| |
Collapse
|
39
|
Castelli EC, Veiga-Castelli LC, Yaghi L, Moreau P, Donadi EA. Transcriptional and posttranscriptional regulations of the HLA-G gene. J Immunol Res 2014; 2014:734068. [PMID: 24741620 PMCID: PMC3987962 DOI: 10.1155/2014/734068] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/16/2014] [Indexed: 01/20/2023] Open
Abstract
HLA-G has a relevant role in immune response regulation. The overall structure of the HLA-G coding region has been maintained during the evolution process, in which most of its variable sites are synonymous mutations or coincide with introns, preserving major functional HLA-G properties. The HLA-G promoter region is different from the classical class I promoters, mainly because (i) it lacks regulatory responsive elements for IFN-γ and NF-κB, (ii) the proximal promoter region (within 200 bases from the first translated ATG) does not mediate transactivation by the principal HLA class I transactivation mechanisms, and (iii) the presence of identified alternative regulatory elements (heat shock, progesterone and hypoxia-responsive elements) and unidentified responsive elements for IL-10, glucocorticoids, and other transcription factors is evident. At least three variable sites in the 3' untranslated region have been studied that may influence HLA-G expression by modifying mRNA stability or microRNA binding sites, including the 14-base pair insertion/deletion, +3142C/G and +3187A/G polymorphisms. Other polymorphic sites have been described, but there are no functional studies on them. The HLA-G coding region polymorphisms might influence isoform production and at least two null alleles with premature stop codons have been described. We reviewed the structure of the HLA-G promoter region and its implication in transcriptional gene control, the structure of the HLA-G 3'UTR and the major actors of the posttranscriptional gene control, and, finally, the presence of regulatory elements in the coding region.
Collapse
Affiliation(s)
- Erick C. Castelli
- Departamento de Patologia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), 18618-970 Botucatu, SP, Brazil
| | - Luciana C. Veiga-Castelli
- Division of Clinical Immunology, Department of Medicine, School of Medicine of Ribeirao Preto, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
| | - Layale Yaghi
- Alternative Energies and Atomic Energy Commission, Institute of Emerging Diseases and Innovative Therapies, Department of Hematology and Immunology Research, Saint-Louis Hospital, 75010 Paris, France
- Paris-Diderot University, Sorbonne Paris-Cité, UMR E5, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | - Philippe Moreau
- Alternative Energies and Atomic Energy Commission, Institute of Emerging Diseases and Innovative Therapies, Department of Hematology and Immunology Research, Saint-Louis Hospital, 75010 Paris, France
- Paris-Diderot University, Sorbonne Paris-Cité, UMR E5, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | - Eduardo A. Donadi
- Division of Clinical Immunology, Department of Medicine, School of Medicine of Ribeirao Preto, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
| |
Collapse
|
40
|
The many faces of human leukocyte antigen-G: relevance to the fate of pregnancy. J Immunol Res 2014; 2014:591489. [PMID: 24741608 PMCID: PMC3987982 DOI: 10.1155/2014/591489] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/17/2014] [Indexed: 02/06/2023] Open
Abstract
Pregnancy is an immunological paradox, where fetal antigens encoded by polymorphic genes inherited from the father do not provoke a maternal immune response. The fetus is not rejected as it would be theorized according to principles of tissue transplantation. A major contribution to fetal tolerance is the human leukocyte antigen (HLA)-G, a nonclassical HLA protein displaying limited polymorphism, restricted tissue distribution, and a unique alternative splice pattern. HLA-G is primarily expressed in placenta and plays multifaceted roles during pregnancy, both as a soluble and a membrane-bound molecule. Its immunomodulatory functions involve interactions with different immune cells and possibly regulation of cell migration during placental development. Recent findings include HLA-G contributions from the father and the fetus itself. Much effort has been put into clarifying the role of HLA-G during pregnancy and pregnancy complications, such as preeclampsia, recurrent spontaneous abortions, and subfertility or infertility. This review aims to clarify the multifunctional role of HLA-G in pregnancy-related disorders by focusing on genetic variation, differences in mRNA stability between HLA-G alleles, differences in HLA-G isoform expression, and possible differences in functional activity. Furthermore, we highlight important observations regarding HLA-G genetics and expression in preeclampsia that future research should address.
Collapse
|
41
|
Bortolotti D, Gentili V, Rotola A, Di Luca D, Rizzo R. Implication of HLA-G 3′ untranslated region polymorphisms in human papillomavirus infection. ACTA ACUST UNITED AC 2014; 83:113-8. [DOI: 10.1111/tan.12281] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 11/30/2022]
Affiliation(s)
- D. Bortolotti
- Department of Medical Sciences, Section of Microbiology and Medical Genetics; University of Ferrara; Ferrara Italy
| | - V. Gentili
- Department of Medical Sciences, Section of Microbiology and Medical Genetics; University of Ferrara; Ferrara Italy
| | - A. Rotola
- Department of Medical Sciences, Section of Microbiology and Medical Genetics; University of Ferrara; Ferrara Italy
| | - D. Di Luca
- Department of Medical Sciences, Section of Microbiology and Medical Genetics; University of Ferrara; Ferrara Italy
| | - R. Rizzo
- Department of Medical Sciences, Section of Microbiology and Medical Genetics; University of Ferrara; Ferrara Italy
| |
Collapse
|