1
|
Galván-Morales MÁ. Perspectives of Proteomics in Respiratory Allergic Diseases. Int J Mol Sci 2023; 24:12924. [PMID: 37629105 PMCID: PMC10454482 DOI: 10.3390/ijms241612924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Proteomics in respiratory allergic diseases has such a battery of techniques and programs that one would almost think there is nothing impossible to find, invent or mold. All the resources that we document here are involved in solving problems in allergic diseases, both diagnostic and prognostic treatment, and immunotherapy development. The main perspectives, according to this version, are in three strands and/or a lockout immunological system: (1) Blocking the diapedesis of the cells involved, (2) Modifications and blocking of paratopes and epitopes being understood by modifications to antibodies, antagonisms, or blocking them, and (3) Blocking FcεRI high-affinity receptors to prevent specific IgEs from sticking to mast cells and basophils. These tools and targets in the allergic landscape are, in our view, the prospects in the field. However, there are still many allergens to identify, including some homologies between allergens and cross-reactions, through the identification of structures and epitopes. The current vision of using proteomics for this purpose remains a constant; this is also true for the basis of diagnostic and controlled systems for immunotherapy. Ours is an open proposal to use this vision for treatment.
Collapse
Affiliation(s)
- Miguel Ángel Galván-Morales
- Departamento de Atención a la Salud, CBS. Unidad Xochimilco, Universidad Autónoma Metropolitana, Calzada del Hueso 1100, Villa Quietud, Coyoacán, Ciudad de México 04960, Mexico
| |
Collapse
|
2
|
Abstract
INTRODUCTION Allergies affect 20-30% of the population and respiratory allergies are mostly due to pollen grains from anemophilous plants. One to 5% of people suffer from food allergies and clinicians report increasing numbers of pollen-food allergy syndrome (PFAS), such that the symptoms have broadened from respiratory to gastrointestinal, and even to anaphylactic shock in the presence of cofactors. Thirty to 60% of food allergies are associated with pollen allergy while the percentage of pollen allergies associated to food allergy varies according to local environment and dietary habits. AREAS COVERED Articles published in peer-reviewed journals, covered by PubMed databank, clinical data are discussed including symptoms, diagnosis, and management. A chapter emphasizes the role of six well-known allergen families involved in PFAS: PR10 proteins, profilins, lipid transfer proteins, thaumatin-like proteins, isoflavone reductases, and β-1,3 glucanases. The relevance in PFAS of three supplementary allergen families is presented: oleosins, polygalacturonases, and gibberellin-regulated proteins. To support the discussion a few original relevant results were added. EXPERT OPINION Both allergenic sources, pollen and food, are submitted to the same stressful environmental changes resulting in an increase of pathogenesis-related proteins in which numerous allergens are found. This might be responsible for the potential increase of PFAS.
Collapse
Affiliation(s)
- Pascal Poncet
- Armand Trousseau Children Hospital, Immunology Department, Allergy & Environment Research Team , Paris, France.,Immunology Department, Institut Pasteur , Paris, France
| | - Hélène Sénéchal
- Armand Trousseau Children Hospital, Immunology Department, Allergy & Environment Research Team , Paris, France
| | - Denis Charpin
- Aix Marseille University and French Clean Air Association (APPA) , Marseille, France
| |
Collapse
|
3
|
Bernstein DI, Würtzen PA, DuBuske L, Blaiss MS, Ellis AK, Weber RW, Nolte H. Allergy to oak pollen in North America. Allergy Asthma Proc 2021; 42:43-54. [PMID: 33404388 DOI: 10.2500/aap.2021.42.200089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background: Oak pollen is an important allergen in North America. The genus Quercus (oak) belongs to the family Fagaceae under the order Fagales. Objective: The objective of this article was to narratively review the oak pollen season, clinical and epidemiologic aspects of allergy to oak pollen, oak taxonomy, and oak allergen cross-reactivity, with a focus on the North American perspective. Methods: A PubMed literature review (no limits) was conducted. Publications related to oak pollen, oak-related allergic rhinitis with or without conjunctivitis, and oak-related allergic asthma were selected for review. Results: Oak species are common throughout the United States and contribute up to 50% to overall atmospheric pollen loads. Mean peak oak pollen counts can reach >2000 grains/m³. The start of the oak pollen season generally corresponds to the seasonal shift from winter to spring based on latitude and elevation, and may begin as early as mid February. The duration of the season can last > 100 days and, in general, is longer at lower latitudes. In the United States, ∼30% of individuals with allergy are sensitized to oak. The oak pollen season correlates with increased allergic rhinitis symptom-relieving medication use and asthma-related emergency department visits or hospitalizations. Oak falls within the birch homologous group. Extensive immunologic cross-reactivity has been demonstrated between oak pollen and birch pollen allergens, and, more specifically, their major allergens Que a 1 and Bet v 1. The cross-reactivity between oak and birch has implications for allergy immunotherapy (AIT) because guidelines suggest selecting one representative allergen within a homologous group for AIT, a principle that would apply to oak. Conclusion: Allergy to oak pollen is common in North America and has a substantial clinical impact. Oak pollen allergens are cross-reactive with birch pollen allergens, which may have implications for AIT.
Collapse
Affiliation(s)
- David I. Bernstein
- From the Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Lawrence DuBuske
- Division of Allergy and Immunology, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C
| | | | - Anne K. Ellis
- Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Richard W. Weber
- Department of Medicine, National Jewish Health, Denver, Colorado; and
| | | |
Collapse
|
4
|
San Segundo-Acosta P, Oeo-Santos C, Benedé S, de Los Ríos V, Navas A, Ruiz-Leon B, Moreno C, Pastor-Vargas C, Jurado A, Villalba M, Barderas R. Delineation of the Olive Pollen Proteome and Its Allergenome Unmasks Cyclophilin as a Relevant Cross-Reactive Allergen. J Proteome Res 2019; 18:3052-3066. [PMID: 31192604 DOI: 10.1021/acs.jproteome.9b00167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Olive pollen is a major allergenic source worldwide due to its extensive cultivation. We have combined available genomics data with a comprehensive proteomics approach to get the annotated olive tree (Olea europaea L.) pollen proteome and define its complex allergenome. A total of 1907 proteins were identified by LC-MS/MS using predicted protein sequences from its genome. Most proteins (60%) were predicted to possess catalytic activity and be involved in metabolic processes. In total, 203 proteins belonging to 47 allergen families were found in olive pollen. A peptidyl-prolyl cis-trans isomerase, cyclophilin, produced in Escherichia coli, was found as a new olive pollen allergen (Ole e 15). Most Ole e 15-sensitized patients were children (63%) and showed strong IgE recognition to the allergen. Ole e 15 shared high sequence identity with other plant, animal, and fungal cyclophilins and presented high IgE cross-reactivity with pollen, plant food, and animal extracts.
Collapse
Affiliation(s)
- Pablo San Segundo-Acosta
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , E-28040 Madrid , Spain
| | - Carmen Oeo-Santos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , E-28040 Madrid , Spain
| | - Sara Benedé
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , E-28040 Madrid , Spain
| | | | - Ana Navas
- Hospital Universitario Reina Sofía de Córdoba , E-14004 Córdoba , Spain
| | - Berta Ruiz-Leon
- Hospital Universitario Reina Sofía de Córdoba , E-14004 Córdoba , Spain
| | - Carmen Moreno
- Hospital Universitario Reina Sofía de Córdoba , E-14004 Córdoba , Spain
| | - Carlos Pastor-Vargas
- Department of Immunology , Instituto de Investigación Sanitaria Hospital Universitario Fundación Jiménez Díaz (IIS-FJD, UAM) , E-28040 Madrid , Spain
| | - Aurora Jurado
- Hospital Universitario Reina Sofía de Córdoba , E-14004 Córdoba , Spain
| | - Mayte Villalba
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , E-28040 Madrid , Spain
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC) , Instituto de Salud Carlos III , Majadahonda, E-28220 Madrid , Spain
| |
Collapse
|
5
|
Tiotiu A, Brazdova A, Longé C, Gallet P, Morisset M, Leduc V, Hilger C, Broussard C, Couderc R, Sutra JP, Sénéchal H, Poncet P. Urtica dioica pollen allergy: Clinical, biological, and allergomics analysis. Ann Allergy Asthma Immunol 2016; 117:527-534. [PMID: 27788883 DOI: 10.1016/j.anai.2016.09.426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/01/2016] [Accepted: 09/08/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND The most emblematic members of Urticaceae at allergic risk level are wall pellitories (Parietaria), whereas nettle (Urtica) pollen is considered as poorly allergenic. No allergen from nettle pollen has yet been characterized, whereas 4 are listed for Parietaria pollen by the International Union of Immunological Societies. Clinical and biological profiles of 2 adult men who developed symptoms against nettle pollen and/or leaves were studied. OBJECTIVE To characterize the allergic reaction and identify the potential nettle pollen sensitizing allergens. METHODS IgE-mediated reaction to nettle pollen extract was evaluated by skin prick test, immunoassay, nasal provocation, and basophil activation test. To characterize specific nettle pollen allergens, an allergomic (IgE immunoproteomic) analysis was performed combining 1- and 2-dimensional electrophoresis, IgE immunoblots of nettle pollen extract, identification of allergens by mass spectrometry, and database queries. RESULTS The results of biological and immunochemical analyses revealed that the allergic rhinitis was due to Urtica dioica pollen in both patients. The allergomic analysis of nettle pollen extract allowed the characterization of 4 basic protein allergens: a thaumatin-like protein (osmotin) with a relative molecular mass of 27 to 29 kDa, a pectinesterase (relative molecular mass, 40 kDa), and 2 other basic proteins with relative molecular masses of 14 to 16 kDa and 43 kDa. There is no or only very weak allergen associations between pellitory and nettle pollen. CONCLUSION Exposure to nettle pollen can be responsible of allergic symptoms, and several allergens were characterized. Unravelling the allergens of this underestimated allergy might help to improve diagnosis and care for patients, to predict cross-reactivities and design adapted specific immunotherapy.
Collapse
Affiliation(s)
- Angelica Tiotiu
- Pneumology-Allergology Department, University Hospital, Nancy, France
| | - Andrea Brazdova
- Biochemistry Laboratory, Allergy & Environment Team, Armand Trousseau Children Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Immunopathology and Immunoregulation Section, INSERM U1098, University of Burgundy, Dijon, France
| | - Cyril Longé
- Biochemistry Laboratory, Allergy & Environment Team, Armand Trousseau Children Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Patrice Gallet
- Pneumology-Allergology Department, University Hospital, Nancy, France
| | - Martine Morisset
- Immunology-Allergology Department, Luxembourg Hospital, Luxembourg-Ville, Luxembourg
| | | | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Cédric Broussard
- Cochin Institute, INSERM U1016, Centre National de la Recherche Scientifique, UMR8104, Paris-Descartes University, Paris, France; Proteomics Plateform 3P5, Paris-Descartes University, Sorbonne Paris Cité, Paris, France
| | - Rémy Couderc
- Biochemistry Laboratory, Allergy & Environment Team, Armand Trousseau Children Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Pierre Sutra
- Biochemistry Laboratory, Allergy & Environment Team, Armand Trousseau Children Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Hélène Sénéchal
- Biochemistry Laboratory, Allergy & Environment Team, Armand Trousseau Children Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Pascal Poncet
- Biochemistry Laboratory, Allergy & Environment Team, Armand Trousseau Children Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Center for Innovation and Technological Research, Pasteur Institute, Paris, France.
| |
Collapse
|
6
|
Peden DB, Bush RK. Advances in environmental and occupational disorders in 2014. J Allergy Clin Immunol 2016; 136:866-71. [PMID: 26449799 DOI: 10.1016/j.jaci.2015.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 01/26/2023]
Abstract
In 2014, the Journal published a number of studies that have advanced our understanding of the effects of various environmental factors and immune responses in patients with allergic diseases. In this review we emphasize reports that have appeared in the Journal over the past year that deal with environmental and occupational respiratory disorders and novel approaches to their treatment. The review will focus on the effects of environmental factors and immune responses in allergic airway diseases, identification of new allergens, and risk factors in stinging insect allergy, development of asthma in different age groups, effects of viral infections, and benefits of new therapies.
Collapse
Affiliation(s)
- David B Peden
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, University of North Carolina School of Medicine, Chapel Hill, NC.
| | - Robert K Bush
- Department of Medicine, Division of Allergy, Immunology, Pulmonary, Critical Care, and Sleep Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, Wis
| |
Collapse
|
7
|
Torres M, Palomares O, Quiralte J, Pauli G, Rodríguez R, Villalba M. An Enzymatically Active β-1,3-Glucanase from Ash Pollen with Allergenic Properties: A Particular Member in the Oleaceae Family. PLoS One 2015; 10:e0133066. [PMID: 26177095 PMCID: PMC4503641 DOI: 10.1371/journal.pone.0133066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/22/2015] [Indexed: 11/18/2022] Open
Abstract
Endo-β-1,3-glucanases are widespread enzymes with glycosyl hydrolitic activity involved in carbohydrate remodelling during the germination and pollen tube growth. Although members of this protein family with allergenic activity have been reported, their effective contribution to allergy is little known. In this work, we identified Fra e 9 as a novel allergenic β-1,3-glucanase from ash pollen. We produced the catalytic and carbohydrate-binding domains as two independent recombinant proteins and characterized them from structural, biochemical and immunological point of view in comparison to their counterparts from olive pollen. We showed that despite having significant differences in biochemical activity Fra e 9 and Ole e 9 display similar IgE-binding capacity, suggesting that β-1,3-glucanases represent an heterogeneous family that could display intrinsic allergenic capacity. Specific cDNA encoding Fra e 9 was cloned and sequenced. The full-length cDNA encoded a polypeptide chain of 461 amino acids containing a signal peptide of 29 residues, leading to a mature protein of 47760.2 Da and a pI of 8.66. An N-terminal catalytic domain and a C-terminal carbohydrate-binding module are the components of this enzyme. Despite the phylogenetic proximity to the olive pollen β-1,3-glucanase, Ole e 9, there is only a 39% identity between both sequences. The N- and C-terminal domains have been produced as independent recombinant proteins in Escherichia coli and Pichia pastoris, respectively. Although a low or null enzymatic activity has been associated to long β-1,3-glucanases, the recombinant N-terminal domain has 200-fold higher hydrolytic activity on laminarin than reported for Ole e 9. The C-terminal domain of Fra e 9, a cysteine-rich compact structure, is able to bind laminarin. Both molecules retain comparable IgE-binding capacity when assayed with allergic sera. In summary, the structural and functional comparison between these two closely phylogenetic related enzymes provides novel insights into the complexity of β-1,3-glucanases, representing a heterogeneous protein family with intrinsic allergenic capacity.
Collapse
Affiliation(s)
- María Torres
- Biochemistry and Molecular Biology I Department Complutense, University of Madrid, Madrid, Spain
| | - Oscar Palomares
- Biochemistry and Molecular Biology I Department Complutense, University of Madrid, Madrid, Spain
| | - Joaquín Quiralte
- Virgen del Rocío University, Hospital of Seville, Seville, Spain
| | - Gabrielle Pauli
- Hôpital Lyautey, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Rosalía Rodríguez
- Biochemistry and Molecular Biology I Department Complutense, University of Madrid, Madrid, Spain
| | - Mayte Villalba
- Biochemistry and Molecular Biology I Department Complutense, University of Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
8
|
Barber D, Díaz-Perales A, Villalba M, Chivato T. Challenges for allergy diagnosis in regions with complex pollen exposures. Curr Allergy Asthma Rep 2015; 15:496. [PMID: 25504260 DOI: 10.1007/s11882-014-0496-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the past few decades, significant scientific progress has influenced clinical allergy practice. The biological standardization of extracts was followed by the massive identification and characterization of new allergens and their progressive use as diagnostic tools including allergen micro arrays that facilitate the simultaneous testing of more than 100 allergen components. Specific diagnosis is the basis of allergy practice and is always aiming to select the best therapeutic or avoidance intervention. As a consequence, redundant or irrelevant information might be adding unnecessary cost and complexity to daily clinical practice. A rational use of the different diagnostic alternatives would allow a significant improvement in the diagnosis and treatment of allergic patients, especially for those residing in complex pollen exposure areas.
Collapse
Affiliation(s)
- Domingo Barber
- Institute for Applied Molecular Medicine (IMMA) School of Medicine, Universidad CEU San Pablo, 28668, Madrid, Spain,
| | | | | | | |
Collapse
|
9
|
Pauli G, Hutt N, Stchetchicova O. Pollinose au chêne, au platane, au plantain, à l’armoise. Mythe ou réalité ? REVUE FRANCAISE D ALLERGOLOGIE 2014. [DOI: 10.1016/j.reval.2014.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|