1
|
Brown JA, Bashir H, Zeng MY. Lifelong partners: Gut microbiota-immune cell interactions from infancy to old age. Mucosal Immunol 2025:S1933-0219(25)00006-6. [PMID: 39862964 DOI: 10.1016/j.mucimm.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Our immune system and gut microbiota are intricately coupled from birth, both going through maturation during early life and senescence during aging almost in a synchronized fashion. The symbiotic relationship between the human host and microbiota is critically dependent on a healthy immune system to keep our microbiota in check, while the microbiota provides essential functions to promote the development and fitness of our immune system. The partnership between our immune system and microbiota is particularly important during early life, when microbial ligands and metabolites shape the development of the immune cells and immune tolerance; during aging, having sufficient beneficial gut bacteria is critical for the maintenance of intact mucosal barriers, immune metabolic fitness, and strong immunity against pathogens. The immune system during childhood is programmed, with the support of the microbiota, to develop robust immune tolerance, and limit autoimmunity and metabolic dysregulation, which are prevalent during aging. This review comprehensively explores the mechanistic underpinnings of gut microbiota-immune cell interactions during infancy and old age, with the goal to gain a better understanding of potential strategies to leverage the gut microbiota to combat age-related immune decline.
Collapse
Affiliation(s)
- Julia A Brown
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, United States; Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, United States
| | - Hilal Bashir
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, United States; Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, United States
| | - Melody Y Zeng
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, United States; Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, United States; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY 10065, United States.
| |
Collapse
|
2
|
Riley JS, Berkowitz CL, Luks VL, Dave A, Cyril-Olutayo MC, Pogoriler J, Flake AW, Abdulmalik O, Peranteau WH. Immune modulation permits tolerance and engraftment in a murine model of late-gestation transplantation. Blood Adv 2024; 8:4523-4538. [PMID: 38941538 PMCID: PMC11395771 DOI: 10.1182/bloodadvances.2023012247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/08/2024] [Accepted: 06/15/2024] [Indexed: 06/30/2024] Open
Abstract
ABSTRACT In utero hematopoietic cell transplantation is an experimental nonmyeloablative therapy with potential applications in hematologic disorders, including sickle cell disease (SCD). Its clinical utility has been limited due to the early acquisition of T-cell immunity beginning at ∼14 weeks gestation, posing significant technical challenges and excluding treatment fetuses evaluated after the first trimester. Using murine neonatal transplantation at 20 days postcoitum (DPC) as a model for late-gestation transplantation (LGT) in humans, we investigated whether immune modulation with anti-CD3 monoclonal antibody (mAb) could achieve donor-specific tolerance and sustained allogeneic engraftment comparable with that of the early-gestation fetal recipient at 14 DPC. In allogeneic wild-type strain combinations, administration of anti-CD3 mAb with transplantation resulted in transient T-cell depletion followed by central tolerance induction confirmed by donor-specific clonal deletion and skin graft tolerance. Normal immune responses to third-party major histocompatibility complex and viral pathogens were preserved, and graft-versus-host disease did not occur. We further demonstrated the successful application of this approach in the Townes mouse model of SCD. These findings confirm the developing fetal T-cell response as a barrier to LGT and support transient T-cell depletion as a safe and effective immunomodulatory strategy to overcome it.
Collapse
Affiliation(s)
- John S. Riley
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Cara L. Berkowitz
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Valerie L. Luks
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Apeksha Dave
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Mojisola C. Cyril-Olutayo
- Department of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Drug Research and Production Unit, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jennifer Pogoriler
- Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Alan W. Flake
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Osheiza Abdulmalik
- Department of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - William H Peranteau
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
3
|
Dvorak CC, Haddad E, Heimall J, Dunn E, Buckley RH, Kohn DB, Cowan MJ, Pai SY, Griffith LM, Cuvelier GDE, Eissa H, Shah AJ, O'Reilly RJ, Pulsipher MA, Wright NAM, Abraham RS, Satter LF, Notarangelo LD, Puck JM. The diagnosis of severe combined immunodeficiency (SCID): The Primary Immune Deficiency Treatment Consortium (PIDTC) 2022 Definitions. J Allergy Clin Immunol 2023; 151:539-546. [PMID: 36456361 PMCID: PMC9905311 DOI: 10.1016/j.jaci.2022.10.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022]
Abstract
Severe combined immunodeficiency (SCID) results from defects in the differentiation of hematopoietic stem cells into mature T lymphocytes, with additional lymphoid lineages affected in particular genotypes. In 2014, the Primary Immune Deficiency Treatment Consortium published criteria for diagnosing SCID, which are now revised to incorporate contemporary approaches. Patients with typical SCID must have less than 0.05 × 109 autologous T cells/L on repetitive testing, with either pathogenic variant(s) in a SCID-associated gene, very low/undetectable T-cell receptor excision circles or less than 20% of CD4 T cells expressing naive markers, and/or transplacental maternally engrafted T cells. Patients with less profoundly impaired autologous T-cell differentiation are designated as having leaky/atypical SCID, with 2 or more of these: low T-cell numbers, oligoclonal T cells, low T-cell receptor excision circles, and less than 20% of CD4 T cells expressing naive markers. These patients must also have either pathogenic variant(s) in a SCID-associated gene or reduced T-cell proliferation to certain mitogens. Omenn syndrome requires a generalized erythematous rash, absent transplacentally acquired maternal engraftment, and 2 or more of these: eosinophilia, elevated IgE, lymphadenopathy, hepatosplenomegaly. Thymic stromal defects and other causes of secondary T-cell deficiency are excluded from the definition of SCID. Application of these revised Primary Immune Deficiency Treatment Consortium 2022 Definitions permits precise categorization of patients with T-cell defects but does not imply a preferred treatment strategy.
Collapse
Affiliation(s)
- Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif.
| | - Elie Haddad
- Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Jennifer Heimall
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, and Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Elizabeth Dunn
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| | - Rebecca H Buckley
- Division of Pediatric Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Donald B Kohn
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, Calif; Department of Pediatrics, University of California, Los Angeles, Los Angeles, Calif
| | - Morton J Cowan
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Bethesda, Md
| | - Linda M Griffith
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hesham Eissa
- Division of Pediatric Hematology-Oncology-BMT, University of Colorado, Aurora, Colo
| | - Ami J Shah
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Palo Alto, Calif
| | - Richard J O'Reilly
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering, New York, NY
| | - Michael A Pulsipher
- Division of Pediatric Hematology and Oncology, Intermountain Primary Childrens Hospital, Huntsman Cancer Institute at the University of Utah, Salt Lake City, Utah
| | - Nicola A M Wright
- Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio
| | - Lisa Forbes Satter
- Pediatric Immunology Allergy and Retrovirology, Baylor College of Medicine, Houston, Tex
| | - Luigi D Notarangelo
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jennifer M Puck
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| |
Collapse
|
4
|
Steininger J, Leiss-Piller A, Geier CB, Rossmanith R, Elfeky R, Bra D, Pichler H, Lawitschka A, Zubarovskaya N, Artacker G, Matthes-Leodolter S, Eibl MM, Wolf HM. Case Report: A Novel IL2RG Frame-Restoring Rescue Mutation Mimics Early T Cell Engraftment Following Haploidentical Hematopoietic Stem Cell Transplantation in a Patient With X-SCID. Front Immunol 2021; 12:644687. [PMID: 33959125 PMCID: PMC8093767 DOI: 10.3389/fimmu.2021.644687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations of the interleukin 2 receptor γ chain (IL2RG) result in the most common form of severe combined immunodeficiency (SCID), which is characterized by severe and persistent infections starting in early life with an absence of T cells and natural killer cells, normal or elevated B cell counts and hypogammaglobulinemia. SCID is commonly fatal within the first year of life, unless the immune system is reconstituted by hematopoietic stem cell transplantation (HSCT) or gene therapy. We herein describe a male infant with X-linked severe combined immunodeficiency (X-SCID) diagnosed at 5 months of age. Genetic testing revealed a novel C to G missense mutation in exon 1 resulting in a 3' splice site disruption with premature stop codon and aberrant IL2 receptor signaling. Following the diagnosis of X-SCID, the patient subsequently underwent a TCRαβ/CD19-depleted haploidentical HSCT. Post transplantation the patient presented with early CD8+ T cell recovery with the majority of T cells (>99%) being non-donor T cells. Genetic analysis of CD4+ and CD8+ T cells revealed a spontaneous 14 nucleotide insertion at the mutation site resulting in a novel splice site and restoring the reading frame although defective IL2RG function was still demonstrated. In conclusion, our findings describe a spontaneous second-site mutation in IL2RG as a novel cause of somatic mosaicism and early T cell recovery following haploidentical HSCT.
Collapse
Affiliation(s)
| | | | | | | | - Reem Elfeky
- Department of Clinical Immunology, Royal Free Hospital, London, United Kingdom
| | - David Bra
- Immunology Outpatient Clinic, Vienna, Austria
| | - Herbert Pichler
- Department of Pediatrics, St. Anna Kinderspital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | - Anita Lawitschka
- Department of Pediatrics, St. Anna Kinderspital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | - Natascha Zubarovskaya
- Department of Pediatrics, St. Anna Kinderspital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | - Gottfried Artacker
- Department of Paediatrics and Adolescent Medicine, Danube Hospital, Vienna, Austria
| | - Susanne Matthes-Leodolter
- Department of Pediatrics, St. Anna Kinderspital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | - Martha M Eibl
- Immunology Outpatient Clinic, Vienna, Austria.,Biomedizinische Forschungs GmbH, Vienna, Austria
| | - Hermann M Wolf
- Immunology Outpatient Clinic, Vienna, Austria.,Sigmund Freud Private University- Medical School, Vienna, Austria
| |
Collapse
|
5
|
Koh JY, Lee SB, Kim B, Park Y, Choi JR, Son S, Kim YJ, Hahn SM, Ahn JG, Kang JM, Shin EC. Impact of maternal engrafted cytomegalovirus-specific CD8 + T cells in a patient with severe combined immunodeficiency. Clin Transl Immunology 2021; 10:e1272. [PMID: 33868687 PMCID: PMC8043123 DOI: 10.1002/cti2.1272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 11/23/2022] Open
Abstract
Objectives In patients with severe combined immunodeficiency (SCID), the immune system often fails to eradicate maternal cells that enter the foetus via the placenta, resulting in transplacental maternal engraftment (TME) syndrome. However, the clinical significance of TME has not been comprehensively elucidated. Methods Here, we describe a patient with SCID with a novel frameshift IL2RG mutation associated with maternal engrafted CD8+ T cells that had been expanded by viral infection. To evaluate the origin of the expanded T cells, we HLA‐typed the myeloid and T cells of the patient and analysed the immunological characteristics of the expanded CD8+ T cells using T‐cell receptor (TCR) repertoire and flow cytometry analysis. Results In our patient, the maternal engrafted CD8+ T cells expanded and exerted in vitro antiviral function against human cytomegalovirus (CMV) infection before and after haematopoietic cell transplantation (HCT). After haploidentical HCT from the maternal donor, maternal engrafted CMV‐specific CD8+ T cells were maintained, successfully proliferated and activated against CMV. We found no evidence of acute graft‐versus‐host disease or infectious complications other than recurrent episodes of CMV viraemia, which were well controlled by ganciclovir and, possibly by, the maternal engrafted CMV‐specific CD8+ T cells. Conclusion Our findings elucidate a possible functional role of TME in controlling CMV infection in patient with SCID and suggest an optimal strategy for donor selection in patients with SCID with TME.
Collapse
Affiliation(s)
- June-Young Koh
- Graduate School of Medical Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
| | - Sang-Bo Lee
- Department of Pediatrics Severance Children's Hospital Yonsei University College of Medicine Seoul Republic of Korea
| | - Borahm Kim
- Department of Laboratory Medicine Korea University College of Medicine Seoul Republic of Korea.,Department of Laboratory Medicine Yonsei University College of Medicine Seoul Republic of Korea
| | - Younhee Park
- Department of Laboratory Medicine Yonsei University College of Medicine Seoul Republic of Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine Yonsei University College of Medicine Seoul Republic of Korea
| | - Sohee Son
- Department of Pediatrics Samsung Medical Center Sungkyunkwan University Seoul Republic of Korea
| | - Yae-Jean Kim
- Department of Pediatrics Samsung Medical Center Sungkyunkwan University Seoul Republic of Korea
| | - Seung Min Hahn
- Department of Pediatrics Severance Children's Hospital Yonsei University College of Medicine Seoul Republic of Korea
| | - Jong Gyun Ahn
- Department of Pediatrics Severance Children's Hospital Yonsei University College of Medicine Seoul Republic of Korea
| | - Ji-Man Kang
- Department of Pediatrics Severance Children's Hospital Yonsei University College of Medicine Seoul Republic of Korea.,Institute for Immunology and Immunological Diseases Yonsei University College of Medicine Seoul Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea.,The Center for Epidemic Preparedness KAIST Daejeon Republic of Korea
| |
Collapse
|
6
|
Kalina T, Bakardjieva M, Blom M, Perez-Andres M, Barendregt B, Kanderová V, Bonroy C, Philippé J, Blanco E, Pico-Knijnenburg I, Paping JHMP, Wolska-Kuśnierz B, Pac M, Tkazcyk J, Haerynck F, Akar HH, Formánková R, Freiberger T, Svatoň M, Šedivá A, Arriba-Méndez S, Orfao A, van Dongen JJM, van der Burg M. EuroFlow Standardized Approach to Diagnostic Immunopheneotyping of Severe PID in Newborns and Young Children. Front Immunol 2020; 11:371. [PMID: 32265901 PMCID: PMC7096355 DOI: 10.3389/fimmu.2020.00371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
The EuroFlow PID consortium developed a set of flow cytometry tests for evaluation of patients with suspicion of primary immunodeficiency (PID). In this technical report we evaluate the performance of the SCID-RTE tube that explores the presence of recent thymic emigrants (RTE) together with T-cell activation status and maturation stages and discuss its applicability in the context of the broader EuroFlow PID flow cytometry testing algorithm for diagnostic orientation of PID of the lymphoid system. We have analyzed peripheral blood cells of 26 patients diagnosed between birth and 2 years of age with a genetically defined primary immunodeficiency disorder: 15 severe combined immunodeficiency (SCID) patients had disease-causing mutations in RAG1 or RAG2 (n = 4, two of them presented with Omenn syndrome), IL2RG (n = 4, one of them with confirmed maternal engraftment), NHEJ1 (n = 1), CD3E (n = 1), ADA (n = 1), JAK3 (n = 3, two of them with maternal engraftment) and DCLRE1C (n = 1) and 11 other PID patients had diverse molecular defects [ZAP70 (n = 1), WAS (n = 2), PNP (n = 1), FOXP3 (n = 1), del22q11.2 (DiGeorge n = 4), CDC42 (n = 1) and FAS (n = 1)]. In addition, 44 healthy controls in the same age group were analyzed using the SCID-RTE tube in four EuroFlow laboratories using a standardized 8-color approach. RTE were defined as CD62L+CD45RO-HLA-DR-CD31+ and the activation status was assessed by the expression of HLA-DR+. Naïve CD8+ T-lymphocytes and naïve CD4+ T-lymphocytes were defined as CD62L+CD45RO-HLA-DR-. With the SCID-RTE tube, we identified patients with PID by low levels or absence of RTE in comparison to controls as well as low levels of naïve CD4+ and naïve CD8+ lymphocytes. These parameters yielded 100% sensitivity for SCID. All SCID patients had absence of RTE, including the patients with confirmed maternal engraftment or oligoclonally expanded T-cells characteristic for Omenn syndrome. Another dominant finding was the increased numbers of activated CD4+HLA-DR+ and CD8+HLA-DR+ lymphocytes. Therefore, the EuroFlow SCID-RTE tube together with the previously published PIDOT tube form a sensitive and complete cytometric diagnostic test suitable for patients suspected of severe PID (SCID or CID) as well as for children identified via newborn screening programs for SCID with low or absent T-cell receptor excision circles (TRECs).
Collapse
Affiliation(s)
- Tomas Kalina
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Marina Bakardjieva
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Maartje Blom
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Martin Perez-Andres
- Department of Medicine-Serv. Cytometry, Cancer Research Center (IBMCC-CSIC/USAL), University of Salamanca, Salamanca, Spain
| | - Barbara Barendregt
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Veronika Kanderová
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Carolien Bonroy
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jan Philippé
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Elena Blanco
- Department of Medicine-Serv. Cytometry, Cancer Research Center (IBMCC-CSIC/USAL), University of Salamanca, Salamanca, Spain
| | - Ingrid Pico-Knijnenburg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center (LUMC), Leiden, Netherlands.,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jitse H M P Paping
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Malgorzata Pac
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Jakub Tkazcyk
- Department of Pediatrics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Filomeen Haerynck
- PID Research Lab, Department of Pediatric Pulmonology and Immunology, Ghent University Hospital, Ghent, Belgium
| | - Himmet Haluk Akar
- Department of Pediatric Immunology and Allergy, Kanuni Sultan Süleyman Training and Research Hospital, Istanbul Health Sciences University, Istanbul, Turkey
| | - Renata Formánková
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia.,Medical Faculty, Masaryk University, Brno, Czechia
| | - Michael Svatoň
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Anna Šedivá
- Department of Immunology, University Hospital Motol, Prague, Czechia
| | - Sonia Arriba-Méndez
- Servicio de Pediatría, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Department of Medicine-Serv. Cytometry, Cancer Research Center (IBMCC-CSIC/USAL), University of Salamanca, Salamanca, Spain
| | - Jacques J M van Dongen
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Mirjam van der Burg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center (LUMC), Leiden, Netherlands.,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
7
|
Abstract
Severe combined immunodeficiency (SCID) encompasses a group of genetic defects. T cell development is universally affected and has alteration of B and/or NK cells. We present the case of a 5-day-old boy with combined heterozygous frame shift (c.256_257del, p.(Lys86Valfs*33)) and missense (c.1186C>T, p.(Arg396Cys)) variations in the RAG1 gene. He was admitted to our institution because of 0 TREC on Newborn Screen and worsening rash. Initially thought to have Omenn syndrome versus maternal engraftment with graft versus host disease, DNA analysis identified the noted mutations and he subsequently received a bone marrow transplant from a matched sibling.
Collapse
Affiliation(s)
- Matthew Tallar
- Pediatrics, Medical College of Wisconsin, 9000 West Wisconsin Avenue Suite 440, Milwaukee, WI 53226, USA.
| | - John Routes
- Pediatrics, Medical College of Wisconsin, 9000 West Wisconsin Avenue Suite 440, Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
Tuovinen EA, Grönholm J, Öhman T, Pöysti S, Toivonen R, Kreutzman A, Heiskanen K, Trotta L, Toiviainen-Salo S, Routes JM, Verbsky J, Mustjoki S, Saarela J, Kere J, Varjosalo M, Hänninen A, Seppänen MRJ. Novel Hemizygous IL2RG p.(Pro58Ser) Mutation Impairs IL-2 Receptor Complex Expression on Lymphocytes Causing X-Linked Combined Immunodeficiency. J Clin Immunol 2020; 40:503-514. [PMID: 32072341 PMCID: PMC7142052 DOI: 10.1007/s10875-020-00745-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/06/2020] [Indexed: 11/30/2022]
Abstract
Hypomorphic IL2RG mutations may lead to milder phenotypes than X-SCID, named variably as atypical X-SCID or X-CID. We report an 11-year-old boy with a novel c. 172C>T;p.(Pro58Ser) mutation in IL2RG, presenting with atypical X-SCID phenotype. We also review the growing number of hypomorphic IL2RG mutations causing atypical X-SCID. We studied the patient's clinical phenotype, B, T, NK, and dendritic cell phenotypes, IL2RG and CD25 cell surface expression, and IL-2 target gene expression, STAT tyrosine phosphorylation, PBMC proliferation, and blast formation in response to IL-2 stimulation, as well as protein-protein interactions of the mutated IL2RG by BioID proximity labeling. The patient suffered from recurrent upper and lower respiratory tract infections, bronchiectasis, and reactive arthritis. His total lymphocyte counts have remained normal despite skewed T and B cells subpopulations, with very low numbers of plasmacytoid dendritic cells. Surface expression of IL2RG was reduced on his lymphocytes. This led to impaired STAT tyrosine phosphorylation in response to IL-2 and IL-21, reduced expression of IL-2 target genes in patient CD4+ T cells, and reduced cell proliferation in response to IL-2 stimulation. BioID proximity labeling showed aberrant interactions between mutated IL2RG and ER/Golgi proteins causing mislocalization of the mutated IL2RG to the ER/Golgi interface. In conclusion, IL2RG p.(Pro58Ser) causes X-CID. Failure of IL2RG plasma membrane targeting may lead to atypical X-SCID. We further identified another carrier of this mutation from newborn SCID screening, lost to closer scrutiny.
Collapse
Affiliation(s)
- Elina A Tuovinen
- Folkhälsan Research Center, Helsinki, Finland.,Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,Rare Diseases Center and Pediatric Research Center, New Children's Hospital, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Juha Grönholm
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland. .,Rare Diseases Center and Pediatric Research Center, New Children's Hospital, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland.
| | - Tiina Öhman
- Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sakari Pöysti
- Department of Clinical Microbiology and Immunology, Turku University Hospital and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Raine Toivonen
- Department of Clinical Microbiology and Immunology, Turku University Hospital and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anna Kreutzman
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Kaarina Heiskanen
- Rare Diseases Center and Pediatric Research Center, New Children's Hospital, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Luca Trotta
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sanna Toiviainen-Salo
- Department of Pediatric Radiology, HUS Medical Imaging Center, Radiology, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - John M Routes
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James Verbsky
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Satu Mustjoki
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Janna Saarela
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland.,Department of Medical Genetics, Helsinki Central University Hospital, Helsinki, Finland.,Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Juha Kere
- Folkhälsan Research Center, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Markku Varjosalo
- Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Arno Hänninen
- Department of Clinical Microbiology and Immunology, Turku University Hospital and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Mikko R J Seppänen
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,Rare Diseases Center and Pediatric Research Center, New Children's Hospital, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
9
|
Zangari P, Cifaldi C, Di Cesare S, Di Matteo G, Chiriaco M, Amodio D, Cotugno N, De Luca M, Surace C, Ladogana S, Gardini S, Merli P, Algeri M, Rossi P, Palma P, Cancrini C, Finocchi A. Novel Compound Heterozygous Mutations in IL-7 Receptor α Gene in a 15-Month-Old Girl Presenting With Thrombocytopenia, Normal T Cell Count and Maternal Engraftment. Front Immunol 2019; 10:2471. [PMID: 31736942 PMCID: PMC6831519 DOI: 10.3389/fimmu.2019.02471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/03/2019] [Indexed: 11/22/2022] Open
Abstract
Patients with severe combined immunodeficiency (SCID) exhibit T lymphopenia and profound impairments in cellular and humoral immunity. IL-7 receptor α (IL-7Rα) deficiency is a rare form of SCID that usually presents in the first months of life with severe and opportunistic infections, failure to thrive and high risk of mortality unless treated. Here, we reported an atypical and delayed onset of IL7Rα-SCID in a 15-month-old girl presenting with thrombocytopenia. Immunological investigations showed a normal lymphocyte count with isolated CD4-penia, absence of naïve T cells, marked hypergammaglobulinemia, and maternal T cell engraftment. Targeted next generation sequencing (NGS) revealed two novel compound heterozygous mutations in the IL-7Rα gene: c.160T>C (p.S54P) and c.245G>T (p.C82F). The atypical onset and the unusual immunological phenotype expressed by our patient highlights the diagnostic challenge in the field of primary immunodeficiencies (PID) and in particular in SCID patients where prompt diagnosis and therapy greatly affects survival.
Collapse
Affiliation(s)
- Paola Zangari
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cristina Cifaldi
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Di Cesare
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gigliola Di Matteo
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Maria Chiriaco
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Donato Amodio
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Cotugno
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Research Unit in Congenital and Perinatal Infections, Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Maia De Luca
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cecilia Surace
- Laboratory of Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Saverio Ladogana
- Paediatric Onco-Haematology Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, Italy
| | | | - Pietro Merli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mattia Algeri
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paolo Rossi
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Research Unit in Congenital and Perinatal Infections, Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Caterina Cancrini
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Finocchi
- Unit of Immune and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
10
|
Revy P, Kannengiesser C, Fischer A. Somatic genetic rescue in Mendelian haematopoietic diseases. Nat Rev Genet 2019; 20:582-598. [DOI: 10.1038/s41576-019-0139-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
|
11
|
Follow-up Study of a Child with Severe Combined Immune Deficiency. ACTA BIOMEDICA SCIENTIFICA 2019. [DOI: 10.29413/abs.2019-4.2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We present the results of 7-year follow-up of a patient with primary immunodeficiency, such as severe combined immune deficiency, X-linked variant. The child has been ill from 11 month of age. He was taken to the Regional Infectious Disease Hospital in Irkutsk by sanitary aviation in extremely serious condition, which threatened his life. At 1 year 2 months he was transferred to Irkutsk State Regional Children’s Clinical Hospital due to deterioration of the general condition, prolonged fever, expressed by hypoxemia. At 1 year 3 months he was diagnosed with primary immunodeficiency, X-linked severe combined immune deficiency, persistent CMV infection in the department of clinical immunology of the Republican Children’s Clinical Hospital in Moscow. The diagnosis was confirmed by molecular genetic method (mutation с.664С˃Т was detected in exon 5 of the IL2RG gene in the hemizygotic state). At 1 year 9 months, haploidentical transplantation of hematopoietic stem cells from the father was performed. According to the chimerism, immune transplant rejection was observed after 1.5 months. At 2 years 11 months, the boy successfully underwent allogeneic bone marrow transplantation from an unrelated donor in the Children’s Oncology and Hematology Hospital of the University Hospital Freiburg (Germany). The child is being regularly observed in Irkutsk State Regional Children’s Clinical Hospital. He suffers from respiratory infections 4–5 times a year in a mild form. He corresponds to peers in physical and psychomotor development.
Collapse
|
12
|
Ott H. Guidance for assessment of erythroderma in neonates and infants for the pediatric immunologist. Pediatr Allergy Immunol 2019; 30:259-268. [PMID: 30702169 DOI: 10.1111/pai.13032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 12/25/2022]
Abstract
Neonatal and infantile erythroderma (NIE) represents the common clinical phenotype of heterogeneous diseases ranging from benign and transient skin conditions to fatal multiorgan disorders. NIE regularly demands a comprehensive diagnostic workup in a multiprofessional setting, especially if newborns and young infants with the disease develop a failure to thrive and concomitant infectious, neurologic, or metabolic complications. By obtaining a detailed medical history and performing a thorough clinical examination, targeted diagnostic steps can be scheduled for most affected children. If NIE occurs in the early neonatal period, lesional skin biopsy and histology are often indicated. Likewise, if monogenic skin or immunologic diseases are suspected, genetic testing with customized panels of potentially underlying genes is mandatory. Of note, if acute symptoms such as severe infections, metabolic acidosis, or seizures occur, rapid microbiologic and metabolic investigations are warranted to rule out immunodeficiency and inborn errors of metabolism.
Collapse
Affiliation(s)
- Hagen Ott
- Division of Pediatric Dermatology, Children's Hospital AUF DER BULT, Hannover, Germany.,Epidermolysis bullosa Centre, Hannover, Germany
| |
Collapse
|
13
|
Dvorak CC, Long-Boyle J, Dara J, Melton A, Shimano KA, Huang JN, Puck JM, Dorsey MJ, Facchino J, Chang CK, Cowan MJ. Low Exposure Busulfan Conditioning to Achieve Sufficient Multilineage Chimerism in Patients with Severe Combined Immunodeficiency. Biol Blood Marrow Transplant 2019; 25:1355-1362. [PMID: 30876930 DOI: 10.1016/j.bbmt.2019.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/08/2019] [Indexed: 11/17/2022]
Abstract
After allogeneic hematopoietic cell transplantation (HCT), the minimal myeloid chimerism required for full T and B cell reconstitution in patients with severe combined immunodeficiency (SCID) is unknown. We retrospectively reviewed our experience with low-exposure busulfan (cumulative area under the curve, 30 mg·hr/L) in 10 SCID patients undergoing either first or repeat HCT from unrelated or haploidentical donors. The median busulfan dose required to achieve this exposure was 5.9 mg/kg (range, 4.8 to 9.1). With a median follow-up of 4.5 years all patients survived, with 1 requiring an additional HCT. Donor myeloid chimerism was generally >90% at 1 month post-HCT, but in most patients it fell during the next 3 months, such that 1-year median myeloid chimerism was 14% (range, 2% to 100%). Six of 10 patients had full T and B cell reconstitution, despite myeloid chimerism as low as 3%. Three patients have not recovered B cell function at over 2 years post-HCT, 2 of them in the setting of treatment with rituximab for post-HCT autoimmunity. Low-exposure busulfan was well tolerated and achieved sufficient myeloid chimerism for full immune reconstitution in over 50% of patients. However, other factors beyond busulfan exposure may also play critical roles in determining long-term myeloid chimerism and full T and B cell reconstitution.
Collapse
Affiliation(s)
- Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California.
| | - Janel Long-Boyle
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California; Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California
| | - Jasmeen Dara
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | - Alexis Melton
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | - Kristin A Shimano
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California; Division of Pediatric Hematology and Oncology, University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | - James N Huang
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California; Division of Pediatric Hematology and Oncology, University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | - Jennifer M Puck
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | - Morna J Dorsey
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | - Janelle Facchino
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | - Catherine K Chang
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | - Morton J Cowan
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco Benioff Children's Hospital, San Francisco, California
| |
Collapse
|
14
|
Haas OA. Primary Immunodeficiency and Cancer Predisposition Revisited: Embedding Two Closely Related Concepts Into an Integrative Conceptual Framework. Front Immunol 2019; 9:3136. [PMID: 30809233 PMCID: PMC6379258 DOI: 10.3389/fimmu.2018.03136] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Common understanding suggests that the normal function of a "healthy" immune system safe-guards and protects against the development of malignancies, whereas a genetically impaired one might increase the likelihood of their manifestation. This view is primarily based on and apparently supported by an increased incidence of such diseases in patients with specific forms of immunodeficiencies that are caused by high penetrant gene defects. As I will review and discuss herein, such constellations merely represent the tip of an iceberg. The overall situation is by far more varied and complex, especially if one takes into account the growing difficulties to define what actually constitutes an immunodeficiency and what defines a cancer predisposition. The enormous advances in genome sequencing, in bioinformatic analyses and in the functional in vitro and in vivo assessment of novel findings together with the availability of large databases provide us with a wealth of information that steadily increases the number of sequence variants that concur with clinically more or less recognizable immunological problems and their consequences. Since many of the newly identified hard-core defects are exceedingly rare, their tumor predisposing effect is difficult to ascertain. The analyses of large data sets, on the other hand, continuously supply us with low penetrant variants that, at least in statistical terms, are clearly tumor predisposing, although their specific relevance for the respective carriers still needs to be carefully assessed on an individual basis. Finally, defects and variants that affect the same gene families and pathways in both a constitutional and somatic setting underscore the fact that immunodeficiencies and cancer predisposition can be viewed as two closely related errors of development. Depending on the particular genetic and/or environmental context as well as the respective stage of development, the same changes can have either a neutral, predisposing and, in some instances, even a protective effect. To understand the interaction between the immune system, be it "normal" or "deficient" and tumor predisposition and development on a systemic level, one therefore needs to focus on the structure and dynamic functional organization of the entire immune system rather than on its isolated individual components alone.
Collapse
Affiliation(s)
- Oskar A. Haas
- Department of Clinical Genetics, Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
15
|
Haddad E, Hoenig M. Hematopoietic Stem Cell Transplantation for Severe Combined Immunodeficiency (SCID). Front Pediatr 2019; 7:481. [PMID: 31803700 PMCID: PMC6877719 DOI: 10.3389/fped.2019.00481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/01/2019] [Indexed: 11/13/2022] Open
Abstract
Severe Combined Immunodeficiencies (SCID) are a heterogeneous group of monogenetic diseases. We describe the typical clinical presentation of patients with SCID as well as basic principles in diagnosis and therapy by hematopoietic stem cell transplantation. Therapeutic strategies may differ between subtypes and the inherent reduced capacity or inablility to reject a graft have to be considered.
Collapse
Affiliation(s)
- Elie Haddad
- CHU Sainte-Justine, Department of Pediatrics, Microbiology, Immunology and Infectious Diseases, University of Montreal, Montreal, QC, Canada
| | - Manfred Hoenig
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
16
|
Lanfranchi A, Lougaris V, Notarangelo LD, Soncini E, Comini M, Beghin A, Bolda F, Montanelli A, Imberti L, Porta F. Maternal T-cell engraftment impedes with diagnosis of a SCID-ADA patient. Clin Immunol 2018; 193:118-120. [PMID: 29355610 PMCID: PMC7106042 DOI: 10.1016/j.clim.2018.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 11/09/2022]
Abstract
We describe the case of a child affected by severe combined immunodeficiency (SCID) with adenosine deaminase (ADA) deficiency showing a maternal T-cell engraftment, a finding that has never been reported before. The presence of engrafted maternal T cells was misleading. Although ADA enzymatic levels were suggestive of ADA-SCID, the child did not present the classical signs of ADA deficiency; therefore, the initial diagnosis was of a conventional SCID. However, ADA toxic metabolites and molecular characterization confirmed this diagnosis. Polyethylene glycol-modified bovine (PEG) ADA therapy progressively decreased the number of maternal engrafted T cells. The child was grafted with full bone marrow from a matched unrelated donor, after a reduced conditioning regimen, and the result was the complete immunological reconstitution. Maternal engrafted T-cell in ADA-SCID Engrafted T cells can be misleading for diagnosis Diagnostic testing is critical
Collapse
Affiliation(s)
- Arnalda Lanfranchi
- Stem Cell Laboratory, Section of Hematology and Blood Coagulation, Clinical Chemistry Laboratory, Diagnostics Department, ASST Spedali Civili of Brescia, Brescia, Italy.
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Lucia Dora Notarangelo
- Pediatric Onco-Haematology and BMT Unit, Children's Hospital, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Elena Soncini
- Pediatric Onco-Haematology and BMT Unit, Children's Hospital, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Marta Comini
- Stem Cell Laboratory, Section of Hematology and Blood Coagulation, Clinical Chemistry Laboratory, Diagnostics Department, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Alessandra Beghin
- Stem Cell Laboratory, Section of Hematology and Blood Coagulation, Clinical Chemistry Laboratory, Diagnostics Department, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Federica Bolda
- Stem Cell Laboratory, Section of Hematology and Blood Coagulation, Clinical Chemistry Laboratory, Diagnostics Department, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro Montanelli
- Clinical Chemistry Laboratory, Diagnostics Department, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Luisa Imberti
- Centro Ricerca Emato-oncologica AIL (CREA), Clinical Chemistry Laboratory, Diagnostics Department, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Fulvio Porta
- Pediatric Onco-Haematology and BMT Unit, Children's Hospital, ASST Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
17
|
|
18
|
Dorsey MJ, Dvorak CC, Cowan MJ, Puck JM. Treatment of infants identified as having severe combined immunodeficiency by means of newborn screening. J Allergy Clin Immunol 2017; 139:733-742. [PMID: 28270365 PMCID: PMC5385855 DOI: 10.1016/j.jaci.2017.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 12/30/2022]
Abstract
Severe combined immunodeficiency (SCID) is characterized by severely impaired T-cell development and is fatal without treatment. Newborn screening (NBS) for SCID permits identification of affected infants before development of opportunistic infections and other complications. Substantial variation exists between treatment centers with regard to pretransplantation care, and transplantation protocols for NBS identified infants with SCID, as well as infants with other T-lymphopenic disorders detected by using NBS. We developed approaches to management based on the study of infants identified by means of NBS for SCID who received care at the University of California, San Francisco (UCSF). From August 2010 through October 2016, 32 patients with NBS-identified SCID and leaky SCID from California and other states were treated, and 42 patients with NBS-identified non-SCID T-cell lymphopenia were followed. Our center's approach supports successful outcomes; systematic review of our practice provides a framework for diagnosis and management, recognizing that more data will continue to shape best practices.
Collapse
Affiliation(s)
- Morna J Dorsey
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, Calif.
| | - Christopher C Dvorak
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, Calif
| | - Morton J Cowan
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, Calif
| | - Jennifer M Puck
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California, San Francisco, Calif
| |
Collapse
|