1
|
Zemelka-Wiacek M. A Modern Approach to Clinical Outcome Assessment in Allergy Management: Advantages of Allergen Exposure Chambers. J Clin Med 2024; 13:7268. [PMID: 39685727 DOI: 10.3390/jcm13237268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Allergic diseases triggered by airborne allergens such as allergic rhinitis and conjunctivitis are increasingly prevalent, posing significant challenges for both patients and healthcare systems. Assessing the efficacy of allergen immunotherapy and other anti-allergic treatments requires precise and reproducible methods. Allergen exposure chambers (AECs) have emerged as advanced tools for evaluating clinical outcomes, offering controlled conditions that address many limitations of traditional field-based studies. This review explores the advantages of AECs in allergy management, emphasizing their role in providing standardized allergen exposure for both clinical research and routine assessments. AECs deliver consistent and reproducible data comparable to the nasal allergen challenge and natural allergen exposure, making them a valuable addition to the diagnosis and treatment effectiveness of allergic diseases. Although they are well suited to early-stage clinical trials, further standardization and validation are needed to gain broader acceptance in pivotal phase III studies. Future research should focus on refining AEC protocols and integrating them into regulatory frameworks, ensuring their role in the advancement of therapeutic approaches for allergic diseases.
Collapse
Affiliation(s)
- Magdalena Zemelka-Wiacek
- Department of Clinical Immunology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland
| |
Collapse
|
2
|
Unger-Manhart N, Morokutti-Kurz M, Zieglmayer P, Russo A, Siegl C, König-Schuster M, Koller C, Graf P, Graf C, Lemell P, Savli M, Zieglmayer R, Dellago H, Prieschl-Grassauer E. Decongestant Effect of "Coldamaris Akut", a Carrageenan- and Sorbitol-Containing Nasal Spray in Seasonal Allergic Rhinitis. Int J Gen Med 2024; 17:5105-5121. [PMID: 39534593 PMCID: PMC11556324 DOI: 10.2147/ijgm.s476707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose This study aimed to develop a hyperosmolar, barrier-forming nasal spray based on carrageenan and sorbitol, and to demonstrate its decongestant effect in the context of allergic rhinitis (AR). Methods The efficacy of the nasal spray components was tested in vitro by barrier function, virus replication inhibition, and water absorption assays. The decongestant effectiveness was assessed in a randomized, controlled, crossover environmental chamber trial, where participants with a history of seasonal grass pollen AR were exposed to grass pollen allergens under controlled conditions. Forty-one adults were randomized to receive either carrageenan- and sorbitol-containing nasal spray (CS) or saline solution (SS). After 1 week, participants repeated the exposure with the treatment they had not received before. The primary efficacy endpoint was the mean change in nasal congestion symptom score (NCSS). Secondary efficacy endpoints were nasal airflow, nasal secretion, total nasal symptom score (TNSS), total ocular symptom score (TOSS) and total respiratory symptom score (TRSS). Results Preclinical assays demonstrated barrier-building, virus-blocking, and water-withdrawing properties of the CS components. In the clinical study, there was no significant difference in mean NCSS change from pre- to post-treatment between CS and SS. However, nasal airflow increased over time after treatment with CS, while it declined after SS, leading to a growing difference in airflow between CS and SS (p = 0.04 at 6:00 h). Mean nasal secretion over 2-6 h was reduced by ~25% after CS (p = 0.003) compared to pre-treatment, while it was reduced by only ~16% after SS (p = 0.137). No significant differences in TNSS, TOSS and TRSS were observed between CS and SS. Conclusion CS improves nasal airflow and reduces nasal secretion in adults with AR. We propose CS as a safe and effective adjuvant to baseline pharmacological treatments. Trial Registration NCT04532762.
Collapse
Affiliation(s)
| | | | - Petra Zieglmayer
- Vienna Challenge Chamber, Vienna, Austria
- Competence Center for Allergology and Immunology, Department of General Health Studies, Karl Landsteiner Private University for Health Sciences, Krems, Austria
| | | | | | | | | | | | | | | | - Markus Savli
- Biostatistik & Consulting GmbH, Zuerich, Switzerland
| | | | | | | |
Collapse
|
3
|
Struß N, Dieter S, Schwarz K, Badorrek P, Hohlfeld JM. Sodium Chloride versus Lactose as a Carrier for House Dust Mite Allergen in Allergen Chamber Studies: A Clinical Study to Assess Noninferiority. Int Arch Allergy Immunol 2023; 184:1143-1152. [PMID: 37586347 DOI: 10.1159/000531878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/18/2023] Open
Abstract
INTRODUCTION In the Fraunhofer allergen challenge chamber (ACC), a standardized, universal, good manufacturing practice-conforming technology using a spray dried solution of lactose (L) and allergen extract has been established. In this study, we investigated the noninferiority of hypertonic sodium chloride (S) versus L as a carrier for house dust mite (HDM) allergen to simplify manufacturing, reduce costs, and allow for wider use. METHODS Using a participant-blinded, sham exposure-controlled, single-arm, sequential intervention study, we challenged adults with HDM allergic rhinitis five times in the ACC. Participants were first exposed to S, L, and clean air (block 1), followed by S + HDM and L + HDM (block 2). Primary endpoints were mean total nasal symptom score (TNSS) and mean nasal secretion weight. RESULTS 19 participants were enrolled in the study (10 females; mean age 32 years [22-49], 4 with mild allergic asthma). The safety profile of S + HDM and L + HDM was similar; eight participants experienced mild procedure-related adverse events including tiredness, cough, and dyspnea. Due to dropouts, 13 participants completed the study and were evaluated. Mean TNSS and nasal secretion were as follows: S 0.98, 0.28 g; L 1.1, 0.20 g; clean air 1.1, 0.23 g; S + HDM 5.7, 4.8 g; L + HDM 5.1, 5.1 g. Separate block 1/block 2 MANOVAs with TNSS and nasal secretion as dependent variables revealed no significant differences between the carriers, neither alone and compared with clean air (p = 0.2059, Wilk's λ = 0.78) nor combined with HDM (p = 0.3474, Wilk's λ = 0.89). Noninferiority of S was established using a meta-analysis-based minimal clinical important difference of -0.55: mean TNSS difference between S + HDM and L + HDM was 0.62 (90% CI: -0.51 to 1.74). CONCLUSION S as an HDM carrier was safe and well tolerated. It was noninferior to L which makes it an adequate and easy-to-use carrier substitute.
Collapse
Affiliation(s)
- Nadja Struß
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Susanne Dieter
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Katharina Schwarz
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Philipp Badorrek
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Jens M Hohlfeld
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover BREATH, Hannover, Germany
| |
Collapse
|
4
|
Wise SK, Damask C, Roland LT, Ebert C, Levy JM, Lin S, Luong A, Rodriguez K, Sedaghat AR, Toskala E, Villwock J, Abdullah B, Akdis C, Alt JA, Ansotegui IJ, Azar A, Baroody F, Benninger MS, Bernstein J, Brook C, Campbell R, Casale T, Chaaban MR, Chew FT, Chambliss J, Cianferoni A, Custovic A, Davis EM, DelGaudio JM, Ellis AK, Flanagan C, Fokkens WJ, Franzese C, Greenhawt M, Gill A, Halderman A, Hohlfeld JM, Incorvaia C, Joe SA, Joshi S, Kuruvilla ME, Kim J, Klein AM, Krouse HJ, Kuan EC, Lang D, Larenas-Linnemann D, Laury AM, Lechner M, Lee SE, Lee VS, Loftus P, Marcus S, Marzouk H, Mattos J, McCoul E, Melen E, Mims JW, Mullol J, Nayak JV, Oppenheimer J, Orlandi RR, Phillips K, Platt M, Ramanathan M, Raymond M, Rhee CS, Reitsma S, Ryan M, Sastre J, Schlosser RJ, Schuman TA, Shaker MS, Sheikh A, Smith KA, Soyka MB, Takashima M, Tang M, Tantilipikorn P, Taw MB, Tversky J, Tyler MA, Veling MC, Wallace D, Wang DY, White A, Zhang L. International consensus statement on allergy and rhinology: Allergic rhinitis - 2023. Int Forum Allergy Rhinol 2023; 13:293-859. [PMID: 36878860 DOI: 10.1002/alr.23090] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 09/13/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND In the 5 years that have passed since the publication of the 2018 International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis (ICAR-Allergic Rhinitis 2018), the literature has expanded substantially. The ICAR-Allergic Rhinitis 2023 update presents 144 individual topics on allergic rhinitis (AR), expanded by over 40 topics from the 2018 document. Originally presented topics from 2018 have also been reviewed and updated. The executive summary highlights key evidence-based findings and recommendation from the full document. METHODS ICAR-Allergic Rhinitis 2023 employed established evidence-based review with recommendation (EBRR) methodology to individually evaluate each topic. Stepwise iterative peer review and consensus was performed for each topic. The final document was then collated and includes the results of this work. RESULTS ICAR-Allergic Rhinitis 2023 includes 10 major content areas and 144 individual topics related to AR. For a substantial proportion of topics included, an aggregate grade of evidence is presented, which is determined by collating the levels of evidence for each available study identified in the literature. For topics in which a diagnostic or therapeutic intervention is considered, a recommendation summary is presented, which considers the aggregate grade of evidence, benefit, harm, and cost. CONCLUSION The ICAR-Allergic Rhinitis 2023 update provides a comprehensive evaluation of AR and the currently available evidence. It is this evidence that contributes to our current knowledge base and recommendations for patient evaluation and treatment.
Collapse
Affiliation(s)
- Sarah K Wise
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Cecelia Damask
- Otolaryngology-HNS, Private Practice, University of Central Florida, Lake Mary, Florida, USA
| | - Lauren T Roland
- Otolaryngology-HNS, Washington University, St. Louis, Missouri, USA
| | - Charles Ebert
- Otolaryngology-HNS, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joshua M Levy
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Sandra Lin
- Otolaryngology-HNS, University of Wisconsin, Madison, Wisconsin, USA
| | - Amber Luong
- Otolaryngology-HNS, McGovern Medical School of the University of Texas, Houston, Texas, USA
| | - Kenneth Rodriguez
- Otolaryngology-HNS, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ahmad R Sedaghat
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Elina Toskala
- Otolaryngology-HNS, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Baharudin Abdullah
- Otolaryngology-HNS, Universiti Sains Malaysia, Kubang, Kerian, Kelantan, Malaysia
| | - Cezmi Akdis
- Immunology, Infectious Diseases, Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Jeremiah A Alt
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | | | - Antoine Azar
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fuad Baroody
- Otolaryngology-HNS, University of Chicago, Chicago, Illinois, USA
| | | | | | - Christopher Brook
- Otolaryngology-HNS, Harvard University, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Raewyn Campbell
- Otolaryngology-HNS, Macquarie University, Sydney, NSW, Australia
| | - Thomas Casale
- Allergy/Immunology, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Mohamad R Chaaban
- Otolaryngology-HNS, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fook Tim Chew
- Allergy/Immunology, Genetics, National University of Singapore, Singapore, Singapore
| | - Jeffrey Chambliss
- Allergy/Immunology, University of Texas Southwestern, Dallas, Texas, USA
| | - Antonella Cianferoni
- Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Anne K Ellis
- Allergy/Immunology, Queens University, Kingston, ON, Canada
| | | | - Wytske J Fokkens
- Otorhinolaryngology, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | | | - Matthew Greenhawt
- Allergy/Immunology, Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Amarbir Gill
- Otolaryngology-HNS, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashleigh Halderman
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Jens M Hohlfeld
- Respiratory Medicine, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | | | - Stephanie A Joe
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Shyam Joshi
- Allergy/Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | | | - Jean Kim
- Otolaryngology-HNS, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam M Klein
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Helene J Krouse
- Otorhinolaryngology Nursing, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Edward C Kuan
- Otolaryngology-HNS, University of California Irvine, Orange, California, USA
| | - David Lang
- Allergy/Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Matt Lechner
- Otolaryngology-HNS, University College London, Barts Health NHS Trust, London, UK
| | - Stella E Lee
- Otolaryngology-HNS, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Victoria S Lee
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Patricia Loftus
- Otolaryngology-HNS, University of California San Francisco, San Francisco, California, USA
| | - Sonya Marcus
- Otolaryngology-HNS, Stony Brook University, Stony Brook, New York, USA
| | - Haidy Marzouk
- Otolaryngology-HNS, State University of New York Upstate, Syracuse, New York, USA
| | - Jose Mattos
- Otolaryngology-HNS, University of Virginia, Charlottesville, Virginia, USA
| | - Edward McCoul
- Otolaryngology-HNS, Ochsner Clinic, New Orleans, Louisiana, USA
| | - Erik Melen
- Pediatric Allergy, Karolinska Institutet, Stockholm, Sweden
| | - James W Mims
- Otolaryngology-HNS, Wake Forest University, Winston Salem, North Carolina, USA
| | - Joaquim Mullol
- Otorhinolaryngology, Hospital Clinic Barcelona, Barcelona, Spain
| | - Jayakar V Nayak
- Otolaryngology-HNS, Stanford University, Palo Alto, California, USA
| | - John Oppenheimer
- Allergy/Immunology, Rutgers, State University of New Jersey, Newark, New Jersey, USA
| | | | - Katie Phillips
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael Platt
- Otolaryngology-HNS, Boston University, Boston, Massachusetts, USA
| | | | | | - Chae-Seo Rhee
- Rhinology/Allergy, Seoul National University Hospital and College of Medicine, Seoul, Korea
| | - Sietze Reitsma
- Otolaryngology-HNS, University of Amsterdam, Amsterdam, Netherlands
| | - Matthew Ryan
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Joaquin Sastre
- Allergy, Fundacion Jiminez Diaz, University Autonoma de Madrid, Madrid, Spain
| | - Rodney J Schlosser
- Otolaryngology-HNS, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Theodore A Schuman
- Otolaryngology-HNS, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Marcus S Shaker
- Allergy/Immunology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Aziz Sheikh
- Primary Care, University of Edinburgh, Edinburgh, Scotland
| | - Kristine A Smith
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | - Michael B Soyka
- Otolaryngology-HNS, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Masayoshi Takashima
- Otolaryngology-HNS, Houston Methodist Academic Institute, Houston, Texas, USA
| | - Monica Tang
- Allergy/Immunology, University of California San Francisco, San Francisco, California, USA
| | | | - Malcolm B Taw
- Integrative East-West Medicine, University of California Los Angeles, Westlake Village, California, USA
| | - Jody Tversky
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew A Tyler
- Otolaryngology-HNS, University of Minnesota, Minneapolis, Minnesota, USA
| | - Maria C Veling
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Dana Wallace
- Allergy/Immunology, Nova Southeastern University, Ft. Lauderdale, Florida, USA
| | - De Yun Wang
- Otolaryngology-HNS, National University of Singapore, Singapore, Singapore
| | - Andrew White
- Allergy/Immunology, Scripps Clinic, San Diego, California, USA
| | - Luo Zhang
- Otolaryngology-HNS, Beijing Tongren Hospital, Beijing, China
| |
Collapse
|
5
|
Zemelka-Wiacek M, Kosowska A, Winiarska E, Sobanska E, Jutel M. Validated allergen exposure chamber is plausible tool for the assessment of house dust mite-triggered allergic rhinitis. Allergy 2023; 78:168-177. [PMID: 35980665 PMCID: PMC10087469 DOI: 10.1111/all.15485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Allergen exposure chamber (AEC) is a clinical facility that allows exposure to allergenic airborne particles in controlled environment. Although AECs offer stable levels of airborne allergens, the validation of symptoms and other endpoints induced by allergen challenge is key for their recommendation as a plausible tool for the assessment of patients, especially in clinical research. This study aimed to demonstrate the reproducibility of defined clinical endpoints after AEC house dust mite (HDM) challenge under optimal conditions in patients with allergic rhinitis (AR). METHOD HDM was distributed at different concentrations. The assessment was subjective by the patients: total nasal symptom score (TNSS), visual analog scale (VAS), and objective by the investigator: acoustic rhinometry, peak nasal inspiratory flow (PNIF), and nasal secretion weight. Safety was assessed clinically and by peak expiratory flow rate (PEFR) and forced expiratory volume in the first second (FEV1 ). RESULTS Constant environment: temperature, humidity, and carbon dioxide (CO2 ) concentration were maintained during all challenges. The concentration of HDM on average remained stable within the targeted values: 1000, 3000, 5000, 7000 particles (p)/m3 . Most symptoms were observed at concentrations 3000 p/m3 or higher. The symptoms severity and other endpoints results were reproducible. 5000 p/m3 , and challenge duration of 120 min were found optimal. The procedure was safe with no lung function abnormalities due to challenge. CONCLUSION HDM challenge in ALL-MED AEC offers a safe and reliable method for inducing symptoms in AR patients for the use in controlled clinical studies including allergen immunotherapy.
Collapse
Affiliation(s)
| | - Anna Kosowska
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland.,ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Ewa Winiarska
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Sobanska
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland.,ALL-MED Medical Research Institute, Wroclaw, Poland
| |
Collapse
|
6
|
Zieglmayer PU, Pfaar O. Update on the use of allergen challenge chambers in immunotherapy: clinical implications. Curr Opin Allergy Clin Immunol 2022; 22:132-136. [PMID: 35067579 DOI: 10.1097/aci.0000000000000808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review aims to reflect on and discuss recent evidence of applicability of allergen exposure chambers (AEC) for allergen immunotherapy studies, especially focussing on validation of AECs, technical documentation and future perspectives. RECENT FINDINGS Publications covered by this review summarize the historical background, current status of research use and validation of AEC systems. It describes identified unmet needs regarding comparability of AEC systems, reproducibility of clinical assessments and correlation of AEC-induced symptoms with scores under natural environmental exposure. Furthermore, new information on technical specifications, for example, dimensions, allergen dispersal and validation procedures is highlighted and future activities of the EAACI AEC task force group regarding harmonization of clinical endpoints are delineated. SUMMARY AECs are in use for evaluation of allergic patients for over three decades now. As different systems largely vary regarding technical set up and standard assessments, detailed technical documentation must be available. To gain acceptance of regulatory authorities for pivotal immunotherapy trials conducted with the use of AEC system, harmonization of clinical assessments as well as documentation of correlation of clinical AEC outcomes with environmental exposure clinical scores is required.
Collapse
Affiliation(s)
- Petra U Zieglmayer
- Karl Landsteiner University, Krems
- Vienna Challenge Chamber, Vienna, Austria
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
7
|
Pfaar O, Bergmann K, Bonini S, Compalati E, Domis N, Blay F, Kam P, Devillier P, Durham SR, Ellis AK, Gherasim A, Haya L, Hohlfeld JM, Horak F, Iinuma T, Jacobs RL, Jacobi HH, Jutel M, Kaul S, Kelly S, Klimek L, Larché M, Lemell P, Mahler V, Nolte H, Okamoto Y, Patel P, Rabin RL, Rather C, Sager A, Salapatek AM, Sigsgaard T, Togias A, Willers C, Yang WH, Zieglmayer R, Zuberbier T, Zieglmayer P. Technical standards in allergen exposure chambers worldwide - an EAACI Task Force Report. Allergy 2021; 76:3589-3612. [PMID: 34028057 DOI: 10.1111/all.14957] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/23/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Allergen exposure chambers (AECs) can be used for controlled exposure to allergenic and non-allergenic airborne particles in an enclosed environment, in order to (i) characterize the pathological features of respiratory diseases and (ii) contribute to and accelerate the clinical development of pharmacological treatments and allergen immunotherapy for allergic disease of the respiratory tract (such as allergic rhinitis, allergic rhinoconjunctivitis, and allergic asthma). In the guidelines of the European Medicines Agency for the clinical development of products for allergen immunotherapy (AIT), the role of AECs in determining primary endpoints in dose-finding Phase II trials is emphasized. Although methodologically insulated from the variability of natural pollen exposure, chamber models remain confined to supporting secondary, rather than primary, endpoints in Phase III registration trials. The need for further validation in comparison with field exposure is clearly mandated. On this basis, the European Academy of Allergy and Clinical Immunology (EAACI) initiated a Task Force in 2015 charged to gain a better understanding of how AECs can generate knowledge about respiratory allergies and can contribute to the clinical development of treatments. Researchers working with AECs worldwide were asked to provide technical information in eight sections: (i) dimensions and structure of the AEC, (ii) AEC staff, (iii) airflow, air processing, and operating conditions, (iv) particle dispersal, (v) pollen/particle counting, (vi) safety and non-contamination measures, (vii) procedures for symptom assessments, (viii) tested allergens/substances and validation procedures. On this basis, a minimal set of technical requirements for AECs applied to the field of allergology is proposed.
Collapse
Affiliation(s)
- Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital Marburg Philipps‐Universität Marburg Marburg Germany
| | - Karl‐Christian Bergmann
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Department of Dermatology and Allergy Allergy Centre Charité Berlin Germany
| | - Sergio Bonini
- Institute of Translational Medicine Italian National Research Council Rome Italy
| | | | - Nathalie Domis
- ALYATEC Environmental Exposure Chamber Strasbourg France
| | - Frédéric Blay
- ALYATEC Environmental Exposure Chamber Strasbourg France
- Chest Diseases Department Strasbourg University Hospital Strasbourg France
| | | | - Philippe Devillier
- Department of Airway Diseases Pharmacology Research Laboratory‐VIM Suresnes, Exhalomics Platform, Hôpital Foch University Paris‐Saclay Suresnes France
| | | | - Anne K. Ellis
- Departments of Medicine and Biomedical & Molecular Sciences Queen's University Kingston ON Canada
- Allergy Research Unit Kingston General Health Research Institute Kingston ON Canada
| | - Alina Gherasim
- ALYATEC Environmental Exposure Chamber Strasbourg France
| | | | - Jens M. Hohlfeld
- Fraunhofer Institute for Toxicology and Experimental Medicine and Department of Respiratory Medicine Hannover Medical School Member of the German Center for Lung Research Hannover Germany
| | | | | | | | | | - Marek Jutel
- Department of Clinical Immunology Wroclaw Medical University Wroclaw Poland
- All‐MED Medical Research Institute Wrocław Poland
| | | | | | - Ludger Klimek
- Center for Rhinology and Allergology Wiesbaden Germany
- Allergy Center Rhineland‐Palatinate Mainz University Medical Center Mainz Germany
| | - Mark Larché
- Divisions of Clinical Immunology & Allergy, and Respirology Department of Medicine and Firestone Institute for Respiratory Health McMaster University Hamilton ON Canada
| | | | | | | | | | - Piyush Patel
- Cliantha Research Limited Mississauga ON Canada
- Providence Therapeutics Toronto ON Canada
| | - Ronald L. Rabin
- Center for Biologics Evaluation and Research US Food and Drug Administration Silver Spring MD USA
| | | | | | | | - Torben Sigsgaard
- Department of Public Health, Section for Environment Occupation and Health Danish Ramazzini Centre Aarhus University Aarhus Denmark
| | - Alkis Togias
- Division of Allergy, Immunology, and Transplantation (DAIT) National Institute of Allergy and Infectious Diseases NIH Bethesda MD USA
| | | | | | | | - Torsten Zuberbier
- Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Department of Dermatology and Allergy Allergy Centre Charité Berlin Germany
| | - Petra Zieglmayer
- Vienna Challenge Chamber Vienna Austria
- Karl Landsteiner University Krems Austria
| |
Collapse
|
8
|
Hossenbaccus L, Ellis AK. The use of nasal allergen vs allergen exposure chambers to evaluate allergen immunotherapy. Expert Rev Clin Immunol 2021; 17:461-470. [PMID: 33729907 DOI: 10.1080/1744666x.2021.1905523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Allergen-specific immunotherapy (AIT) is the only disease-modifying treatment option for allergic rhinitis (AR) patients with persistent moderate-severe AR for whom traditional pharmacotherapies are ineffective. The nasal allergen challenge (NAC) and allergen exposure chamber (AEC) are two translational models of AR that can be used to investigate the properties, safety, and efficacy of AIT. AREAS COVERED Peer-reviewed, human-centered articles utilizing AEC or NAC models to investigate AIT between 2010 and 2020 were curated from PubMed, EMBASE, and OVID Medline databases. AECs have been used to evaluate traditional subcutaneous and sublingual administrations of AIT, including cross-protective effects and different dosing regimens. More recently, the effectiveness of novel AIT formulations has been evaluated. NACs are another model used to study AIT, including using novel intralymphatic routes of administration. It is an especially powerful and versatile tool to determine if basic science and animal model findings are clinically translatable. EXPERT OPINION The AEC and NAC models both produce clinically relevant and reproducible results. AECs are more effective for studying many participants but are limited because they require a specialized facility. As more AIT therapies and new formulations are developed over time, the versatility of the NAC will be especially useful.
Collapse
Affiliation(s)
- Lubnaa Hossenbaccus
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.,Allergy Research Unit, Kingston Health Sciences Centre - KGH Site, Kingston, Canada
| | - Anne K Ellis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.,Allergy Research Unit, Kingston Health Sciences Centre - KGH Site, Kingston, Canada.,Department of Medicine, Queen's University, Kingston, Canada
| |
Collapse
|
9
|
Hossenbaccus L, Linton S, Thiele J, Steacy L, Walker T, Malone C, Ellis AK. Clinical validation of controlled exposure to house dust mite in the environmental exposure unit (EEU). Allergy Asthma Clin Immunol 2021; 17:34. [PMID: 33771217 PMCID: PMC7995585 DOI: 10.1186/s13223-021-00536-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/13/2021] [Indexed: 11/10/2022] Open
Abstract
Rationale The Environmental Exposure Unit (EEU), a controlled allergen exposure model of allergic rhinitis (AR), has traditionally utilized seasonal allergens. We sought to clinically validate the use of house dust mite (HDM), a perennial allergen, in the HDM-EEU, a specially designed facility within the larger EEU. Methods Forty-four HDM-allergic and eleven non-allergic participants were screened and deemed eligible for one of two 3-h exposure sessions in the HDM-EEU. Participants were exposed to a modest or higher HDM target, with blood and nasal brushing samples collected before and after allergen exposure. Symptomatic data, including Total Nasal Symptom Score (TNSS), Total Ocular Symptom Score (TOSS), Total Rhinoconjunctivitis Symptom Score (TRSS), and Peak Nasal Inspiratory Flow (PNIF) were collected at baseline, every 30 min until 3 h, on an hourly basis for up to 12 h, and at 24 h following the onset of HDM exposure. Results The modest and higher HDM target sessions respectively featured cumulative total particle counts of 156,784 and 266,694 particles (2.5–25 µm), Der f 1 concentrations of 2.67 ng/m3 and 3.80 ng/m3, and Der p 1 concentrations of 2.07 ng/m3 and 6.66 ng/m3. Allergic participants experienced an increase in symptoms, with modest target participants plateauing at 1.5 to 2 h and achieving a mean peak TNSS of 5.74 ± 0.65, mean peak TOSS of 2.47 ± 0.56, and mean peak TRSS of 9.16 ± 1.32. High HDM-target allergics reached a mean peak TNSS of 8.17 ± 0.71, mean peak TOSS of 4.46 ± 0.62, and mean peak TRSS of 14.08 ± 1.30 at 3 h. All allergic participants’ symptoms decreased but remained higher than baseline after exiting the HDM-EEU. Sixteen participants (37.2%) were classified as Early Phase Responders (EPR), eleven (25.6%) as protracted EPR (pEPR), seven (16.3%) as Dual Phase Responders (DPR), and nine (20.9%) as Poor Responders (PR). Allergic participants experienced significant percent PNIF reductions at hours 2 and 3 compared to healthy controls. Non-allergics were asymptomatic during the study period. Conclusions The HDM-EEU is an appropriate model to study HDM-induced AR as it can generate clinically relevant AR symptoms amongst HDM-allergic individuals.
Collapse
Affiliation(s)
- Lubnaa Hossenbaccus
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, Canada
| | - Sophia Linton
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Jenny Thiele
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, Canada
| | - Lisa Steacy
- Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, Canada
| | - Terry Walker
- Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, Canada
| | - Crystal Malone
- Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, Canada
| | - Anne K Ellis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada. .,Allergy Research Unit, Kingston Health Sciences Center - KGH Site, Kingston, Canada. .,Department of Medicine, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
10
|
Pfaar O, Zieglmayer P. Allergen exposure chambers: implementation in clinical trials in allergen immunotherapy. Clin Transl Allergy 2020; 10:33. [PMID: 32742636 PMCID: PMC7388504 DOI: 10.1186/s13601-020-00336-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Allergen exposure chambers (AECs) have been developed for controlled allergen challenges of allergic patients mimicking natural exposure. As such, these facilities have been utilized e.g., for proof of concept, dose finding or the demonstration of onset of action and treatment effect sizes of antiallergic medication. Moreover, clinical effects of and immunological mechanisms in allergen immunotherapy (AIT) have been investigated in AECs. In Europe AIT products have to fulfill regulatory requirements for obtaining market authorization through Phase I to III clinical trials. Multiple Phase II (dose-range-finding or proof-of-concept) trials on AIT products have been performed in AECs. However, they are not accepted by regulatory bodies for pivotal (Phase III) trials and a more thorough technical and clinical validation is requested. Recently, a Position Paper of the European Academy of Allergy and Clinical Immunology (EAACI) has outlined unmet needs in further development of AECs. The following review aims to address some of these needs on the basis of recently published data in the first part, whereas the second part overviews published examples of most relevant Phase II trials in AIT performed in AEC facilities.
Collapse
Affiliation(s)
- O Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
11
|
Zieglmayer P, Schmutz R, Lemell P, Unger-Manhart N, Nakowitsch S, Goessl A, Savli M, Zieglmayer R, Prieschl-Grassauer E. Fast effectiveness of a solubilized low-dose budesonide nasal spray in allergic rhinitis. Clin Exp Allergy 2020; 50:1065-1077. [PMID: 32569395 PMCID: PMC7540702 DOI: 10.1111/cea.13691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/12/2022]
Abstract
Background Budesonide, a poorly water‐soluble corticosteroid, is currently marketed as a suspension. Budesolv is a novel aqueous formulation containing dissolved budesonide showing increased local availability in preclinical models. Budesolv contains ~85% less corticosteroid than the marketed comparator. Objective The study (EudraCT:2018‐001324‐19) was designed to assess non‐inferiority of Budesolv compared to Rhinocort® Aqua 64 (RA) and early onset of action. Methods In a three‐way cross‐over double‐blinded randomized trial, Budesolv 10 was compared to RA and placebo in grass pollen allergic rhinoconjunctivitis volunteers (n = 83 (ITT); n = 75 (PP)). On day 1, participants entered the Vienna Challenge Chamber (VCC) for 6 hours; first treatment took place at 1:45 hours after entry. Participants treated themselves for further 6 days; on day 8, the last treatment was applied before entering the VCC. Subjective symptom scores, nasal airflow and nasal secretion were measured regularly during allergen challenge. Results Budesolv 10 was equally effective compared to RA with respect to TNSS and nasal airflow after eight days of treatment with a strongly reduced dose (more than 80% reduction). After first dose, only Budesolv 10 showed a significant reduction of nasal and respiratory symptoms starting 90 minutes (P < .05) and 15 minutes (P < .05) after application onwards, respectively, demonstrating an early onset of efficacy. A clinically significant 1 point reduction in nasal symptom score was reached at 195 minutes (P < .05) after application. Conclusions and clinical relevance The novel preservative‐free, aqueous low‐dose budesonide formulation is highly efficacious even after an initial single treatment. Thus, Budesolv 10 appears to be an effective acute treatment for allergic rhinitis as well as for AR comorbidities like mild asthma and conjunctivitis.
Collapse
Affiliation(s)
- Petra Zieglmayer
- Power Project GmbH, Vienna Challenge Chamber, Vienna, Austria.,Medical University, Vienna, Austria
| | - René Schmutz
- Power Project GmbH, Vienna Challenge Chamber, Vienna, Austria.,Medical School, Sigmund Freud University, Vienna, Austria
| | - Patrick Lemell
- Power Project GmbH, Vienna Challenge Chamber, Vienna, Austria
| | | | | | | | | | - René Zieglmayer
- Power Project GmbH, Vienna Challenge Chamber, Vienna, Austria
| | | |
Collapse
|
12
|
Ellis AK, Jacobs RL, Tenn MW, Steacy LM, Adams DE, Walker TJ, Togias A, Ramirez DA, Andrews CP, Visness CM, James RL, Rather CG. Clinical standardization of two controlled allergen challenge facilities: The Environmental Exposure Unit and the Biogenics Research Chamber. Ann Allergy Asthma Immunol 2019; 122:639-646.e2. [PMID: 30878629 DOI: 10.1016/j.anai.2019.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/09/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Controlled allergen challenge facilities (CACF), in disparate geographic regions with dissimilar engineering and base populations, have historically functioned as single, independent sites in clinical allergy trials. We aimed to demonstrate "between-unit reproducibility" to allow controlled challenge trials of participants using 2 CACFs. OBJECTIVE To compare and standardize 2 CACFs located in Kingston, Ontario, Canada, and San Antonio, Texas, by examining participant-reported symptom severity during qualifying and treatment visits and evaluating response to treatment, while using the same allergen. METHODS At 2 different CACFs, participants were enrolled in a double-blind, placebo-controlled, crossover intervention trial with cetirizine 10 mg. Different distribution devices delivered common short ragweed pollen via laminar air flow and maintained an airborne concentration of 3500 ± 700 grains/m3 in both facilities. A 1-hour "sham" run with no pollen release preceded a priming exposure of 3 hours and was followed 3 days later by a qualifying/treatment 5-hour exposure. At least 14 days later, another priming exposure was followed by the crossover exposure and treatment. RESULTS Forty-eight and 43 subjects completed the study at Kingston and San Antonio, respectively. Demographics were similar. Fewer than 10% exhibited symptoms with sham exposure. No significant differences were found between the 2 facilities in maximal total rhinoconjunctivitis symptom score, total nasal symptom score, and total ocular symptom score, nor in areas under the curve. In both facilities, no significant effects of cetirizine 10 mg over placebo were detected. CONCLUSION The results were equivalent, demonstrating that the 2 CACFs can be used together in dual-center clinical trials and show the possibility of multicenter trials involving multiple CACFs.
Collapse
Affiliation(s)
- Anne K Ellis
- Allergy Research Unit, Kingston General Health Research Institute, Kingston, Ontario, Canada.
| | | | - Mark W Tenn
- Allergy Research Unit, Kingston General Health Research Institute, Kingston, Ontario, Canada
| | - Lisa M Steacy
- Allergy Research Unit, Kingston General Health Research Institute, Kingston, Ontario, Canada
| | - Daniel E Adams
- Allergy Research Unit, Kingston General Health Research Institute, Kingston, Ontario, Canada
| | - Terry J Walker
- Allergy Research Unit, Kingston General Health Research Institute, Kingston, Ontario, Canada
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|
13
|
Chen KW, Zieglmayer P, Zieglmayer R, Lemell P, Horak F, Bunu CP, Valenta R, Vrtala S. Selection of house dust mite–allergic patients by molecular diagnosis may enhance success of specific immunotherapy. J Allergy Clin Immunol 2019; 143:1248-1252.e12. [DOI: 10.1016/j.jaci.2018.10.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 09/07/2018] [Accepted: 10/12/2018] [Indexed: 10/27/2022]
|
14
|
Huang HJ, Resch-Marat Y, Rodriguez-Dominguez A, Chen KW, Kiss R, Zieglmayer P, Zieglmayer R, Lemell P, Horak F, Valenta R, Vrtala S. Underestimation of house dust mite–specific IgE with extract-based ImmunoCAPs compared with molecular ImmunoCAPs. J Allergy Clin Immunol 2018; 142:1656-1659.e9. [DOI: 10.1016/j.jaci.2018.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 07/17/2018] [Indexed: 01/06/2023]
|
15
|
Pfaar O, Bonini S, Cardona V, Demoly P, Jakob T, Jutel M, Kleine-Tebbe J, Klimek L, Klysner S, Kopp MV, Kuna P, Larché M, Muraro A, Schmidt-Weber CB, Shamji MH, Simonsen K, Somoza C, Valovirta E, Zieglmayer P, Zuberbier T, Wahn U. Perspectives in allergen immunotherapy: 2017 and beyond. Allergy 2018; 73 Suppl 104:5-23. [PMID: 29171712 DOI: 10.1111/all.13355] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2017] [Indexed: 01/01/2023]
Abstract
The Future of the Allergists and Specific Immunotherapy (FASIT) workshop provides a regular platform for global experts from academia, allergy clinics, regulatory authorities and industry to review developments in the field of allergen immunotherapy (AIT). The most recent meeting, held in February 2017, had two main themes: advances in AIT and hot topics in AIT from the regulatory point of view. The first theme covered opportunities for personalized AIT, advances in adjuvants and delivery systems, and the development of new molecules and future vaccines for AIT. Key topics in the second part of the meeting were the effects of the enactment of European Directive 2001/83 on the availability of allergens for therapy and diagnosis across the EU, the challenges of conducting Phase 3 studies in the field, the future role of allergen exposure chambers in AIT studies and specific considerations in performing AIT studies in the paediatric population. Finally, the group highlighted the forthcoming EAACI guidelines and their particular importance for the standardization of practice in the treatment of allergies. This review presents a comprehensive insight into those panel discussions and highlights unmet needs and also possible solutions to them for the future.
Collapse
Affiliation(s)
- O. Pfaar
- Department of Otorhinolaryngology; Head and Neck Surgery; Universitätsmedizin Mannheim; Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
- Center for Rhinology and Allergology; Wiesbaden Germany
| | - S. Bonini
- Italian National Research Council; Institute of Translational Pharmacology; Rome, and University of Campania ‘Luigi Vanvitelli’; Naples Italy
- Expert-on Secondment at the European Medicines Agency; London UK
| | - V. Cardona
- Hospital Vall D'Hebron, S. Allergologia, S. Medicina Interna; Barcelona Spain
| | - P. Demoly
- Departement de Pneumologie et Addictologie; Hopital Arnaud de Villeneuve; University Hospital of Montpellier; Montpellier France
| | - T. Jakob
- Department of Dermatology and Allergology; University Medical Center Giessen (UKGM); Justus-Liebig-University Giessen; Giessen Germany
- Allergy Research Group; Department of Dermatology; Medical Center - University Freiburg; Freiburg Germany
| | - M. Jutel
- Department of Clinical Immunology; Wroclaw Medical University; Wroclaw Poland
- All-Med Medical Research Institute; Wroclaw Poland
| | - J. Kleine-Tebbe
- Allergy & Asthma Center Westend; Outpatient Clinic and Clinical Research Center; Berlin Germany
| | - L. Klimek
- Center for Rhinology and Allergology; Wiesbaden Germany
| | - S. Klysner
- Expres ion Biotechnologies Aps; Hørsholm Denmark
| | - M. V. Kopp
- Department of Pediatric Allergy and Pulmonology; University of Luebeck; Luebeck Germany
- Airway Research Center North (ARCN); Member of the Deutsches Zentrum für Lungenforschung (DZL); Luebeck Germany
| | - P. Kuna
- Department of Internal Medicine, Asthma and Allergy; Barlicki University Hospital; Medical University of Lodz; Lodz Poland
| | - M. Larché
- Divisions of Clinical Immunology & Allergy, and Respirology; Department of Medicine and Firestone Institute for Respiratory Health; McMaster University; Hamilton ON Canada
| | - A. Muraro
- Food Allergy Referral Centre; Padua University Hospital; Padua Italy
| | - C. B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM); Member of the German Center for Lung Research (DZL); Technical University of Munich and Helmholtz Center Munich; Munich Germany
| | - M. H. Shamji
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology; Inflammation Repair and Development; National Heart and Lung Institute; Imperial College; London UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma; London UK
| | | | - C. Somoza
- Biological Products and Biotechnology Division; Medicines for Human Use Department; Agencia Española de Medicamentos y Productos Sanitarios (AEMPS); Madrid Spain
| | - E. Valovirta
- Department of Lung Disease and Clinical Allergology; University of Turku and Terveystalo Allergy Clinic; Turku Finland
| | - P. Zieglmayer
- Allergy Center Vienna West; Vienna Challenge Chamber; Vienna Austria
| | - T. Zuberbier
- Comprehensive Allergy-Centre-Charité; Department of Dermatology and Allergy; Charité - Universitätsmedizin Berlin; Berlin Germany
- Member of Global Allergy and Asthma European Network (GA LEN); GA LEN coordinating Office; Charité - Universitätsmedizin Berlin; Germany
| | - U. Wahn
- Department for Pediatric Pneumology and Immunology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | | |
Collapse
|