1
|
Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, Yi M, Xiang B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer 2024; 23:108. [PMID: 38762484 PMCID: PMC11102195 DOI: 10.1186/s12943-024-02023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Immune evasion contributes to cancer growth and progression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. The programmed death protein 1 (PD-1) and programmed cell death ligands (PD-Ls) are considered to be the major immune checkpoint molecules. The interaction of PD-1 and PD-L1 negatively regulates adaptive immune response mainly by inhibiting the activity of effector T cells while enhancing the function of immunosuppressive regulatory T cells (Tregs), largely contributing to the maintenance of immune homeostasis that prevents dysregulated immunity and harmful immune responses. However, cancer cells exploit the PD-1/PD-L1 axis to cause immune escape in cancer development and progression. Blockade of PD-1/PD-L1 by neutralizing antibodies restores T cells activity and enhances anti-tumor immunity, achieving remarkable success in cancer therapy. Therefore, the regulatory mechanisms of PD-1/PD-L1 in cancers have attracted an increasing attention. This article aims to provide a comprehensive review of the roles of the PD-1/PD-L1 signaling in human autoimmune diseases and cancers. We summarize all aspects of regulatory mechanisms underlying the expression and activity of PD-1 and PD-L1 in cancers, including genetic, epigenetic, post-transcriptional and post-translational regulatory mechanisms. In addition, we further summarize the progress in clinical research on the antitumor effects of targeting PD-1/PD-L1 antibodies alone and in combination with other therapeutic approaches, providing new strategies for finding new tumor markers and developing combined therapeutic approaches.
Collapse
Affiliation(s)
- Xin Lin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Kuan Kang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Mei Yi
- Department of Dermotology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
PD-1 expression on mouse intratumoral NK cells and its effects on NK cell phenotype. iScience 2022; 25:105137. [PMID: 36185379 PMCID: PMC9523278 DOI: 10.1016/j.isci.2022.105137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 07/20/2022] [Accepted: 09/11/2022] [Indexed: 01/31/2023] Open
Abstract
Although PD-1 was shown to be a hallmark of T cells exhaustion, controversial studies have been reported on the role of PD-1 on NK cells. Here, we found by flow cytometry and single cell RNA sequencing analysis that PD-1 can be expressed on MHC class I-deficient tumor-infiltrating NK cells in vivo. We also demonstrate distinct alterations in the phenotype of PD-1-deficient NK cells and a more mature phenotype which might reduce their capacity to migrate and kill in vivo. Tumor-infiltrating NK cells that express PD-1 were highly associated with the expression of CXCR6. Furthermore, our results demonstrate that PD-L1 molecules in membranes of PD-1-deficient NK cells migrate faster than in NK cells from wild-type mice, suggesting that PD-1 and PD-L1 form cis interactions with each other on NK cells. These data demonstrate that there may be a role for the PD-1/PD-L1 axis in tumor-infiltrating NK cells in vivo. NK cells from PD-1 deficient mice have a more mature phenotype Elimination of MHC-I-deficient cells is impaired in PD-1−/− mice PD-1 expression on NK cells is associated with surface expression of CXCR6 PD-1/PD-L1 interactions on NK cells may occur in cis
Collapse
|
3
|
Fincham REA, Delvecchio FR, Goulart MR, Yeong JPS, Kocher HM. Natural killer cells in pancreatic cancer stroma. World J Gastroenterol 2021; 27:3483-3501. [PMID: 34239264 PMCID: PMC8240050 DOI: 10.3748/wjg.v27.i24.3483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/06/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer remains one of medicine's largest areas of unmet need. With five-year survival rates of < 8%, little improvement has been made in the last 50 years. Typically presenting with advance stage disease, treatment options are limited. To date, surgery remains the only potentially curative option, however, with such late disease presentation, the majority of patients are unresectable. Thus, new therapeutic options and a greater understanding of the complex stromal interactions within the tumour microenvironment are sorely needed to revise the dismal outlook for pancreatic cancer patients. Natural killer (NK) cells are crucial effector units in cancer immunosurveillance. Often used as a prognostic biomarker in a range of malignancies, NK cells have received much attention as an attractive target for immunotherapies, both as cell therapy and as a pharmaceutical target. Despite this interest, the role of NK cells in pancreatic cancer remains poorly defined. Nevertheless, increasing evidence of the importance of NK cells in this dismal prognosis disease is beginning to come to light. Here, we review the role of NK cells in pancreatic cancer, examine the complex interactions of these crucial effector units within pancreatic cancer stroma and shed light on the increasingly attractive use of NK cells as therapy.
Collapse
Affiliation(s)
- Rachel Elizabeth Ann Fincham
- Barts Cancer Institute-CRUK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Francesca Romana Delvecchio
- Barts Cancer Institute-CRUK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Michelle R Goulart
- Barts Cancer Institute-CRUK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Joe Poe Sheng Yeong
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute-CRUK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
4
|
Lamb MG, Rangarajan HG, Tullius BP, Lee DA. Natural killer cell therapy for hematologic malignancies: successes, challenges, and the future. Stem Cell Res Ther 2021; 12:211. [PMID: 33766099 PMCID: PMC7992329 DOI: 10.1186/s13287-021-02277-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
The adoptive transfer of natural killer (NK) cells is an emerging therapy in the field of immuno-oncology. In the last 3 decades, NK cells have been utilized to harness the anti-tumor immune response in a wide range of malignancies, most notably with early evidence of efficacy in hematologic malignancies. NK cells are dysfunctional in patients with hematologic malignancies, and their number and function are further impaired by chemotherapy, radiation, and immunosuppressants used in initial therapy and hematopoietic stem cell transplantation. Restoring this innate immune deficit may lead to improved therapeutic outcomes. NK cell adoptive transfer has proven to be a safe in these settings, even in the setting of HLA mismatch, and a deeper understanding of NK cell biology and optimized expansion techniques have improved scalability and therapeutic efficacy. Here, we review the use of NK cell therapy in hematologic malignancies and discuss strategies to further improve the efficacy of NK cells against these diseases.
Collapse
Affiliation(s)
- Margaret G Lamb
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Suite 5A.1, Columbus, OH, 43205-2664, USA. .,Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA.
| | - Hemalatha G Rangarajan
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Suite 5A.1, Columbus, OH, 43205-2664, USA.,Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Brian P Tullius
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Suite 5A.1, Columbus, OH, 43205-2664, USA.,Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Dean A Lee
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Suite 5A.1, Columbus, OH, 43205-2664, USA.,Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| |
Collapse
|
5
|
Bouti P, Webbers SDS, Fagerholm SC, Alon R, Moser M, Matlung HL, Kuijpers TW. β2 Integrin Signaling Cascade in Neutrophils: More Than a Single Function. Front Immunol 2021; 11:619925. [PMID: 33679708 PMCID: PMC7930317 DOI: 10.3389/fimmu.2020.619925] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most prevalent leukocytes in the human body. They have a pivotal role in the innate immune response against invading bacterial and fungal pathogens, while recent emerging evidence also demonstrates their role in cancer progression and anti-tumor responses. The efficient execution of many neutrophil effector responses requires the presence of β2 integrins, in particular CD11a/CD18 or CD11b/CD18 heterodimers. Although extensively studied at the molecular level, the exact signaling cascades downstream of β2 integrins still remain to be fully elucidated. In this review, we focus mainly on inside-out and outside-in signaling of these two β2 integrin members expressed on neutrophils and describe differences between various neutrophil stimuli with respect to integrin activation, integrin ligand binding, and the pertinent differences between mouse and human studies. Last, we discuss how integrin signaling studies could be used to explore the therapeutic potential of targeting β2 integrins and the intracellular signaling cascade in neutrophils in several, among other, inflammatory conditions in which neutrophil activity should be dampened to mitigate disease.
Collapse
Affiliation(s)
- Panagiota Bouti
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Steven D S Webbers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam University Medical Center (AUMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Susanna C Fagerholm
- Research Program of Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hanke L Matlung
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam University Medical Center (AUMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Eitler J, Wotschel N, Miller N, Boissel L, Klingemann HG, Wels W, Tonn T. Inability of granule polarization by NK cells defines tumor resistance and can be overcome by CAR or ADCC mediated targeting. J Immunother Cancer 2021; 9:jitc-2020-001334. [PMID: 33468562 PMCID: PMC7817806 DOI: 10.1136/jitc-2020-001334] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Background On encountering a susceptible target, natural killer (NK) cells mediate cytotoxicity through highly regulated steps of directed degranulation. Cytotoxic granules converge at the microtubule organizing center and are polarized toward the immunological synapse (IS), followed by granule exocytosis. NK cell retargeting by chimeric antigen receptors (CARs) or mAbs represents a promising strategy for overcoming tumor cell resistance. However, little is known about the lytic granule dynamics of such retargeted NK cells toward NK-cell-resistant tumors. Methods Here, we used spinning disk confocal microscopy for live-cell imaging to analyze granule-mediated NK cell cytotoxicity in ErbB2-targeted CAR-expressing NK-92 cells (NK-92/5.28.z) and high-affinity FcR transgenic NK-92 cells plus Herceptin toward ErbB2-positive breast cancer cells (MDA-MB-453), which are resistant to parental NK-92. Results Unmodified NK-92 cells cocultured with resistant cancer cells showed stable conjugate formation and granule clustering, but failed to polarize granules to the IS. In contrast, retargeting by CAR or FcR+Herceptin toward the MDA-MB-453 cells enabled granule polarization to the IS, resulting in highly effective cytotoxicity. We found that in NK-92 the phosphoinositide 3-kinase pathway was activated after contact with resistant MDA-MB-453, while phospholipase C-γ (PLCγ) and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) were not activated. In contrast, retargeting by CAR or antibody-dependent cell-mediated cytotoxicity (ADCC) provided the missing PLCγ and MEK/ERK signals. Conclusions These observations suggest that NK cells can create conjugates with resistant cancer cells and respond by granule clustering, but the activation signals are insufficient to induce granule polarization and consequent release of lytic enzymes. Retargeting by CAR and/or the FcR/mAb (ADCC) axis provide the necessary signals, leading to granule polarization and thereby overcoming tumor cell resistance. Keywords: NK cells, NK-92, haNK, ADCC, Chimeric Antigen Receptor (CAR), breast cancer, cancer immunotherapy, live-cell imaging, granule polarization
Collapse
Affiliation(s)
- Jiri Eitler
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.,Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Natalie Wotschel
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.,Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Nicole Miller
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.,Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | | | | | - Winfried Wels
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Torsten Tonn
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany .,Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| |
Collapse
|
7
|
Cantoni C, Wurzer H, Thomas C, Vitale M. Escape of tumor cells from the NK cell cytotoxic activity. J Leukoc Biol 2020; 108:1339-1360. [PMID: 32930468 DOI: 10.1002/jlb.2mr0820-652r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, NK cells, initially identified as potent cytotoxic effector cells, have revealed an unexpected complexity, both at phenotypic and functional levels. The discovery of different NK cell subsets, characterized by distinct gene expression and phenotypes, was combined with the characterization of the diverse functions NK cells can exert, not only as circulating cells, but also as cells localized or recruited in lymphoid organs and in multiple tissues. Besides the elimination of tumor and virus-infected cells, these functions include the production of cytokines and chemokines, the regulation of innate and adaptive immune cells, the influence on tissue homeostasis. In addition, NK cells display a remarkable functional plasticity, being able to adapt to the environment and to develop a kind of memory. Nevertheless, the powerful cytotoxic activity of NK cells remains one of their most relevant properties, particularly in the antitumor response. In this review, the process of tumor cell recognition and killing mediated by NK cells, starting from the generation of cytolytic granules and recognition of target cell, to the establishment of the NK cell immunological synapse, the release of cytotoxic molecules, and consequent tumor cell death is described. Next, the review focuses on the heterogeneous mechanisms, either intrinsic to tumors or induced by the tumor microenvironment, by which cancer cells can escape the NK cell-mediated attack.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Hannah Wurzer
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Massimo Vitale
- UO Immunologia, IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy
| |
Collapse
|
8
|
Biolato AM, Filali L, Wurzer H, Hoffmann C, Gargiulo E, Valitutti S, Thomas C. Actin remodeling and vesicular trafficking at the tumor cell side of the immunological synapse direct evasion from cytotoxic lymphocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:99-130. [PMID: 33066877 DOI: 10.1016/bs.ircmb.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andrea Michela Biolato
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Liza Filali
- Cancer Research Center of Toulouse, INSERM, Toulouse, France
| | - Hannah Wurzer
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Céline Hoffmann
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Ernesto Gargiulo
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Salvatore Valitutti
- Cancer Research Center of Toulouse, INSERM, Toulouse, France; Department of Pathology, Institut Universitaire du Cancer-Oncopole, Toulouse, France.
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg.
| |
Collapse
|
9
|
Wang J, Matosevic S. Functional and metabolic targeting of natural killer cells to solid tumors. Cell Oncol (Dordr) 2020; 43:577-600. [PMID: 32488848 DOI: 10.1007/s13402-020-00523-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
|
10
|
Yang C, Li Y, Yang Y, Chen Z. Overview of Strategies to Improve Therapy against Tumors Using Natural Killer Cell. J Immunol Res 2020; 2020:8459496. [PMID: 32411806 PMCID: PMC7201677 DOI: 10.1155/2020/8459496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/24/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
NK cells are lymphocytes with antitumor properties and can directly lyse tumor cells in a non-MHC-restricted manner. However, the tumor microenvironment affects the immune function of NK cells, which leads to immune evasion. This may be related to the pathogenesis of some diseases. Therefore, great efforts have been made to improve the immunotherapy effect of natural killer cells. NK cells from different sources can meet different clinical needs, in order to minimize the inhibition of NK cells and maximize the response potential of NK cells, for example, modification of NK cells can increase the number of NK cells in tumor target area, change the direction of NK cells, and improve their targeting ability to malignant cells. Checkpoint blocking is also a promising strategy for NK cells to kill tumor cells. Combination therapy is another strategy for improving antitumor ability, especially in combination with oncolytic viruses and nanomaterials. In this paper, the mechanisms affecting the activity of NK cells were reviewed, and the therapeutic potential of different basic NK cell strategies in tumor therapy was focused on. The main strategies for improving the immune function of NK cells were described, and some new strategies were proposed.
Collapse
Affiliation(s)
- Chaopin Yang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Experimental Center, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510176, China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Experimental Center, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510176, China
| | - Yaozhang Yang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Experimental Center, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510176, China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Experimental Center, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510176, China
| |
Collapse
|
11
|
Sciumè G, Fionda C, Stabile H, Gismondi A, Santoni A. Negative regulation of innate lymphoid cell responses in inflammation and cancer. Immunol Lett 2019; 215:28-34. [PMID: 30711614 DOI: 10.1016/j.imlet.2019.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/21/2022]
Abstract
The immune system employs an array of effector cells to ensure tissue homeostasis and protection against pathogens. Lymphocytes belonging to both the adaptive and innate branches share several functions, comprising the ability to directly kill stressed or transformed cells, and to provide helper responses through specific production of cytokines. These properties are regulated by distinct sets of soluble molecules, receptors, and intracellular factors, which altogether tune the functional output of effector lymphocytes and their final activation state. In contrast to adaptive T cells, innate lymphoid cells (ILCs) do not require antigen receptors and are characterized for their ability to provide rapid immune responses. While the factors underlying functional diversification and the main principles leading to ILC activation have been dissected, our understanding of the mechanisms underlying termination of ILC effector functions is still in its infancy. Herein, we discuss the recent findings describing how ILC responses are turned off in the context of inflammation and cancer.
Collapse
Affiliation(s)
- Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS Neuromed, 86077, Pozzilli, IS, Italy.
| |
Collapse
|
12
|
Rossi C, Gravelle P, Decaup E, Bordenave J, Poupot M, Tosolini M, Franchini DM, Laurent C, Morin R, Lagarde JM, Ysebaert L, Ligat L, Jean C, Savina A, Klein C, Céspedes AM, Perez-Galan P, Fournié JJ, Bezombes C. Boosting γδ T cell-mediated antibody-dependent cellular cytotoxicity by PD-1 blockade in follicular lymphoma. Oncoimmunology 2018; 8:1554175. [PMID: 30723586 DOI: 10.1080/2162402x.2018.1554175] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
Follicular lymphoma (FL) is a common non Hodgkin's lymphoma subtype in which immune escape mechanisms are implicated in resistance to chemo-immunotherapy. Although molecular studies point to qualitative and quantitative deregulation of immune checkpoints, in depth cellular analysis of FL immune escape is lacking. Here, by functional assays and in silico analyses we show that a subset of FL patients displays a 'high' immune escape phenotype. These FL cases are characterized by abundant infiltration of PD1+ CD16+ TCRVγ9Vδ2 γδ T lymphocytes. In a 3D co-culture assay (MALC), γδ T cells mediate both direct and indirect (ADCC in the presence of anti-CD20 mAbs) cytolytic activity against FL cell aggregates. Importantly, PD-1, which is expressed by most FL-infiltrating γδ T lymphocytes with ADCC capacity, impairs these functions. In conclusion, we identify a PD1-regulated γδ T cell cytolytic immune component in FL. Our data provide a treatment rational by PD-1 blockade aimed at boosting γδ T cell anti-tumor functions in FL.
Collapse
Affiliation(s)
- Cédric Rossi
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,CALYM Carnot Institute, Pierre-Bénite, France.,CHU Dijon, Hématologie clinique, Hôpital François Mitterand, Dijon, France
| | - Pauline Gravelle
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,CALYM Carnot Institute, Pierre-Bénite, France.,Department of Pathology, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - Emilie Decaup
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France
| | - Julie Bordenave
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,CALYM Carnot Institute, Pierre-Bénite, France
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,CALYM Carnot Institute, Pierre-Bénite, France
| | - Marie Tosolini
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,Pôle Technologique du Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Don-Marc Franchini
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,CALYM Carnot Institute, Pierre-Bénite, France
| | - Camille Laurent
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,CALYM Carnot Institute, Pierre-Bénite, France.,Department of Pathology, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | | | | | - Loïc Ysebaert
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,CALYM Carnot Institute, Pierre-Bénite, France.,Department of Hematology, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - Laetitia Ligat
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Pôle Technologique du Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Christine Jean
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France
| | | | - Christian Klein
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Alba Matas Céspedes
- Hematology-Oncology department, IDIBAPS, Center Esther Koplowitz, Barcelona, Spain
| | - Patricia Perez-Galan
- Hematology-Oncology department, IDIBAPS, Center Esther Koplowitz, Barcelona, Spain
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,CALYM Carnot Institute, Pierre-Bénite, France
| | - Christine Bezombes
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France.,CALYM Carnot Institute, Pierre-Bénite, France
| |
Collapse
|
13
|
Lougaris V, Tabellini G, Baronio M, Patrizi O, Gazzurelli L, Mitsuiki N, Pozzi MR, Grimbacher B, Parolini S, Plebani A. CTLA-4 regulates human Natural Killer cell effector functions. Clin Immunol 2018; 194:43-45. [PMID: 29966715 DOI: 10.1016/j.clim.2018.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/16/2018] [Accepted: 06/27/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Vassilios Lougaris
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Italy.
| | - Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Manuela Baronio
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Italy
| | - Ornella Patrizi
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Luisa Gazzurelli
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Italy
| | - Noriko Mitsuiki
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg and University of Freiburg, Freiburg 79106, Germany
| | - Maria Rosa Pozzi
- Department of Internal Medicine, Rheumatology Unit, San Gerardo Hospital, Monza, Italy
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg and University of Freiburg, Freiburg 79106, Germany
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Alessandro Plebani
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Italy
| |
Collapse
|