1
|
Master RJ, Karmakar J, Haggie PM, Anthony-Tan J, Chu T, Verkman AS, Anderson MO, Cil O. High potency 3-carboxy-2-methylbenzofuran pendrin inhibitors as novel diuretics. Eur J Med Chem 2025; 283:117133. [PMID: 39642691 DOI: 10.1016/j.ejmech.2024.117133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/07/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Pendrin (SLC26A4) is an anion exchanger expressed in epithelial cells of kidney and lung. Pendrin inhibition is a potential treatment approach for edema, hypertension and inflammatory lung diseases. We have previously identified first-in-class pendrin inhibitors by high-throughput screening, albeit with low potency for pendrin inhibition (IC50 ∼10 μM). Here, we performed a de novo small molecule screen with follow-on structure-activity studies to identify more potent pendrin inhibitors. Screening of 50,000 synthetic small molecules identified four novel classes of pendrin inhibitors with diverse scaffolds, including 5-benzyloxy-2-methylbenzofurans, N-aryl urea substituted 5-methyltryptamines, N-aryl urea substituted anthranilic acids, and substituted N-benzyl 3-carboxyindoles. The most potent inhibitor from the initial screen, a 3-carboxy-2-methylbenzofuran (1a), had IC50 of 4.1 μM. Structure-activity studies using 732 benzofuran analogs identified 1d with IC50 ∼ 0.5 μM for pendrin inhibition. Selectivity studies showed that 1d has minimal or no activity against related ion channels/transporters including SLC26A3, SLC26A6 and CFTR at high concentrations. 1d administration to mice at 10 mg/kg had no effect on urine volume when used alone, but potentiated the diuretic effect of furosemide by 45 %. In conclusion, we have identified novel pendrin inhibitors with greatly improved potency and good in vivo efficacy. These compounds can be used as pharmacological tools to study the roles of pendrin, and potentially developed as drug candidates for edema, hypertension and lung diseases.
Collapse
Affiliation(s)
- Riya J Master
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Joy Karmakar
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Peter M Haggie
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Joseph Anthony-Tan
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tifany Chu
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Alan S Verkman
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Marc O Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| | - Onur Cil
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Geertsma ER, Oliver D. SLC26 Anion Transporters. Handb Exp Pharmacol 2024; 283:319-360. [PMID: 37947907 DOI: 10.1007/164_2023_698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Solute carrier family 26 (SLC26) is a family of functionally diverse anion transporters found in all kingdoms of life. Anions transported by SLC26 proteins include chloride, bicarbonate, and sulfate, but also small organic dicarboxylates such as fumarate and oxalate. The human genome encodes ten functional homologs, several of which are causally associated with severe human diseases, highlighting their physiological importance. Here, we review novel insights into the structure and function of SLC26 proteins and summarize the physiological relevance of human members.
Collapse
Affiliation(s)
- Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Marburg, Giessen, Germany.
| |
Collapse
|
3
|
Zajac M, Lepissier A, Dréano E, Chevalier B, Hatton A, Kelly-Aubert M, Guidone D, Planelles G, Edelman A, Girodon E, Hinzpeter A, Crambert G, Pranke I, Galietta LJV, Sermet-Gaudelus I. Putting bicarbonate on the spot: pharmacological insights for CFTR correction in the airway epithelium. Front Pharmacol 2023; 14:1293578. [PMID: 38149052 PMCID: PMC10750368 DOI: 10.3389/fphar.2023.1293578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction: Cystic fibrosis (CF) is caused by defective Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) proteins. CFTR controls chloride (Cl-) and bicarbonate (HCO3 -) transport into the Airway Surface Liquid (ASL). We investigated the impact of F508del-CFTR correction on HCO3 - secretion by studying transepithelial HCO3 - fluxes. Methods: HCO3 - secretion was measured by pH-stat technique in primary human respiratory epithelial cells from healthy subjects (WT) and people with CF (pwCF) carrying at least one F508del variant. Its changes after CFTR modulation by the triple combination VX445/661/770 and in the context of TNF-α+IL-17 induced inflammation were correlated to ASL pH and transcriptional levels of CFTR and other HCO3 - transporters of airway epithelia such as SLC26A4 (Pendrin), SLC26A9 and NBCe1. Results: CFTR-mediated HCO3 - secretion was not detected in F508del primary human respiratory epithelial cells. It was rescued up to ∼ 80% of the WT level by VX-445/661/770. In contrast, TNF-α+IL-17 normalized transepithelial HCO3 - transport and increased ASL pH. This was related to an increase in SLC26A4 and CFTR transcript levels. VX-445/661/770 induced an increase in pH only in the context of inflammation. Effects on HCO3 - transport were not different between F508del homozygous and F508del compound heterozygous CF airway epithelia. Conclusion: Our studies show that correction of F508del-CFTR HCO3 - is not sufficient to buffer acidic ASL and inflammation is a key regulator of HCO3 - secretion in CF airways. Prediction of the response to CFTR modulators by theratyping should take into account airway inflammation.
Collapse
Affiliation(s)
- Miroslaw Zajac
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Agathe Lepissier
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Elise Dréano
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Benoit Chevalier
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Aurélie Hatton
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Mairead Kelly-Aubert
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Aleksander Edelman
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Emmanuelle Girodon
- Université de Paris-Cité, Paris, France
- Service de Médecine Génomique des Maladies de Système et d’Organe, Hôpital Cochin, Paris, France
| | - Alexandre Hinzpeter
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Gilles Crambert
- U1138/CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Iwona Pranke
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | - Isabelle Sermet-Gaudelus
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- European Reference Network for Rare Diseases, Frankfurt, Belgium
| |
Collapse
|
4
|
Jung J, Noh SH, Jo S, Song D, Kang MJ, Shin MH, Lee HJ, Pyun JC, Namkung W, Han G, Lee MG, Choi JY. Novel small molecule-mediated restoration of the surface expression and anion exchange activity of mutated pendrin causing Pendred syndrome and DFNB4. Biomed Pharmacother 2023; 167:115445. [PMID: 37690388 DOI: 10.1016/j.biopha.2023.115445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
Variants in SLC26A4 (pendrin) are the most common reasons for genetic hearing loss and vestibular dysfunction in East Asians. In patients with Pendred syndrome and DFNB4 (autosomal recessive type of genetic hearing loss 4), caused by variants in SLC26A4, the hearing function is residual at birth and deteriorates over several years, with no curative treatment for these disorders. In the present study, we revealed that a novel small molecule restores the expression and function of mutant pendrin. High-throughput screening of 54,000 small molecules was performed. We observed that pendrin corrector (PC2-1) increased the surface expression and anion exchange activity of p.H723R pendrin (H723R-PDS), the most prevalent genetic variant that causes Pendred syndrome and DFNB4. Furthermore, in endogenous H723R-PDS-expressing human nasal epithelial cells, PC2-1 significantly increased the surface expression of pendrin. PC2-1 exhibited high membrane permeability in vitro and high micromolar concentrations in the cochlear perilymph in vivo. In addition, neither inhibition of Kv11.1 activity in the human ether-a-go-go-related gene assay nor cell toxicity in the cell proliferation assay was observed at a high PC2-1 concentration (30 μM). These preclinical data support the hypothesis of the druggability of mutant pendrin using the novel corrector molecule PC2-1. In conclusion, PC2-1 may be a new therapeutic molecule for ameliorating hearing loss and treating vestibular disorders in patients with Pendred syndrome or DFNB4.
Collapse
Affiliation(s)
- Jinsei Jung
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Won-Sang Lee Institute for Hearing Loss, Seoul 03722, Republic of Korea
| | - Shin Hye Noh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sungwoo Jo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Doona Song
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea; Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Republic of Korea; Translational Research Center for Protein Function Control, Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Min Jin Kang
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Won-Sang Lee Institute for Hearing Loss, Seoul 03722, Republic of Korea
| | - Mi Hwa Shin
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Won-Sang Lee Institute for Hearing Loss, Seoul 03722, Republic of Korea
| | - Hyun Jae Lee
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, USA
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Wan Namkung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.
| | - Gyoonhee Han
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea; Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Republic of Korea; Translational Research Center for Protein Function Control, Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| | - Min Goo Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Republic of Korea, Seoul 03722, Republic of Korea.
| | - Jae Young Choi
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Won-Sang Lee Institute for Hearing Loss, Seoul 03722, Republic of Korea.
| |
Collapse
|
5
|
Mucke HA. Patent highlights December 2022-January 2023. Pharm Pat Anal 2023; 12:151-158. [PMID: 37801039 DOI: 10.4155/ppa-2023-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
|
6
|
Jo S, Centeio R, Park J, Ousingsawat J, Jeon DK, Talbi K, Schreiber R, Ryu K, Kahlenberg K, Somoza V, Delpiano L, Gray MA, Amaral MD, Railean V, Beekman JM, Rodenburg LW, Namkung W, Kunzelmann K. The SLC26A9 inhibitor S9-A13 provides no evidence for a role of SLC26A9 in airway chloride secretion but suggests a contribution to regulation of ASL pH and gastric proton secretion. FASEB J 2022; 36:e22534. [PMID: 36183361 DOI: 10.1096/fj.202200313rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022]
Abstract
The solute carrier 26 family member A9 (SLC26A9) is an epithelial anion transporter that is assumed to contribute to airway chloride secretion and surface hydration. Whether SLC26A9 or CFTR is responsible for airway Cl- transport under basal conditions is still unclear, due to the lack of a specific inhibitor for SLC26A9. In the present study, we report a novel potent and specific inhibitor for SLC26A9, identified by screening of a drug-like molecule library and subsequent chemical modifications. The most potent compound S9-A13 inhibited SLC26A9 with an IC50 of 90.9 ± 13.4 nM. S9-A13 did not inhibit other members of the SLC26 family and had no effects on Cl- channels such as CFTR, TMEM16A, or VRAC. S9-A13 inhibited SLC26A9 Cl- currents in cells that lack expression of CFTR. It also inhibited proton secretion by HGT-1 human gastric cells. In contrast, S9-A13 had minimal effects on ion transport in human airway epithelia and mouse trachea, despite clear expression of SLC26A9 in the apical membrane of ciliated cells. In both tissues, basal and stimulated Cl- secretion was due to CFTR, while acidification of airway surface liquid by S9-A13 suggests a role of SLC26A9 for airway bicarbonate secretion.
Collapse
Affiliation(s)
- Sungwoo Jo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Raquel Centeio
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Jinhong Park
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | | | - Dong-Kyu Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Khaoula Talbi
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, Regensburg, Germany
| | - Kunhi Ryu
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Kristin Kahlenberg
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Veronika Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Livia Delpiano
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Michael A Gray
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Margarida D Amaral
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Violeta Railean
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Jeffrey M Beekman
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, Netherlands
| | - Lisa W Rodenburg
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, Netherlands
| | - Wan Namkung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Cook DP, Peebles RS. A Nod and a WNK (Kinase): Understanding Airway Surface Liquid pH. Am J Respir Cell Mol Biol 2022; 67:421-422. [PMID: 35881960 PMCID: PMC9564928 DOI: 10.1165/rcmb.2022-0285ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Daniel P Cook
- Department of Medicine Vanderbilt University School of Medicine Nashville, Tennessee
| | - R Stokes Peebles
- Department of Medicine Vanderbilt University School of Medicine Nashville, Tennessee
- U.S. Department of Veterans Affairs Tennessee Valley Health Care Nashville, Tennessee
| |
Collapse
|
8
|
Sinha M, Zabini D, Guntur D, Nagaraj C, Enyedi P, Olschewski H, Kuebler WM, Olschewski A. Chloride channels in the lung: Challenges and perspectives for viral infections, pulmonary arterial hypertension, and cystic fibrosis. Pharmacol Ther 2022; 237:108249. [PMID: 35878810 DOI: 10.1016/j.pharmthera.2022.108249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
Fine control over chloride homeostasis in the lung is required to maintain membrane excitability, transepithelial transport as well as intra- and extracellular ion and water homeostasis. Over the last decades, a growing number of chloride channels and transporters have been identified in the cells of the pulmonary vasculature and the respiratory tract. The importance of these proteins is underpinned by the fact that impairment of their physiological function is associated with functional dysregulation, structural remodeling, or hereditary diseases of the lung. This paper reviews the field of chloride channels and transporters in the lung and discusses chloride channels in disease processes such as viral infections including SARS-CoV- 2, pulmonary arterial hypertension, cystic fibrosis and asthma. Although chloride channels have become a hot research topic in recent years, remarkably few of them have been targeted by pharmacological agents. As such, we complement the putative pathophysiological role of chloride channels here with a summary of their therapeutic potential.
Collapse
Affiliation(s)
- Madhushri Sinha
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Diana Zabini
- Department of Physiology, Neue Stiftingtalstrasse 6/V, 8010 Graz, Austria.
| | - Divya Guntur
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Peter Enyedi
- Department of Physiology, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary.
| | - Horst Olschewski
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Andrea Olschewski
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| |
Collapse
|
9
|
Rahmawati SF, Vos R, Bos IST, Kerstjens HAM, Kistemaker LEM, Gosens R. Function-specific IL-17A and dexamethasone interactions in primary human airway epithelial cells. Sci Rep 2022; 12:11110. [PMID: 35773318 PMCID: PMC9247091 DOI: 10.1038/s41598-022-15393-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
Asthmatics have elevated levels of IL-17A compared to healthy controls. IL-17A is likely to contribute to reduced corticosteroid sensitivity of human airway epithelium. Here, we aimed to investigate the mechanistic underpinnings of this reduced sensitivity in more detail. Differentiated primary human airway epithelial cells (hAECs) were exposed to IL-17A in the absence or presence of dexamethasone. Cells were then collected for RNA sequencing analysis or used for barrier function experiments. Mucus was collected for volume measurement and basal medium for cytokine analysis. 2861 genes were differentially expressed by IL-17A (Padj < 0.05), of which the majority was not sensitive to dexamethasone (< 50% inhibition). IL-17A did inhibit canonical corticosteroid genes, such as HSD11B2 and FKBP5 (p < 0.05). Inflammatory and goblet cell metaplasia markers, cytokine secretion and mucus production were all induced by IL-17A, and these effects were not prevented by dexamethasone. Dexamethasone did reverse IL-17A-stimulated epithelial barrier disruption, and this was associated with gene expression changes related to cilia function and development. We conclude that IL-17A induces function-specific corticosteroid-insensitivity. Whereas inflammatory response genes and mucus production in primary hAECs in response to IL-17A were corticosteroid-insensitive, corticosteroids were able to reverse IL-17A-induced epithelial barrier disruption.
Collapse
Affiliation(s)
- Siti Farah Rahmawati
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Department of Pharmacology and Clinical Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
- University of Groningen, University Medical Center Groningen (UMCG), Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Rémon Vos
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen (UMCG), Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - I Sophie T Bos
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen (UMCG), Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Huib A M Kerstjens
- Department of Pulmonary Medicine, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen (UMCG), Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Aquilo Contract Research, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen (UMCG), Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen (UMCG), Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.
| |
Collapse
|
10
|
Remigante A, Spinelli S, Pusch M, Sarikas A, Morabito R, Marino A, Dossena S. Role of SLC4 and SLC26 solute carriers during oxidative stress. Acta Physiol (Oxf) 2022; 235:e13796. [PMID: 35143116 PMCID: PMC9542443 DOI: 10.1111/apha.13796] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022]
Abstract
Bicarbonate is one of the major anions in mammalian tissues and fluids, is utilized by various exchangers to transport other ions and organic substrates across cell membranes and plays a critical role in cell and systemic pH homoeostasis. Chloride/bicarbonate (Cl−/HCO3−) exchangers are abundantly expressed in erythrocytes and epithelial cells and, as a consequence, are particularly exposed to oxidants in the systemic circulation and at the interface with the external environment. Here, we review the physiological functions and pathophysiological alterations of Cl−/HCO3− exchangers belonging to the solute carriers SLC4 and SLC26 superfamilies in relation to oxidative stress. Particularly well studied is the impact of oxidative stress on the red blood cell SLC4A1/AE1 (Band 3 protein), of which the function seems to be directly affected by oxidative stress and possibly involves oxidation of the transporter itself or its interacting proteins, with detrimental consequences in oxidative stress‐related diseases including inflammation, metabolic dysfunctions and ageing. The effect of oxidative stress on SLC26 members was less extensively explored. Indirect evidence suggests that SLC26 transporters can be target as well as determinants of oxidative stress, especially when their expression is abolished or dysregulated.
Collapse
Affiliation(s)
- Alessia Remigante
- Biophysics Institute National Research Council Genova Italy
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Sara Spinelli
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Michael Pusch
- Biophysics Institute National Research Council Genova Italy
| | - Antonio Sarikas
- Institute of Pharmacology and Toxicology Paracelsus Medical University Salzburg Austria
| | - Rossana Morabito
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Angela Marino
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology Paracelsus Medical University Salzburg Austria
| |
Collapse
|
11
|
Abstract
Chloride transport across cell membranes is broadly involved in epithelial fluid transport, cell volume and pH regulation, muscle contraction, membrane excitability, and organellar acidification. The human genome encodes at least 53 chloride-transporting proteins with expression in cell plasma or intracellular membranes, which include chloride channels, exchangers, and cotransporters, some having broad anion specificity. Loss-of-function mutations in chloride transporters cause a wide variety of human diseases, including cystic fibrosis, secretory diarrhea, kidney stones, salt-wasting nephropathy, myotonia, osteopetrosis, hearing loss, and goiter. Although impactful advances have been made in the past decade in drug treatment of cystic fibrosis using small molecule modulators of the defective cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, other chloride channels and solute carrier proteins (SLCs) represent relatively underexplored target classes for drug discovery. New opportunities have emerged for the development of chloride transport modulators as potential therapeutics for secretory diarrheas, constipation, dry eye disorders, kidney stones, polycystic kidney disease, hypertension, and osteoporosis. Approaches to chloride transport-targeted drug discovery are reviewed herein, with focus on chloride channel and exchanger classes in which recent preclinical advances have been made in the identification of small molecule modulators and in proof of concept testing in experimental animal models.
Collapse
Affiliation(s)
- Alan S Verkman
- Department of Medicine, University of California, San Francisco, California.,Department of Physiology, University of California, San Francisco, California
| | - Luis J V Galietta
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Do DC, Zhang Y, Tu W, Hu X, Xiao X, Chen J, Hao H, Liu Z, Li J, Huang SK, Wan M, Gao P. Type II alveolar epithelial cell-specific loss of RhoA exacerbates allergic airway inflammation through SLC26A4. JCI Insight 2021; 6:e148147. [PMID: 34101619 PMCID: PMC8410088 DOI: 10.1172/jci.insight.148147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
The small GTPase RhoA and its downstream effectors are critical regulators in the pathophysiological processes of asthma. The underlying mechanism, however, remains undetermined. Here, we generated an asthma mouse model with RhoA–conditional KO mice (Sftpc-cre;RhoAfl/fl) in type II alveolar epithelial cells (AT2) and demonstrated that AT2 cell–specific deletion of RhoA leads to exacerbation of allergen-induced airway hyperresponsiveness and airway inflammation with elevated Th2 cytokines in bronchoalveolar lavage fluid (BALF). Notably, Sftpc-cre;RhoAfl/fl mice showed a significant reduction in Tgf-β1 levels in BALF and lung tissues, and administration of recombinant Tgf-β1 to the mice rescued Tgf-β1 and alleviated the increased allergic airway inflammation observed in Sftpc-cre;RhoAfl/fl mice. Using RNA sequencing technology, we identified Slc26a4 (pendrin), a transmembrane anion exchange, as the most upregulated gene in RhoA-deficient AT2 cells. The upregulation of SLC26A4 was further confirmed in AT2 cells of asthmatic patients and mouse models and in human airway epithelial cells expressing dominant-negative RHOA (RHOA-N19). SLA26A4 was also elevated in serum from asthmatic patients and negatively associated with the percentage of forced expiratory volume in 1 second (FEV1%). Furthermore, SLC26A4 inhibition promoted epithelial TGF-β1 release and attenuated allergic airway inflammation. Our study reveals a RhoA/SLC26A4 axis in AT2 cells that functions as a protective mechanism against allergic airway inflammation.
Collapse
Affiliation(s)
- Danh C Do
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yan Zhang
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Tu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xinyue Hu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaojun Xiao
- Institute of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jingsi Chen
- Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Haiping Hao
- JHMI Deep Sequencing and Microarray Core Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhigang Liu
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.,Institute of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shau-Ku Huang
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Lee EH, Shin MH, Gi M, Park J, Song D, Hyun YM, Ryu JH, Seong JK, Jeon Y, Han G, Namkung W, Park MS, Choi JY. Inhibition of Pendrin by a small molecule reduces Lipopolysaccharide-induced acute Lung Injury. Theranostics 2020; 10:9913-9922. [PMID: 32929324 PMCID: PMC7481407 DOI: 10.7150/thno.46417] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Pendrin is encoded by SLC26A4 and its mutation leads to congenital hearing loss. Additionally, pendrin is up-regulated in inflammatory airway diseases such as chronic obstructive pulmonary disease, allergic rhinitis, and asthma. In this study, the effects of a novel pendrin inhibitor, YS-01, were investigated in an LPS-induced acute lung injury (ALI) mice model, and the mechanism underlying the effect of YS-01 was examined. Methods: Lipopolysaccharide (LPS, 10 mg/kg) was intranasally instilled in wild type (WT) and pendrin-null mice. YS-01 (10 mg/kg) was administered intra-peritoneally before or after LPS inhalation. Lung injury parameters were assessed in the lung tissue and bronchoalveolar lavage fluid (BALF). Pendrin levels in the BALF of 41 patients with acute respiratory distress syndrome (ARDS) due to pneumonia and 25 control (solitary pulmonary nodule) patients were also measured. Results: LPS instillation induced lung injury in WT mice but not in pendrin-null mice. Pendrin expression was increased by LPS stimulation both in vitro and in vivo. YS-01 treatment dramatically attenuated lung injury and reduced BALF cell counts and protein concentration after LPS instillation in WT mice. Proinflammatory cytokines and NF-κB activation were suppressed by YS-01 treatment in LPS-induced ALI mice. In BALF of patients whose ARDS was caused by pneumonia, pendrin expression was up-regulated compared to that in controls (mean, 24.86 vs. 6.83 ng/mL, P < 0.001). Conclusions: A novel pendrin inhibitor, YS-01, suppressed lung injury in LPS-induced ALI mice and our data provide a new strategy for the treatment of inflammatory airway diseases including sepsis-induced ALI.
Collapse
|
14
|
Phenotype-Specific Therapeutic Effect of Rhodiola wallichiana var. cholaensis Combined with Dexamethasone on Experimental Murine Asthma and Its Comprehensive Pharmacological Mechanism. Int J Mol Sci 2019; 20:ijms20174216. [PMID: 31466312 PMCID: PMC6747379 DOI: 10.3390/ijms20174216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/17/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
The heterogeneity of asthma involves complex pathogenesis leading to confusion regarding the choice of therapeutic strategy. In the clinic, asthma is commonly classified as having either eosinophilic asthma (EA) or non-eosinophilic asthma (NEA) phenotypes. Microbiota colonizing in airways has been demonstrated to induce distinct phenotypes of asthma and the resistance to steroids. Rhodiola wallichiana var. cholaensis (RWC) has the potential to alleviate asthmatic inflammation according to recent studies, but its pharmacological mechanisms remain unclarified. In our study, murine asthmatic phenotypes were established and treated with RWC and/or dexamethasone (DEX). Combined treatment with RWC and DEX could improve spirometry and airway hyperresponsiveness (AHR) in asthmatic phenotypes, alleviate steroid resistance in NEA, and reduce the inflammatory infiltration of the both phenotypes. The combined treatment increased Th1, regulated the imbalance of Th2/Th1, and decreased the related cytokines in EA. As for NEA, the combined treatment reduced Th17 and promoted the accumulation of regulatory T cells (Tregs) in lung. A microbiome study based on 16S rDNA sequencing technique revealed the significantly changed structure of the lower airway microbiota after combined treatment in NEA, with 4 distinct genera and 2 species identified. OPLS-DA models of metabolomics analysis based on UPLC-Q/TOF-MS technique identified 34 differentiated metabolites and 8 perturbed metabolic pathways. A joint multiomics study predicted that the colonized microbiota in airways might be associated with susceptibility of asthma and steroid resistance, which involved systematic and pulmonary metabolic perturbation. In summary, the pharmacological network of RWC included the complicated interaction mechanisms of immune regulation, microbiota change, and metabolic perturbation.
Collapse
|