1
|
Ishmael L, Casale T, Cardet JC. Molecular Pathways and Potential Therapeutic Targets of Refractory Asthma. BIOLOGY 2024; 13:583. [PMID: 39194521 DOI: 10.3390/biology13080583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Asthma is a chronic inflammatory lung disease. Refractory asthma poses a significant challenge in management due to its resistance to standard therapies. Key molecular pathways of refractory asthma include T2 inflammation mediated by Th2 and ILC2 cells, eosinophils, and cytokines including IL-4, IL-5, and IL-13. Additionally, non-T2 mechanisms involving neutrophils, macrophages, IL-1, IL-6, and IL-17 mediate a corticosteroid resistant phenotype. Mediators including alarmins (IL-25, IL-33, TSLP) and OX40L have overlap between T2 and non-T2 inflammation and may signify unique pathways of asthma inflammation. Therapies that target these pathways and mediators have proven to be effective in reducing exacerbations and improving lung function in subsets of severe asthma patients. However, there are patients with severe asthma who do not respond to approved therapies. Small molecule inhibitors, such as JAK-inhibitors, and monoclonal antibodies targeting mast cells, IL-1, IL-6, IL-33, TNFα, and OX40L are under investigation for their potential to modulate inflammation involved in refractory asthma. Understanding refractory asthma heterogeneity and identifying mediators involved are essential in developing therapeutic interventions for patients unresponsive to currently approved biologics. Further investigation is needed to develop personalized treatments based on these molecular insights to potentially offer more effective treatments for this complex disease.
Collapse
Affiliation(s)
- Leah Ishmael
- Division of Pulmonary, Allergy, and Sleep Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Thomas Casale
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Juan Carlos Cardet
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Ma Z, Du X, Sun Y, Sun K, Zhang X, Wang L, Zhu Y, Basang W, Gao Y. RGS2 attenuates alveolar macrophage damage by inhibiting the Gq/11-Ca 2+ pathway during cowshed PM2.5 exposure, and aberrant RGS2 expression is associated with TLR2/4 activation. Toxicol Appl Pharmacol 2024; 487:116976. [PMID: 38777097 DOI: 10.1016/j.taap.2024.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/07/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Staff and animals in livestock buildings are constantly exposed to fine particulate matter (PM2.5), which affects their respiratory health. However, its exact pathogenic mechanism remains unclear. Regulator of G-protein signaling 2 (RGS2) has been reported to play a regulatory role in pneumonia. The aim of this study was to explore the therapeutic potential of RGS2 in cowshed PM2.5-induced respiratory damage. PM2.5 was collected from a cattle farm, and the alveolar macrophages (NR8383) of the model animal rat were stimulated with different treatment conditions of cowshed PM2.5. The RGS2 overexpression vector was constructed and transfected it into cells. Compared with the control group, cowshed PM2.5 significantly induced a decrease in cell viability and increased the levels of apoptosis and proinflammatory factor expression. Overexpression of RGS2 ameliorated the above-mentioned cellular changes induced by cowshed PM2.5. In addition, PM2.5 has significantly induced intracellular Ca2+ dysregulation. Affinity inhibition of Gq/11 by RGS2 attenuated the cytosolic calcium signaling pathway mediated by PLCβ/IP3R. To further investigate the causes and mechanisms of action of differential RGS2 expression, the possible effects of oxidative stress and TLR2/4 activation were investigated. The results have shown that RGS2 expression was not only regulated by oxidative stress-induced nitric oxide during cowshed PM2.5 cells stimulation but the activation of TLR2/4 had also an important inhibitory effect on its protein expression. The present study demonstrates the intracellular Ca2+ regulatory role of RGS2 during cellular injury, which could be a potential target for the prevention and treatment of PM2.5-induced respiratory injury.
Collapse
Affiliation(s)
- Zhenhua Ma
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Xiaohui Du
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yize Sun
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ke Sun
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiqing Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Lixia Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China.
| | - Yunhang Gao
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
4
|
Everman JL, Sajuthi SP, Liegeois MA, Jackson ND, Collet EH, Peters MC, Chioccioli M, Moore CM, Patel BB, Dyjack N, Powell R, Rios C, Montgomery MT, Eng C, Elhawary JR, Mak ACY, Hu D, Huntsman S, Salazar S, Feriani L, Fairbanks-Mahnke A, Zinnen GL, Michel CR, Gomez J, Zhang X, Medina V, Chu HW, Cicuta P, Gordon ED, Zeitlin P, Ortega VE, Reisdorph N, Dunican EM, Tang M, Elicker BM, Henry TS, Bleecker ER, Castro M, Erzurum SC, Israel E, Levy BD, Mauger DT, Meyers DA, Sumino K, Gierada DS, Hastie AT, Moore WC, Denlinger LC, Jarjour NN, Schiebler ML, Wenzel SE, Woodruff PG, Rodriguez-Santana J, Pearson CG, Burchard EG, Fahy JV, Seibold MA. A common polymorphism in the Intelectin-1 gene influences mucus plugging in severe asthma. Nat Commun 2024; 15:3900. [PMID: 38724552 PMCID: PMC11082194 DOI: 10.1038/s41467-024-48034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
By incompletely understood mechanisms, type 2 (T2) inflammation present in the airways of severe asthmatics drives the formation of pathologic mucus which leads to airway mucus plugging. Here we investigate the molecular role and clinical significance of intelectin-1 (ITLN-1) in the development of pathologic airway mucus in asthma. Through analyses of human airway epithelial cells we find that ITLN1 gene expression is highly induced by interleukin-13 (IL-13) in a subset of metaplastic MUC5AC+ mucus secretory cells, and that ITLN-1 protein is a secreted component of IL-13-induced mucus. Additionally, we find ITLN-1 protein binds the C-terminus of the MUC5AC mucin and that its deletion in airway epithelial cells partially reverses IL-13-induced mucostasis. Through analysis of nasal airway epithelial brushings, we find that ITLN1 is highly expressed in T2-high asthmatics, when compared to T2-low children. Furthermore, we demonstrate that both ITLN-1 gene expression and protein levels are significantly reduced by a common genetic variant that is associated with protection from the formation of mucus plugs in T2-high asthma. This work identifies an important biomarker and targetable pathways for the treatment of mucus obstruction in asthma.
Collapse
Affiliation(s)
- Jamie L Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Satria P Sajuthi
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Maude A Liegeois
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Nathan D Jackson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Erik H Collet
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Michael C Peters
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Maurizio Chioccioli
- Department of Genetics and Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Camille M Moore
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Bhavika B Patel
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Nathan Dyjack
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Roger Powell
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Cydney Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Michael T Montgomery
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Celeste Eng
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Jennifer R Elhawary
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Angel C Y Mak
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Donglei Hu
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Scott Huntsman
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Sandra Salazar
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Luigi Feriani
- Biological and Soft Systems Sector, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Ana Fairbanks-Mahnke
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Gianna L Zinnen
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Joe Gomez
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Xing Zhang
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | | | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Pietro Cicuta
- Biological and Soft Systems Sector, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Erin D Gordon
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Pamela Zeitlin
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | | | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Eleanor M Dunican
- School of Medicine, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Monica Tang
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Brett M Elicker
- University of California-San Francisco, San Francisco, CA, USA
| | | | | | - Mario Castro
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | - Bruce D Levy
- Brigham and Women's Hospital and Harvard University, Cambridge, MA, USA
| | | | | | - Kaharu Sumino
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Annette T Hastie
- Wake Forest University School of Medicine, Department of Internal Medicine, Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Winston Salem, NC, USA
| | - Wendy C Moore
- Wake Forest University School of Medicine, Department of Internal Medicine, Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Winston Salem, NC, USA
| | | | | | | | | | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | | | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Esteban G Burchard
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - John V Fahy
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|