1
|
Lin X, Li X, Zhai Z, Zhang M. JAK-STAT pathway, type I/II cytokines, and new potential therapeutic strategy for autoimmune bullous diseases: update on pemphigus vulgaris and bullous pemphigoid. Front Immunol 2025; 16:1563286. [PMID: 40264772 PMCID: PMC12011800 DOI: 10.3389/fimmu.2025.1563286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Abstract
Autoimmune Bullous Diseases (AIBDs), characterized by the formation of blisters due to autoantibodies targeting structural proteins, pose significant therapeutic challenges. Current treatments, often involving glucocorticoids or traditional immunosuppressants, are limited by their non-specificity and side effects. Cytokines play a pivotal role in AIBDs pathogenesis by driving inflammation and immune responses. The JAK-STAT pathway is central to the biological effects of various type I and II cytokines, making it an attractive therapeutic target. Preliminary reports suggest that JAK inhibitors may be a promising approach in PV and BP, but further clinical validation is required. In AIBDs, particularly bullous pemphigoid (BP) and pemphigus vulgaris (PV), JAK inhibitors have shown promise in modulating pathogenic cytokine signaling. However, the safety and selectivity of JAK inhibitors remain critical considerations, with the potential for adverse effects and the need for tailored treatment strategies. This review explores the role of cytokines and the JAK-STAT pathway in BP and PV, evaluating the therapeutic potential and challenges associated with JAK inhibitors in managing these complex disorders.
Collapse
Affiliation(s)
| | | | - Zhifang Zhai
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Mingwang Zhang
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Wang H, Fung NH, Aloe C, Miles M, Selemidis S, Lopez AF, Wilson N, Owczarek C, Bozinovski S. CD131 antagonism blocks inflammation, emphysema and fibrosis in an asthma-COPD overlap mouse model originating in early life. Respirology 2025; 30:303-316. [PMID: 39814691 DOI: 10.1111/resp.14877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/15/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND AND OBJECTIVE Asthma-COPD overlap (ACO) is characterized by patients exhibiting features of both asthma and COPD. Currently, there is no specific treatment for ACO. This study aimed to investigate the therapeutic potential of targeting CD131, a shared receptor subunit for IL-3, IL-5 and GM-CSF, in ACO development and in preventing acute viral exacerbations. METHODS A two-hit mouse model of ACO was established by house dust mite (HDM) allergen sensitization to model asthma, and elastase treatment to model emphysema. In a separate model, human rhinovirus 1b (RV1b) was used to induce an acute asthma exacerbation. A neutralizing antibody against CD131 was used to block CD131 in vivo signalling. RESULTS Mice exposed to HDM and elastase developed cardinal features for asthma and COPD, including airway hyperreactivity (AHR) and emphysema. A mixed granulocytic inflammatory profile was identified in the lungs, including expansion of monocyte-derived macrophages, neutrophils and eosinophils. RT-qPCR analysis detected heightened gene expression of Mmp12, Il5 and Il13. Transcriptomic analysis further revealed pathway enrichment for type 2 inflammation and macrophage activation. Blockade of CD131 effectively reduced the lung inflammation and prevented the development of AHR, airway fibrosis and emphysema. Interestingly, pathway enrichment for Th1 response and interferon production detected in the model was not affected by the treatment. Consistently, CD131 antagonism prevented RV1b-induced asthma exacerbation without compromising RV1b clearance. CONCLUSION CD131 signalling coordinates multiple pathological pathways that drive airway inflammation and lung remodelling in ACO. Hence, CD131 antagonism represents a novel approach to combating the immunopathology in the complex ACO setting.
Collapse
Affiliation(s)
- Hao Wang
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
- Centre for Respiratory Science & Health, Melbourne, Victoria, Australia
| | - Nok Him Fung
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
- Centre for Respiratory Science & Health, Melbourne, Victoria, Australia
| | - Christian Aloe
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
- Centre for Respiratory Science & Health, Melbourne, Victoria, Australia
| | - Mark Miles
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
- Centre for Respiratory Science & Health, Melbourne, Victoria, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
- Centre for Respiratory Science & Health, Melbourne, Victoria, Australia
| | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | | | | | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
- Centre for Respiratory Science & Health, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Kan WL, Weekley CM, Nero TL, Hercus TR, Yip KH, Tumes DJ, Woodcock JM, Ross DM, Thomas D, Terán D, Owczarek CM, Liu NW, Martelotto LG, Polo JM, Pant H, Tvorogov D, Lopez AF, Parker MW. The β Common Cytokine Receptor Family Reveals New Functional Paradigms From Structural Complexities. Immunol Rev 2025; 329:e13430. [PMID: 39748163 DOI: 10.1111/imr.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Cytokines are small proteins that are critical for controlling the growth and activity of hematopoietic cells by binding to cell surface receptors and transmitting signals across membranes. The β common (βc) cytokine receptor family, consisting of the granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5 cytokine receptors, is an architype of the heterodimeric cytokine receptor systems. We now know that signaling by cytokine receptors is not always an "all or none" phenomenon. Subtle alterations of the cytokine:receptor complex can result in differential or selective signaling and underpin a variety of diseases including chronic inflammatory conditions and cancers. Structural biology techniques, such as X-ray crystallography and cryo-electron microscopy alongside cell biology studies, are providing detailed insights into cytokine receptor signaling. Recently, we found that the IL-3 receptor ternary complex forms higher-order assemblies, like those found earlier for the GM-CSF receptor, and demonstrated that functionally distinct biological signals arise from different IL-3 receptor oligomeric assemblies. As we enhance our understanding of the structural nuances of cytokine-receptor interactions, we foresee a new era of theranostics whereby structurally guided mechanism-based manipulation of cytokine signaling through rational/targeted protein engineering will harness the full potential of cytokine biology for precision medicine.
Collapse
Affiliation(s)
- Winnie L Kan
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Claire M Weekley
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tracy L Nero
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Timothy R Hercus
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Kwok Ho Yip
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Damon J Tumes
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Joanna M Woodcock
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - David M Ross
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, South Australia, Australia
- Acute Leukemia Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Daniel Thomas
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, South Australia, Australia
| | - David Terán
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Catherine M Owczarek
- CSL, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Nora W Liu
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Epigenetics Program, South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Luciano G Martelotto
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Epigenetics Program, South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Jose M Polo
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Epigenetics Program, South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Harshita Pant
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Denis Tvorogov
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Angel F Lopez
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Michael W Parker
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| |
Collapse
|
4
|
Coquelet P, Da Cal S, El Hage G, Tastet O, Balthazard R, Chaumont H, Yuh SJ, Shedid D, Arbour N. Specific plasma biomarker signatures associated with patients undergoing surgery for back pain. Spine J 2025; 25:32-44. [PMID: 39276871 DOI: 10.1016/j.spinee.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/02/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND CONTEXT Intervertebral disc degeneration (IDD) affects numerous people worldwide. The role of inflammation is increasingly recognized but remains incompletely resolved. Peripheral molecules could access neovascularized degenerated discs and contribute to the ongoing pathology. PURPOSE To assess a large array of plasma molecules in patients with IDD to identify biomarkers associated with specific spinal pathologies and prognostic biomarkers for the surgery outcome. DESIGN Prospective observational study combining clinical data and plasma measures. PATIENT SAMPLE Plasma samples were collected just before surgery. Extensive clinical data (age, sex, smoking status, Modic score, glomerular filtration rate, etc.) were extracted from clinical files from 83 patients with IDD undergoing spine surgery. OUTCOME MEASURES Recovery 2 months postsurgery as assessed by the treating neurosurgeon. METHODS Over 40 biological molecules were measured in patients' plasma using multiplex assays. Statistical analyses were performed to identify associations between biological and clinical characteristics (age, sex, Body Mass Index (BMI), smoking status, herniated disc, radiculopathy, myelopathy, stenosis, MODIC score, etc.) and plasma levels of biological molecules. RESULTS Plasma levels of Neurofilament Light chain (NfL) were significantly elevated in patients with myelopathy and spinal stenosis compared to herniated disc. Plasma levels of C- reactive protein (CRP), Neurofilament Light chain (NfL), and Serum Amyloid A (SAA) were negatively associated, while CCL22 levels were positively associated with an efficient recovery 2 months postsurgery. CONCLUSIONS Our results show that CRP and CCL22 plasma levels combined with the age of the IDD patient can predict the 2-month postsurgery recovery (Area Under the Curve [AUC]=0.883). Moreover, NfL could become a valuable monitoring tool for patients with spinal cord injuries.
Collapse
Affiliation(s)
- Perrine Coquelet
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Sandra Da Cal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Gilles El Hage
- Neurosurgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| | - Olivier Tastet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Renaud Balthazard
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Hugo Chaumont
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Sung-Joo Yuh
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada; Neurosurgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada; Department of Surgery, Division of Neurosurgery, Université de Montréal, Montréal, Quebec, Canada
| | - Daniel Shedid
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada; Neurosurgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada; Department of Surgery, Division of Neurosurgery, Université de Montréal, Montréal, Quebec, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada.
| |
Collapse
|
5
|
Chen Y, Tang H, Yao B, Pan S, Ying S, Zhang C. Basophil differentiation, heterogeneity, and functional implications. Trends Immunol 2024; 45:523-534. [PMID: 38944621 DOI: 10.1016/j.it.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/01/2024]
Abstract
Basophils, rare granulocytes, have long been acknowledged for their roles in type 2 immune responses. However, the mechanisms by which basophils adapt their functions to diverse mammalian microenvironments remain unclear. Recent advancements in specific research tools and single-cell-based technologies have greatly enhanced our understanding of basophils. Several studies have shown that basophils play a role in maintaining homeostasis but can also contribute to pathology in various tissues and organs, including skin, lung, and others. Here, we provide an overview of recent basophil research, including cell development, characteristics, and functions. Based on an increasing understanding of basophil biology, we suggest that the precise targeting of basophil features might be beneficial in alleviating certain pathologies such as asthma, atopic dermatitis (AD), and others.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, 322000, China
| | - Haoyu Tang
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, 322000, China
| | - Bingpeng Yao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Sheng Pan
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, 322000, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Songmin Ying
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Yiwu, 322000, China; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, 322000, China.
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Anatomy, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Caveney NA, Rodriguez GE, Pollmann C, Meyer T, Borowska MT, Wilson SC, Wang N, Xiang X, Householder KD, Tao P, Su LL, Saxton RA, Piehler J, Garcia KC. Structure of the interleukin-5 receptor complex exemplifies the organizing principle of common beta cytokine signaling. Mol Cell 2024; 84:1995-2005.e7. [PMID: 38614096 PMCID: PMC11102305 DOI: 10.1016/j.molcel.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/20/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Cytokines regulate immune responses by binding to cell surface receptors, including the common subunit beta (βc), which mediates signaling for GM-CSF, IL-3, and IL-5. Despite known roles in inflammation, the structural basis of IL-5 receptor activation remains unclear. We present the cryo-EM structure of the human IL-5 ternary receptor complex, revealing architectural principles for IL-5, GM-CSF, and IL-3. In mammalian cell culture, single-molecule imaging confirms hexameric IL-5 complex formation on cell surfaces. Engineered chimeric receptors show that IL-5 signaling, as well as IL-3 and GM-CSF, can occur through receptor heterodimerization, obviating the need for higher-order assemblies of βc dimers. These findings provide insights into IL-5 and βc receptor family signaling mechanisms, aiding in the development of therapies for diseases involving deranged βc signaling.
Collapse
Affiliation(s)
- Nathanael A Caveney
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.
| | - Grayson E Rodriguez
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christoph Pollmann
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Thomas Meyer
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Marta T Borowska
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven C Wilson
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nan Wang
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xinyu Xiang
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Biophysics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karsten D Householder
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pingdong Tao
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leon L Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert A Saxton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Kazakov AS, Rastrygina VA, Vologzhannikova AA, Zemskova MY, Bobrova LA, Deryusheva EI, Permyakova ME, Sokolov AS, Litus EA, Shevelyova MP, Uversky VN, Permyakov EA, Permyakov SE. Recognition of granulocyte-macrophage colony-stimulating factor by specific S100 proteins. Cell Calcium 2024; 119:102869. [PMID: 38484433 DOI: 10.1016/j.ceca.2024.102869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 04/05/2024]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic myelopoietic growth factor and proinflammatory cytokine, clinically used for multiple indications and serving as a promising target for treatment of many disorders, including cancer, multiple sclerosis, rheumatoid arthritis, psoriasis, asthma, COVID-19. We have previously shown that dimeric Ca2+-bound forms of S100A6 and S100P proteins, members of the multifunctional S100 protein family, are specific to GM-CSF. To probe selectivity of these interactions, the affinity of recombinant human GM-CSF to dimeric Ca2+-loaded forms of 18 recombinant human S100 proteins was studied by surface plasmon resonance spectroscopy. Of them, only S100A4 protein specifically binds to GM-CSF with equilibrium dissociation constant, Kd, values of 0.3-2 μM, as confirmed by intrinsic fluorescence and chemical crosslinking data. Calcium removal prevents S100A4 binding to GM-CSF, whereas monomerization of S100A4/A6/P proteins disrupts S100A4/A6 interaction with GM-CSF and induces a slight decrease in S100P affinity for GM-CSF. Structural modelling indicates the presence in the GM-CSF molecule of a conserved S100A4/A6/P-binding site, consisting of the residues from its termini, helices I and III, some of which are involved in the interaction with GM-CSF receptors. The predicted involvement of the 'hinge' region and F89 residue of S100P in GM-CSF recognition was confirmed by mutagenesis. Examination of S100A4/A6/P ability to affect GM-CSF signaling showed that S100A4/A6 inhibit GM-CSF-induced suppression of viability of monocytic THP-1 cells. The ability of the S100 proteins to modulate GM-CSF activity is relevant to progression of various neoplasms and other diseases, according to bioinformatics analysis. The direct regulation of GM-CSF signaling by extracellular forms of the S100 proteins should be taken into account in the clinical use of GM-CSF and development of the therapeutic interventions targeting GM-CSF or its receptors.
Collapse
Affiliation(s)
- Alexey S Kazakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia.
| | - Victoria A Rastrygina
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia
| | - Alisa A Vologzhannikova
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia
| | - Marina Y Zemskova
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, pr. Nauki, 5, Pushchino, Moscow Region 142290, Russia
| | - Lolita A Bobrova
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia
| | - Evgenia I Deryusheva
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia.
| | - Maria E Permyakova
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia
| | - Andrey S Sokolov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia
| | - Ekaterina A Litus
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia
| | - Marina P Shevelyova
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Eugene A Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia
| | - Sergei E Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
8
|
Wang H, Yip KH, Keam SP, Vlahos R, Nichol K, Wark P, Toubia J, Kral AC, Cildir G, Pant H, Hercus TR, Wilson N, Owczarek C, Lopez AF, Bozinovski S, Tumes DJ. Dual inhibition of airway inflammation and fibrosis by common β cytokine receptor blockade. J Allergy Clin Immunol 2024; 153:672-683.e6. [PMID: 37931708 DOI: 10.1016/j.jaci.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/11/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Patients with severe asthma can present with eosinophilic type 2 (T2), neutrophilic, or mixed inflammation that drives airway remodeling and exacerbations and represents a major treatment challenge. The common β (βc) receptor signals for 3 cytokines, GM-CSF, IL-5, and IL-3, which collectively mediate T2 and neutrophilic inflammation. OBJECTIVE To determine the pathogenesis of βc receptor-mediated inflammation and remodeling in severe asthma and to investigate βc antagonism as a therapeutic strategy for mixed granulocytic airway disease. METHODS βc gene expression was analyzed in bronchial biopsy specimens from patients with mild-to-moderate and severe asthma. House dust mite extract and Aspergillus fumigatus extract (ASP) models were used to establish asthma-like pathology and airway remodeling in human βc transgenic mice. Lung tissue gene expression was analyzed by RNA sequencing. The mAb CSL311 targeting the shared cytokine binding site of βc was used to block βc signaling. RESULTS βc gene expression was increased in patients with severe asthma. CSL311 potently reduced lung neutrophils, eosinophils, and interstitial macrophages and improved airway pathology and lung function in the acute steroid-resistant house dust mite extract model. Chronic intranasal ASP exposure induced airway inflammation and fibrosis and impaired lung function that was inhibited by CSL311. CSL311 normalized the ASP-induced fibrosis-associated extracellular matrix gene expression network and strongly reduced signatures of cellular inflammation in the lung. CONCLUSIONS βc cytokines drive steroid-resistant mixed myeloid cell airway inflammation and fibrosis. The anti-βc antibody CSL311 effectively inhibits mixed T2/neutrophilic inflammation and severe asthma-like pathology and reverses fibrosis gene signatures induced by exposure to commonly encountered environmental allergens.
Collapse
Affiliation(s)
- Hao Wang
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Kwok Ho Yip
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, Australia
| | - Simon P Keam
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Kristy Nichol
- Immune Health Research Program, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
| | - Peter Wark
- Immune Health Research Program, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
| | - John Toubia
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, Australia
| | - Anita C Kral
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, Australia
| | - Gökhan Cildir
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, Australia
| | - Harshita Pant
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, Australia; Faculty of Medicine, University of Adelaide, Adelaide, Australia
| | - Timothy R Hercus
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, Australia
| | - Nick Wilson
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Catherine Owczarek
- Research and Development, CSL Limited, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, Australia; Faculty of Medicine, University of Adelaide, Adelaide, Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia.
| | - Damon J Tumes
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, Australia.
| |
Collapse
|
9
|
Gumkowska-Sroka O, Kotyla K, Mojs E, Palka K, Kotyla P. Novel Therapeutic Strategies in the Treatment of Systemic Sclerosis. Pharmaceuticals (Basel) 2023; 16:1066. [PMID: 37630981 PMCID: PMC10458905 DOI: 10.3390/ph16081066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Systemic sclerosis is a connective tissue disease of unknown origin and with an unpredictable course, with both cutaneous and internal organ manifestations. Despite the enormous progress in rheumatology and clinical immunology, the background of this disease is largely unknown, and no specific therapy exists. The therapeutic approach aims to treat and preserve the function of internal organs, and this approach is commonly referred to as organ-based treatment. However, in modern times, data from other branches of medicine may offer insight into how to treat disease-related complications, making it possible to find new drugs to treat this disease. In this review, we present therapeutic options aiming to stop the progression of fibrotic processes, restore the aberrant immune response, stop improper signalling from proinflammatory cytokines, and halt the production of disease-related autoantibodies.
Collapse
Affiliation(s)
- Olga Gumkowska-Sroka
- Department of Rheumatology and Clinical Immunology, Voivodeship Hospital No. 5 in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
- Department of Internal Medicine Rheumatology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (K.P.)
| | - Kacper Kotyla
- Department of Internal Medicine Rheumatology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (K.P.)
| | - Ewa Mojs
- Department of Clinical Psychology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Klaudia Palka
- Department of Internal Medicine Rheumatology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (K.P.)
| | - Przemysław Kotyla
- Department of Rheumatology and Clinical Immunology, Voivodeship Hospital No. 5 in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
- Department of Internal Medicine Rheumatology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (K.P.)
| |
Collapse
|