1
|
Xu B, Ye X, Sun K, Chen L, Wen Z, Lan Q, Chen J, Chen M, Shen M, Wang S, Xu Y, Zhang X, Zhao J, Wang J, Chen S. IRAP Drives Ribosomal Degradation to Refuel Energy for Platelet Activation during Septic Thrombosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411914. [PMID: 39853919 PMCID: PMC11967848 DOI: 10.1002/advs.202411914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/09/2025] [Indexed: 01/26/2025]
Abstract
Platelets play crucial roles in multiple pathophysiological processes after energy-dependent activation. It is puzzling how such a small cellular debris has abundant energy supply. In this study, it is shown that insulin-regulated aminopeptidase (IRAP), a type II transmembrane protein, is a key regulator for platelet activation by promoting energy regeneration during septic thrombosis. Through interaction with certain endosome membrane proteins, IRAP can not only promote granule release, but also facilitate lysosomal degradation of theoretically discarded ribosomes in an mTORC1- and S-acylation-dependent manner in activated platelets. Plentiful amino acids obtained from IRAP-mediated ribophagy are recruited to aerobic glycolysis and then promote energy metabolism reprogramming, thereby producing abundant energy for platelet life extension and prolonged activation. Consequently, targeted blocking IRAP can dramatically alleviate platelet hyperactivation and septic thrombosis.
Collapse
Affiliation(s)
- Baichuan Xu
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Xianpeng Ye
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Kangfu Sun
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Liang Chen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Zhaoyang Wen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Qigang Lan
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Jun Chen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Mo Chen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Mingqiang Shen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Song Wang
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Yang Xu
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Xi Zhang
- Medical Center of HematologyXinqiao HospitalState Key Laboratory of Trauma and Chemical PoisoningArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Jinghong Zhao
- Department of NephrologyChongqing Key Laboratory of Prevention and Treatment of Kidney DiseaseChongqing Clinical Research Center of Kidney and Urology DiseasesXinqiao HospitalArmy Medical University (Third Military Medical University)Chongqing400037China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Shilei Chen
- State Key Laboratory of Trauma and Chemical PoisoningInstitute of Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineArmy Medical University (Third Military Medical University)Chongqing400038China
| |
Collapse
|
2
|
Ji G, Zhang J, Feng X, Sheng H, Hu H, Li F, Ma Y, Hu Y, Na R, Yang W, Ma Y. Analysis of blood biochemistry and non-targeted metabolomics of endometritis in dairy cows. Anim Reprod Sci 2024; 264:107460. [PMID: 38564886 DOI: 10.1016/j.anireprosci.2024.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/11/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
The incidence of bovine endometritis, which has a negative impact on the reproduction of dairy cows, has been recently increasing. In this study, the differential markers and metabolites of healthy cows and cows with endometritis were analyzed by measuring blood biochemical indicators and immune factors using biochemical and enzyme-linked immunosorbent assay kits combined with nontargeted metabolomics. The LC-QTOF platform was used to evaluate the serum metabolomics of healthy cows and cows with endometritis after 21-27 days of calving. The results showed that glucose, free fatty acid, calcium, sodium, albumin, and alanine aminotransferase levels were significantly lower in the serum of cows with endometritis than in healthy cows (P < 0.05). However, the serum potassium, interleukin-1, interleukin-6, and tumor necrosis factor levels were significantly higher in cows with endometritis (P < 0.05). In addition, the serum metabolome data analysis of the two groups showed that the expression of 468 metabolites was significantly different (P < 0.05), of which 291 were upregulated and 177 were downregulated. These metabolites were involved in 78 metabolic pathways, including amino acid, nucleotide, carbohydrate, lipid, and vitamin metabolism pathways; signal transduction pathways, and other biological pathways. Taken together, negative energy balance and immune activation, which are related to local abnormalities in amino acid, lipid, and carbohydrate metabolism, were the important causes of endometritis in dairy cows. Metabolites such as glucose, carnosine, dehydroascorbic acid, L-malic acid, tetrahydrofolic acid, and UDP-glucose may be used as key indicators in the hematological diagnosis and treatment of endometritis in dairy cows.
Collapse
Affiliation(s)
- Guoshang Ji
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Junxing Zhang
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xue Feng
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Hui Sheng
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Honghong Hu
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Fen Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yanfen Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yamei Hu
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Rina Na
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Wenfei Yang
- Ningxia Xin' ao Agriculture and Animal Husbandry Co., Ltd., Lingwu 750406, China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
3
|
Norrby K. On Connective Tissue Mast Cells as Protectors of Life, Reproduction, and Progeny. Int J Mol Sci 2024; 25:4499. [PMID: 38674083 PMCID: PMC11050338 DOI: 10.3390/ijms25084499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The connective tissue mast cell (MC), a sentinel tissue-residing secretory immune cell, has been preserved in all vertebrate classes since approximately 500 million years. No physiological role of the MC has yet been established. Considering the power of natural selection of cells during evolution, it is likely that the MCs exert essential yet unidentified life-promoting actions. All vertebrates feature a circulatory system, and the MCs interact readily with the vasculature. It is notable that embryonic MC progenitors are generated from endothelial cells. The MC hosts many surface receptors, enabling its activation via a vast variety of potentially harmful exogenous and endogenous molecules and via reproductive hormones in the female sex organs. Activated MCs release a unique composition of preformed and newly synthesized bioactive molecules, like heparin, histamine, serotonin, proteolytic enzymes, cytokines, chemokines, and growth factors. MCs play important roles in immune responses, tissue remodeling, cell proliferation, angiogenesis, inflammation, wound healing, tissue homeostasis, health, and reproduction. As recently suggested, MCs enable perpetuation of the vertebrates because of key effects-spanning generations-in ovulation and pregnancy, as in life-preserving activities in inflammation and wound healing from birth till reproductive age, thus creating a permanent life-sustaining loop. Here, we present recent advances that further indicate that the MC is a specific life-supporting and progeny-safeguarding cell.
Collapse
Affiliation(s)
- Klas Norrby
- Department of Pathology, Institute of Medical Biology, Sahlgren Academy, University of Gothenburg, 7 Ostindiefararen, SE-417 65 Gothenburg, Sweden
| |
Collapse
|