1
|
Hou T, Yan J, Li X, Niu L, Rao H, Hao J, Zhao D, Lui X, Fu W. Identification of digestion-resistant peptides in various processed peanut reveals their distinct allergenicity. Food Chem X 2024; 24:101876. [PMID: 39444440 PMCID: PMC11497363 DOI: 10.1016/j.fochx.2024.101876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Peanut protein is a significant food allergen that can trigger severe reactions. The allergenicity of peanut protein may be affected by the thermal processing method and matrices, and its anti-digestibility may also change accordingly. This study investigated how three heat treatment techniques affect the allergenicity and digestibility of peanut proteins and compared the differences in anti-digestive peptide segments by Mass spectrometry. Results showed that boiling and frying reduced sensitization, while roasting potentially increased it. After gastric digestion, allergenicity of Ara h 1 decreases due to breakdown of allergenic peptide segments. Hydrophobic regions of Ara h 1 where monomers interact resist degradation. Compared to boiling and frying, roasting can retain more allergenic peptides containing PGQFEDFF, YLQGFSRN, QEERGQRR, HRIFLAGDKD, and KDLAFPGSGE allergenic epitopes even after prolonged digestion. Meanwhile, digestion-resistant epitopes were affected by matrix and thermal treatments. These findings underscore the potential implications for food processing and allergy management strategies.
Collapse
Affiliation(s)
- Tianyu Hou
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 Yuxiang Street, Shijiazhuang, Hebei 050018, PR China
| | - Jiaxi Yan
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 Yuxiang Street, Shijiazhuang, Hebei 050018, PR China
| | - Xiaoluan Li
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Li Niu
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 Yuxiang Street, Shijiazhuang, Hebei 050018, PR China
| | - Huan Rao
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 Yuxiang Street, Shijiazhuang, Hebei 050018, PR China
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 Yuxiang Street, Shijiazhuang, Hebei 050018, PR China
| | - Dandan Zhao
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 Yuxiang Street, Shijiazhuang, Hebei 050018, PR China
| | - Xueqiang Lui
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 Yuxiang Street, Shijiazhuang, Hebei 050018, PR China
| | - Wenhui Fu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Sharma E, Vitte J. A systematic review of allergen cross-reactivity: Translating basic concepts into clinical relevance. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100230. [PMID: 38524786 PMCID: PMC10959674 DOI: 10.1016/j.jacig.2024.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/29/2023] [Accepted: 01/03/2024] [Indexed: 03/26/2024]
Abstract
Access to the molecular culprits of allergic reactions allows for the leveraging of molecular allergology as a new precision medicine approach-one built on interdisciplinary, basic, and clinical knowledge. Molecular allergology relies on the use of allergen molecules as in vitro tools for the diagnosis and management of allergic patients. It complements the conventional approach based on skin and in vitro allergen extract testing. Major applications of molecular allergology comprise accurate identification of the offending allergen thanks to discrimination between genuine sensitization and allergen cross-reactivity, evaluation of potential severity, patient-tailored choice of the adequate allergen immunotherapy, and prediction of its expected efficacy and safety. Allergen cross-reactivity, defined as the recognition of 2 or more allergen molecules by antibodies or T cells of the same specificity, frequently interferes with allergen extract testing. At the mechanistic level, allergen cross-reactivity depends on the allergen, the host's immune response, and the context of their interaction. The multiplicity of allergen molecules and families adds further difficulty. Understanding allergen cross-reactivity at the immunologic level and translating it into a daily tool for the management of allergic patients is further complicated by the ever-increasing number of characterized allergenic molecules, the lack of dedicated resources, and the need for a personalized, patient-centered approach. Conversely, knowledge sharing paves the way for improved clinical use, innovative diagnostic tools, and further interdisciplinary research. Here, we aimed to provide a comprehensive and unbiased state-of-the art systematic review on allergen cross-reactivity. To optimize learning, we enhanced the review with basic, translational, and clinical definitions, clinical vignettes, and an overview of online allergen databases.
Collapse
Affiliation(s)
| | - Joana Vitte
- Aix-Marseille University, MEPHI, IHU Méditerranée Infection, Marseille, France
- Desbrest Institute of Epidemiology and Public Health (IDESP), University of Montpellier, INSERM, Montpellier, France
- University of Reims Champagne-Ardenne, INSERM UMR-S 1250 P3CELL and University Hospital of Reims, Immunology Laboratory, Reims, France
| |
Collapse
|
3
|
Marini-Rapoport O, Fernández-Quintero ML, Keswani T, Zong G, Shim J, Pedersen LC, Mueller GA, Patil SU. Defining the cross-reactivity between peanut allergens Ara h 2 and Ara h 6 using monoclonal antibodies. Clin Exp Immunol 2024; 216:25-35. [PMID: 38346116 PMCID: PMC10929694 DOI: 10.1093/cei/uxae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/08/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
In peanut allergy, Arachis hypogaea 2 (Ara h 2) and Arachis hypogaea 6 (Ara h 6) are two clinically relevant peanut allergens with known structural and sequence homology and demonstrated cross-reactivity. We have previously utilized X-ray crystallography and epitope binning to define the epitopes on Ara h 2. We aimed to quantitatively characterize the cross-reactivity between Ara h 2 and Ara h 6 on a molecular level using human monoclonal antibodies (mAbs) and structural characterization of allergenic epitopes. We utilized mAbs cloned from Ara h 2 positive single B cells isolated from peanut-allergic, oral immunotherapy-treated patients to quantitatively analyze cross-reactivity between recombinant Ara h 2 (rAra h 2) and Ara h 6 (rAra h 6) proteins using biolayer interferometry and indirect inhibitory ELISA. Molecular dynamics simulations assessed time-dependent motions and interactions in the antibody-antigen complexes. Three epitopes-conformational epitopes 1.1 and 3, and the sequential epitope KRELRNL/KRELMNL-are conserved between Ara h 2 and Ara h 6, while two more conformational and three sequential epitopes are not. Overall, mAb affinity was significantly lower to rAra h 6 than it was to rAra h 2. This difference in affinity was primarily due to increased dissociation of the antibodies from rAra h 6, a phenomenon explained by the higher conformational flexibility of the Ara h 6-antibody complexes in comparison to Ara h 2-antibody complexes. Our results further elucidate the cross-reactivity of peanut 2S albumins on a molecular level and support the clinical immunodominance of Ara h 2.
Collapse
Affiliation(s)
- Orlee Marini-Rapoport
- Harvard University, Cambridge, MA, USA
- Food Allergy Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | | | - Tarun Keswani
- Food Allergy Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Guangning Zong
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jane Shim
- Food Allergy Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Lars C Pedersen
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Geoffrey A Mueller
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Sarita U Patil
- Food Allergy Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
4
|
Bartha I, Almulhem N, Santos AF. Feast for thought: A comprehensive review of food allergy 2021-2023. J Allergy Clin Immunol 2024; 153:576-594. [PMID: 38101757 PMCID: PMC11096837 DOI: 10.1016/j.jaci.2023.11.918] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
A review of the latest publications in food allergy over the past couple of years confirmed that food allergy is a major public health concern, affecting about 8% of children and 10% of adults in developed countries. The prevalence of food allergy varies around the world, with the increase being driven mainly by environmental factors, possibly together with genetic susceptibility to environmental changes. A precise diagnosis of food allergy is extremely important. Both new tests (eg, the basophil activation test) and improved optimization of information provided by existing tests (eg, the skin prick test and measurement of specific IgE level) can contribute to improving the accuracy and patients' comfort of food allergy diagnosis. Understanding the underlying immune mechanisms is fundamental to designing allergen-specific treatments that can be safe and effective in the long term. New discoveries of the immune response to food allergens, including T-cell and B-cell responses, have emerged. Novel therapeutic approaches are being trialed at various stages of development as attempts to allow for more active intervention to treat food allergy. Prevention is key to reducing the increase in prevalence. Early introduction of allergenic foods seems to be the most effective intervention, but others are being studied, and will, it is hoped, lead to modification of the epidemiologic trajectory of food allergy over time.
Collapse
Affiliation(s)
- Irene Bartha
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom; Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, School of Immunology and Microbial Sciences King's College London, London, United Kingdom
| | - Noorah Almulhem
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom; Department of Otolaryngology Head and Neck Surgery, King Fahad Hospital of the University, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Alexandra F Santos
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, United Kingdom; Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, School of Immunology and Microbial Sciences King's College London, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences King's College London, London, United Kingdom.
| |
Collapse
|
5
|
He XR, Yang Y, Chen YX, Kang S, Li FJ, Li DX, Liu QM, Chen GX, Chen XM, Liu GM. Immunoglobulin E Epitope Mapping and Structure-Allergenicity Relationship Analysis of Crab Allergen Scy p 9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37931089 DOI: 10.1021/acs.jafc.3c04970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Filamin C is an allergen of Scylla paramamosain (Scy p 9), and six IgE linear epitopes of the allergenic predominant region had previously been validated. However, the IgE epitope and structure-allergenicity relationship of Scy p 9 are unclear. In this study, a hydrophobic bond was found to be an important factor of conformation maintaining. The critical amino acids in the six predicted conformational epitopes were mutated, and the IgE-binding capacity and surface hydrophobicity of four mutants (E216A, T270A, Y699A, and V704A) were reduced compared to Scy p 9. Ten linear epitopes were verified with synthetic peptides, among which L-AA187-205 had the strongest IgE-binding capacity. In addition, IgE epitopes were mapped in the protruding surface of the tertiary structure, which were conducive to binding with IgE and exhibited high conservation among filamin genes. Overall, these data provided a basis for IgE epitope mapping and structure-allergenicity relationship of Scy p 9.
Collapse
Affiliation(s)
- Xin-Rong He
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Yang Yang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
- College of Environment and Public Health, Xiamen Huaxia University, 288 Tianma Road, Xiamen, Fujian 361024, China
| | - Ye-Xin Chen
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Shuai Kang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Fa-Jie Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Dong-Xiao Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Qing-Mei Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, China
| | - Xiao-Mei Chen
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| |
Collapse
|
6
|
Zhang Y, Che H, Li C, Jin T. Food Allergens of Plant Origin. Foods 2023; 12:foods12112232. [PMID: 37297475 DOI: 10.3390/foods12112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
This review presents an update on the physical, chemical, and biological properties of food allergens in plant sources, focusing on the few protein families that contribute to multiple food allergens from different species and protein families recently found to contain food allergens. The structures and structural components of the food allergens in the allergen families may provide further directions for discovering new food allergens. Answers as to what makes some food proteins allergens are still elusive. Factors to be considered in mitigating food allergens include the abundance of the protein in a food, the property of short stretches of the sequence of the protein that may constitute linear IgE binding epitopes, the structural properties of the protein, its stability to heat and digestion, the food matrix the protein is in, and the antimicrobial activity to the microbial flora of the human gastrointestinal tract. Additionally, recent data suggest that widely used techniques for mapping linear IgE binding epitopes need to be improved by incorporating positive controls, and methodologies for mapping conformational IgE binding epitopes need to be developed.
Collapse
Affiliation(s)
- Yuzhu Zhang
- US Department of Agriculture, Agricultural Research Service, Pacific West Area, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | - Huilian Che
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Caiming Li
- US Department of Agriculture, Agricultural Research Service, Pacific West Area, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|