1
|
Canepari C, Cantore A. Gene transfer and genome editing for familial hypercholesterolemia. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1140997. [PMID: 39086674 PMCID: PMC11285693 DOI: 10.3389/fmmed.2023.1140997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/10/2023] [Indexed: 08/02/2024]
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant inherited disease characterized by high circulating low-density lipoprotein (LDL) cholesterol. High circulating LDL cholesterol in FH is due to dysfunctional LDL receptors, and is mainly expressed by hepatocytes. Affected patients rapidly develop atherosclerosis, potentially leading to myocardial infarction and death within the third decade of life if left untreated. Here, we introduce the disease pathogenesis and available treatment options. We highlight different possible targets of therapeutic intervention. We then review different gene therapy strategies currently under development, which may become novel therapeutic options in the future, and discuss their advantages and disadvantages. Finally, we briefly outline the potential applications of some of these strategies for the more common acquired hypercholesterolemia disease.
Collapse
Affiliation(s)
- Cesare Canepari
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
Wei N, Hu Y, Li S, Liu G, Zhang N, Jia Q, Shi J, Yuan G, Zhai H. Efficacy and Safety of Lomitapide in Homozygous Familial Hypercholesterolaemia: A Systematic Review. Rev Cardiovasc Med 2022; 23:151. [PMID: 39077612 PMCID: PMC11273661 DOI: 10.31083/j.rcm2305151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 07/31/2024] Open
Abstract
Background Homozygous familial hypercholesterolaemia (HoFH) patients have little or no low-density lipoprotein receptor (LDLR) function. HMG-CoA (3-hydroxy-3-methyl glutaryl coenzyme A) reductase inhibitors (statins) and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have limited lipid-lowering effects, therefore, there is an urgent need to develop new HoFH treatments. In 2012, the US Food and Drug Administration (FDA) approved the administration of lomitapide for lowering low-density lipoprotein cholesterol (LDL-C) levels. However, lomitapide is associated with various gastrointestinal disorders, elevated hepatic alanine aminotransferase (ALT) levels and other adverse reactions, thus, its long-term efficacy and safety in pediatrics and adults should be evaluated. A systematic review conducted in 2017 reported the efficacy and safety of lomitapide in Family hypercholesterolaemia (FH) patients. In this systematic review, we elucidate on the efficacy and safety of lomitapide in HoFH patients. Methods A search was conducted in PubMed, Embase, Web of Science and Cochrane library databases to identify valid studies involving lomitapide-treated HoFH patients published before 11th August 2021. Results A total of 18 clinical studies involving 120 lomitapide-treated HoFH patients were identified. Lomitapide significantly suppressed LDL-C levels in HoFH patients. Clinical manifestations for lomitapide in children were comparable to those in adults. The most common adverse events were gastrointestinal disturbances and elevated ALT levels. However, most patients tolerated the treatment-associated adverse reactions. Low-fat diets and drug dose adjustments were appropriate measures for controlling the treatment-associated adverse reactions. Conclusions In pediatric and adult HoFH patients, lomitapide significantly suppresses LDL-C levels, therefore, it is an important option for HoFH treatment. The most common adverse events of lomitapide treatment include gastrointestinal disorders and elevated hepatic ALT levels. Despite the limitations, lomitapide is feasible for long-term treatment of HoFH patients, with dietary and safety monitoring. Registration Number in PROSPERO CRD42021284425.
Collapse
Affiliation(s)
- Namin Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488 Beijing, China
| | - Yuanhui Hu
- Department of Cardiovascular Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Siyu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488 Beijing, China
| | - Guoxiu Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488 Beijing, China
| | - Nang Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488 Beijing, China
| | - Qiulei Jia
- Department of Cardiovascular Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Jingjing Shi
- Department of Cardiovascular Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Guozhen Yuan
- Department of Cardiovascular Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, 100053 Beijing, China
| | - Huaqiang Zhai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488 Beijing, China
| |
Collapse
|
3
|
Stefanutti C. Lomitapide-a Microsomal Triglyceride Transfer Protein Inhibitor for Homozygous Familial Hypercholesterolemia. Curr Atheroscler Rep 2020; 22:38. [PMID: 32557261 PMCID: PMC7303073 DOI: 10.1007/s11883-020-00858-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Homozygous familial hypercholesterolemia (HoFH) is a rare, genetic condition characterized by high levels of Low density lipoprotein cholesterol (LDL-C); overt, early-onset atherosclerotic cardiovascular disease (ASCVD); and premature cardiovascular events and mortality. Lomitapide is a first-in-class microsomal triglyceride transfer protein inhibitor for the treatment of HoFH. This review provides an update on data emerging from real-world studies of lomitapide following on from its pivotal phase 3 clinical trial in HoFH. RECENT FINDINGS Recent registry data have confirmed that HoFH is characterized by delayed diagnosis, with many patients not receiving effective therapy until they are approaching the age when major adverse cardiovascular events may occur. Data from case series of varying sizes, and from a 163-patient registry of HoFH patients receiving lomitapide, have demonstrated that lomitapide doses are lower and adverse events less severe than in the phase 3 study. Lomitapide enables many patients to reach European Atherosclerosis Society LDL-C targets. Some patients are able to reduce frequency of lipoprotein apheresis or, in some cases, stop the procedure altogether-unless there is significant elevation of lipoprotein (a). Modelling analyses based on historical and clinical trial data indicate that lomitapide has the potential to improve cardiovascular outcomes and survival in HoFH. Real-world clinical experience with lomitapide has shown the drug to be effective with manageable, less marked adverse events than in formal clinical studies. Event modelling data suggest a survival benefit with lomitapide in HoFH.
Collapse
Affiliation(s)
- Claudia Stefanutti
- Extracorporeal Therapeutic Techniques Unit, Lipid Clinic and Atherosclerosis Prevention Centre, Regional Centre (Lazio) for Rare Diseases, Immunohematology and Transfusion Medicine, Department of Molecular Medicine, "Sapienza" University of Rome, "Umberto I" Hospital, Rome, Italy.
| |
Collapse
|
4
|
Kolovou G, Diakoumakou O, Kolovou V, Fountas E, Stratakis S, Zacharis E, Liberopoulos EN, Matsouka F, Tsoutsinos A, Mastorakou I, Katsikas T, Mavrogeni S, Hatzigeorgiou G. Microsomal triglyceride transfer protein inhibitor (lomitapide) efficacy in the treatment of patients with homozygous familial hypercholesterolaemia. Eur J Prev Cardiol 2019; 27:157-165. [DOI: 10.1177/2047487319870007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AimsThe aim of this study was to evaluate the effect of microsomal triglyceride transfer protein inhibitor (lomitapide) in patients with homozygous familial hypercholesterolaemia.Methods and resultsIn 12 homozygous familial hypercholesterolaemia patients treated with lipid-lowering drugs ± biweekly lipoprotein apheresis sessions (nine patients), daily lomitapide was added. The lipid profile (total cholesterol, low-density lipoprotein cholesterol, triglycerides, high-density lipoprotein cholesterol) before and after lomitapide treatment was evaluated. The follow-up period with lomitapide treatment was 3–24 months (13.8 ± 7.9). The median baseline low-density lipoprotein cholesterol level was 900 mg/dl (348–1070), after lipid-lowering drugs therapy was 383.5 mg/dl (214–866) and after lipid-lowering drugs + time-averaged level was 288 mg/dl (183.7–716.6). The addition of lomitapide lowered low-density lipoprotein cholesterol levels further by 56.8% compared to lipid-lowering drugs alone (mean reduction 262, 95% confidence interval (105.5–418.7), p = 0.005) and by 54% (mean reduction 182.9, 95% confidence interval (−342 – −23), p = 0.031) comparing to lipid-lowering drugs + lipoprotein apheresis (time-averaged level). The time-averaged level of low-density lipoprotein cholesterol in lipid-lowering drugs + lipoprotein apheresis patients compared with lipid-lowering drugs + lomitapide was 54% in favour of lomitapide ( p = 0.031).ConclusionsTreatment with lomitapide in homozygous familial hypercholesterolaemia patients has a beneficial effect with a constant decrease of low-density lipoprotein cholesterol by 57% compared with classical lipid-lowering therapy and by 54% compared with classical lipid-lowering therapy and time-averaged level of low-density lipoprotein cholesterol.
Collapse
Affiliation(s)
- Genovefa Kolovou
- Department of Cardiology, Onassis Cardiac Surgery Center, Greece
| | - Olga Diakoumakou
- Department of Cardiology, Onassis Cardiac Surgery Center, Greece
| | - Vana Kolovou
- Department of Cardiology, Onassis Cardiac Surgery Center, Greece
- Molecular Immunology Laboratory, Onassis Cardiac Surgery Center, Greece
| | | | | | | | | | - Fedra Matsouka
- Department of Anesthesiology, Onassis Cardiac Surgery Center, Greece
| | | | - Irene Mastorakou
- Department of Rentgenology, Onassis Cardiac Surgery Center, Greece
| | | | - Sophie Mavrogeni
- Department of Cardiology, Onassis Cardiac Surgery Center, Greece
| | | |
Collapse
|
5
|
Alonso R, Cuevas A, Mata P. Lomitapide: a review of its clinical use, efficacy, and tolerability. CORE EVIDENCE 2019; 14:19-30. [PMID: 31308834 PMCID: PMC6615460 DOI: 10.2147/ce.s174169] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
Lomitapide is an inhibitor of MTP, an enzyme located in the endoplasmic reticulum of hepatocytes and enterocytes. This enzyme is responsible for the synthesis of very low-density lipoproteins in the liver and chylomicrons in the intestine. Lomitapide has been approved by the US Food and Drug Administration, European Medicines Agency, and other regulatory agencies for the treatment of hypercholesterolemia in adult patients with homozygous familial hypercholesterolemia. Clinical trials have shown that lomitapide reduces low-density-lipoprotein cholesterol levels by around 40% in homozygous familial hypercholesterolemia patients on treatment with statins with or without low-density-lipoprotein apheresis, with an acceptable safety and tolerance profile. The most common adverse events are gastrointestinal symptoms that decrease in frequency with long-term treatment, and the increase in liver fat remains stable. This review analyzes the clinical use, efficacy, and tolerability of lomitapide.
Collapse
Affiliation(s)
- Rodrigo Alonso
- Department of Nutrition, Clínica Las Condes, Santiago, Chile.,Familial Hypercholesterolemia Foundation, Madrid, Spain
| | - Ada Cuevas
- Department of Nutrition, Clínica Las Condes, Santiago, Chile
| | - Pedro Mata
- Familial Hypercholesterolemia Foundation, Madrid, Spain
| |
Collapse
|
6
|
Review of the long-term safety of lomitapide: a microsomal triglycerides transfer protein inhibitor for treating homozygous familial hypercholesterolemia. Expert Opin Drug Saf 2019; 18:403-414. [DOI: 10.1080/14740338.2019.1602606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Rodriguez-Calvo R, Masana L. Review of the scientific evolution of gene therapy for the treatment of homozygous familial hypercholesterolaemia: past, present and future perspectives. J Med Genet 2019; 56:711-717. [DOI: 10.1136/jmedgenet-2018-105713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 11/03/2022]
Abstract
Familial hypercholesterolaemia (FH) is a devastating genetic disease that leads to extremely high cholesterol levels and severe cardiovascular disease, mainly caused by mutations in any of the main genes involved in low-density lipoprotein cholesterol (LDL-C) uptake. Among these genes, mutations in the LDL receptor (LDLR) are responsible for 80%–90% of the FH cases. The severe homozygous variety (HoFH) is not successfully treated with standard cholesterol-lowering therapies, and more aggressive strategies must be considered to mitigate the effects of this disease, such as weekly/biweekly LDL apheresis. However, development of new therapeutic approaches is needed to cure HoFH. Because HoFH is mainly due to mutations in theLDLR, this disease has been proposed as an ideal candidate for gene therapy. Several preclinical studies have proposed that the transference of functional copies of theLDLRgene reduces circulating LDL-C levels in several models of HoFH, which has led to the first clinical trials in humans. Additionally, the recent development of clustered regularly interspaced short palindromic repeat/CRISPR-associated 9 technology for genome editing has opened the door to therapies aimed at directly correcting the specific mutation in the endogenousLDLRgene. In this article, we review the genetic basis of the FH disease, paying special attention to the severe HoFH as well as the challenges in its diagnosis and clinical management. Additionally, we discuss the current therapies for this disease and the new emerging advances in gene therapy to target a definitive cure for this disease.
Collapse
|
8
|
Di Filippo M, Varret M, Boehm V, Rabès JP, Ferkdadji L, Abramowitz L, Dumont S, Lenaerts C, Boileau C, Joly F, Schmitz J, Samson-Bouma ME, Bonnefont-Rousselot D. Postprandial lipid absorption in seven heterozygous carriers of deleterious variants of MTTP in two abetalipoproteinemic families. J Clin Lipidol 2018; 13:201-212. [PMID: 30522860 DOI: 10.1016/j.jacl.2018.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/25/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Abetalipoproteinemia, a recessive disease resulting from deleterious variants in MTTP (microsomal triglyceride transfer protein), is characterized by undetectable concentrations of apolipoprotein B, extremely low levels of low-density lipoprotein cholesterol in the plasma, and a total inability to export apolipoprotein B-containing lipoproteins from both the intestine and the liver. OBJECTIVE To study lipid absorption after a fat load and liver function in 7 heterozygous relatives from 2 abetalipoproteinemic families, 1 previously unreported. RESULTS Both patients are compound heterozygotes for p.(Arg540His) and either c.708_709del p.(His236Glnfs*11) or c.1344+3_1344+6del on the MTTP gene. The previously undescribed patient has been followed for 22 years with ultrastructure analyses of both the intestine and the liver. In these 2 families, 5 relatives were heterozygous for p.(Arg540His), 1 for p.(His236Glnfs*11) and 1 for c.1344+3_1344+6del. In 4 heterozygous relatives, the lipid absorption was normal independent of the MTTP variant. In contrast, in 3 of them, the increase in triglyceride levels after fat load was abnormal. These subjects were additionally heterozygous carriers of Asp2213 APOB in-frame deletion, near the cytidine mRNA editing site, which is essential for intestinal apoB48 production. Liver function appeared to be normal in all the heterozygotes except for one who exhibited liver steatosis for unexplained reasons. CONCLUSION Our study suggests that a single copy of the MTTP gene may be sufficient for human normal lipid absorption, except when associated with an additional APOB gene alteration. The hepatic steatosis reported in 1 patient emphasizes the need for liver function tests in all heterozygotes until the level of risk is established.
Collapse
Affiliation(s)
- Mathilde Di Filippo
- UF Dyslipidemies, Service de Biochimie et Biologie moléculaire Grand Est, GHE, Hospices Civils de Lyon, Bron Cedex, France; Univ-Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Villeurbanne, France.
| | - Mathilde Varret
- INSERM U1148, Université Paris Diderot, Hôpital Bichat-Claude Bernard, Paris Cedex 18, France
| | - Vanessa Boehm
- Service de gastroentérologie, MICI et Assistance Nutritive, Hopital Beaujon, Hopital Beaujon (AP-HP), Université Paris VII, Paris, France. INSERM UMR1149, Centre de Recherche sur l'Inflammation Paris Montmartre (CRI), Paris, France
| | - Jean-Pierre Rabès
- INSERM U1148, Université Paris Diderot, Hôpital Bichat-Claude Bernard, Paris Cedex 18, France; AP-HP, HUPIFO, Hôpital Ambroise Paré, Laboratoire de Biochimie et Génétique Moléculaire & UVSQ, UFR des Sciences de la Santé Simone Veil, Montigny-Le-Bretonneux, France
| | - Latifa Ferkdadji
- Service d'anatomie et de cytologie pathologiques, Hôpital Robert Debré, Université Paris 7, Paris, France
| | - Laurent Abramowitz
- Service d'Hépato-Gastroentérologie, Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris Cedex 18, France
| | - Sabrina Dumont
- UF Dyslipidemies, Service de Biochimie et Biologie moléculaire Grand Est, GHE, Hospices Civils de Lyon, Bron Cedex, France
| | | | - Catherine Boileau
- INSERM U1148, Université Paris Diderot, Hôpital Bichat-Claude Bernard, Paris Cedex 18, France
| | - Francisca Joly
- Service de gastroentérologie, MICI et Assistance Nutritive, Hopital Beaujon, Hopital Beaujon (AP-HP), Université Paris VII, Paris, France. INSERM UMR1149, Centre de Recherche sur l'Inflammation Paris Montmartre (CRI), Paris, France
| | - Jacques Schmitz
- Département de Gastroentérologie pédiatrique, Hopital Necker-Enfants Malades, Paris, France
| | | | - Dominique Bonnefont-Rousselot
- Service de Biochimie métabolique, Hôpitaux universitaires Pitié-Salpêtrière-Charles Foix (AP-HP), Paris, France; Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé, U 1022 INSERM, UMR 8258 CNRS, Paris, France
| |
Collapse
|
9
|
Liu X, Men P, Wang Y, Zhai S, Zhao Z, Liu G. Efficacy and Safety of Lomitapide in Hypercholesterolemia. Am J Cardiovasc Drugs 2017; 17:299-309. [PMID: 28255870 DOI: 10.1007/s40256-017-0214-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Despite extensive use of statins, patients with hypercholesterolemia, especially homozygous familial hypercholesterolemia (HoFH), do not achieve recommended targets of low-density lipoprotein cholesterol (LDL-C). There is an urgent need for novel options that could reduce proatherogenic lipoprotein cholesterol levels. Lomitapide, a microsomal triglyceride transport protein (MTP) inhibitor, was approved three years ago as an orphan drug for the treatment of patients with HoFH. OBJECTIVE Our aim was to systematically evaluate the efficacy and safety of lomitapide and to provide guidance for clinicians. METHODS We searched the PubMed, Embase, and Cochrane library databases and ClinicalTrials.gov to identify valid studies published before 31 October 2016 that included lomitapide-treated patients who did or did not undergo lipid-lowering therapy. We assessed the quality of different studies. Data were extracted and evaluated for quality by two reviewers. RESULTS Studies reporting lomitapide therapy included one randomized controlled trial, three single-arm studies, and five case reports. In patients with HoFH, lomitapide reduced levels of LDL-C, total cholesterol, apolipoprotein B, and triglycerides with or without other lipid-lowering therapy, including apheresis. In non-HoFH patients with moderate hypercholesterolemia and hypertriglyceridemia, lomitapide also showed favorable effects on changes in LDL-C and triglycerides. However, both HoFH and non-HoFH patients experienced a reduction in high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-1 (ApoA-1). The most common adverse event was gastrointestinal disorder, and others included liver transaminase elevation and hepatic fat accumulation. Long-term use of lomitapide was associated with an increased risk of progressing to steatohepatitis and fibrosis. CONCLUSIONS Lomitapide improved most lipid parameters but not HDL-C or ApoA-1 in patients with HoFH and in non-HoFH patients, and gastrointestinal disorders were the most common adverse event. The possible benefits of lomitapide should be further evaluated and viewed against its possible long-term side effects.
Collapse
|
10
|
Berberich AJ, Hegele RA. Lomitapide for the treatment of hypercholesterolemia. Expert Opin Pharmacother 2017; 18:1261-1268. [DOI: 10.1080/14656566.2017.1340941] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Amanda J. Berberich
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Robert A. Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| |
Collapse
|
11
|
Brahm AJ, Hegele RA. Lomitapide for the treatment of hypertriglyceridemia. Expert Opin Investig Drugs 2016; 25:1457-1463. [DOI: 10.1080/13543784.2016.1254187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Walsh MT, Hussain MM. Targeting microsomal triglyceride transfer protein and lipoprotein assembly to treat homozygous familial hypercholesterolemia. Crit Rev Clin Lab Sci 2016; 54:26-48. [PMID: 27690713 DOI: 10.1080/10408363.2016.1221883] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a polygenic disease arising from defects in the clearance of plasma low-density lipoprotein (LDL), which results in extremely elevated plasma LDL cholesterol (LDL-C) and increased risk of atherosclerosis, coronary heart disease, and premature death. Conventional lipid-lowering therapies, such as statins and ezetimibe, are ineffective at lowering plasma cholesterol to safe levels in these patients. Other therapeutic options, such as LDL apheresis and liver transplantation, are inconvenient, costly, and not readily available. Recently, lomitapide was approved by the Federal Drug Administration as an adjunct therapy for the treatment of HoFH. Lomitapide inhibits microsomal triglyceride transfer protein (MTP), reduces lipoprotein assembly and secretion, and lowers plasma cholesterol levels by over 50%. Here, we explain the steps involved in lipoprotein assembly, summarize the role of MTP in lipoprotein assembly, explore the clinical and molecular basis of HoFH, and review pre-clinical studies and clinical trials with lomitapide and other MTP inhibitors for the treatment of HoFH. In addition, ongoing research and new approaches underway for better treatment modalities are discussed.
Collapse
Affiliation(s)
- Meghan T Walsh
- a School of Graduate Studies, Molecular and Cell Biology Program, State University of New York Downstate Medical Center , Brooklyn , NY , USA.,b Department of Cell Biology , State University of New York Downstate Medical Center , Brooklyn , NY , USA
| | - M Mahmood Hussain
- b Department of Cell Biology , State University of New York Downstate Medical Center , Brooklyn , NY , USA.,c Department of Pediatrics , SUNY Downstate Medical Center , Brooklyn , NY , USA.,d VA New York Harbor Healthcare System , Brooklyn , NY , USA , and.,e Winthrop University Hospital , Mineola , NY , USA
| |
Collapse
|
13
|
Stefanutti C, Morozzi C, Di Giacomo S, Sovrano B, Mesce D, Grossi A. Management of homozygous familial hypercholesterolemia in real-world clinical practice: A report of 7 Italian patients treated in Rome with lomitapide and lipoprotein apheresis. J Clin Lipidol 2016; 10:782-789. [DOI: 10.1016/j.jacl.2016.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/02/2016] [Accepted: 02/18/2016] [Indexed: 12/13/2022]
|
14
|
Rabacchi C, Bigazzi F, Puntoni M, Sbrana F, Sampietro T, Tarugi P, Bertolini S, Calandra S. Phenotypic variability in 4 homozygous familial hypercholesterolemia siblings compound heterozygous for LDLR mutations. J Clin Lipidol 2016; 10:944-952.e1. [DOI: 10.1016/j.jacl.2016.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 12/31/2022]
|
15
|
Kolovou GD, Kolovou V, Papadopoulou A, Watts GF. MTP Gene Variants and Response to Lomitapide in Patients with Homozygous Familial Hypercholesterolemia. J Atheroscler Thromb 2016; 23:878-83. [PMID: 27170061 DOI: 10.5551/jat.34777] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a rare genetic disorder, which leads to premature cardiovascular diseases. Microsomal triglyceride transport protein (MTP) inhibitors, such as lomitapide, offer a new therapeutic approach for treating these patients. We evaluated the lipid lowering (LL) efficacy of lomitapide according to several gene variants in MTP. Four clinically and/or molecularly defined HoFH patients were treated with lomitapide in addition to conventional high intensity LL therapy and regular lipoprotein apheresis. Two patients responded to the therapy, with a significant reduction of LDL cholesterol (LDL-C>50%, hyper-responders). Sequencing of all exonic and intronic flanking regions of the MTP gene in all patients revealed 36 different variants. The hyper-responders to lomitapide shared six common variants: rs17533489, rs79194015, rs745075, rs41275715, rs1491246, and rs17533517, which were not seen in hypo-responders (reduction in LDL-C<50%). We suggest that in HoFH variants in the MTP gene may impact on the therapeutic response to lomitapide, but this requires further investigation.
Collapse
|
16
|
Della Badia LA, Elshourbagy NA, Mousa SA. Targeting PCSK9 as a promising new mechanism for lowering low-density lipoprotein cholesterol. Pharmacol Ther 2016; 164:183-94. [PMID: 27133571 DOI: 10.1016/j.pharmthera.2016.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Statins and other lipid-lowering drugs have dominated the market for many years for achievement of recommended levels of low-density lipoprotein cholesterol (LDL-C). However, a substantial number of high-risk patients are unable to achieve the LDL-C goal. Proprotein convertase subtilisin/kexin 9 (PCSK9) has recently emerged as a new, promising key therapeutic target for hypercholesterolemia. PCSK9 is a protease involved in chaperoning the low-density lipoprotein receptor to the process of degradation. PCSK9 inhibitors and statins effectively lower LDL-C. The PCSK9 inhibitors decrease the degradation of the LDL receptors, whereas statins mainly interfere with the synthetic machinery of cholesterol by inhibiting the key rate limiting enzyme, the HMG CoA reductase. PCSK9 inhibitors are currently being developed as monoclonal antibodies for their primary use in lowering LDL-C. They may be especially useful for patients with homozygous familial hypercholesterolemia, who at present receive minimal benefit from traditional statin therapy. The monoclonal antibody PCSK9 inhibitors, recently granted FDA approval, show the most promising safety and efficacy profile compared to other, newer LDL-C lowering therapies. This review will primarily focus on the safety and efficacy of monoclonal antibody PCSK9 inhibitors in comparison to statins. The review will also address new, alternative PCSK9 targeting drug classes such as small molecules, gene silencing agents, apolipoprotein B antisense oligonucleotides, and microsomal triglyceride transfer protein inhibitors.
Collapse
Affiliation(s)
- Laura A Della Badia
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | | | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.
| |
Collapse
|
17
|
VRABLÍK M, ČEŠKA R. Treatment of Hypertriglyceridemia: a Review of Current Options. Physiol Res 2015; 64:S331-40. [DOI: 10.33549/physiolres.933199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypertriglyceridemia is an important marker of increased levels of highly atherogenic remnant-like particles. The importance of lowering plasma levels of triglycerides (TG) has been called into question many times, but currently it is considered an integral part of residual cardiovascular risk reduction strategies. Lifestyle changes (improved diet and increased physical activity) are effective TG lowering measures. Pharmacological treatment usually starts with statins, although associated TG reductions are typically modest. Fibrates are currently the drugs of choice for hyperTG, frequently in combination with statins. Niacin and omega-3 fatty acids improve control of triglyceride levels when the above measures are inadequately effective. Some novel therapies including anti-sense oligonucleotides and inhibitors of microsomal triglyceride transfer protein have shown significant TG lowering efficacy. The current approach to the management of hypertriglyceridemia is based on lifestyle changes and, usually, drug combinations (statin and fibrate and/or omega-3 fatty acids or niacin).
Collapse
Affiliation(s)
- M. VRABLÍK
- Third Department of Internal Medicine, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | |
Collapse
|