1
|
Song Z, Ding Q, Yang Y. Orchestration of a blood-derived and ADARB1-centred network in Alzheimer's and Parkinson's disease. Cell Signal 2023; 110:110845. [PMID: 37544632 DOI: 10.1016/j.cellsig.2023.110845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
The peripheral immune system is thought to influence the pathogenesis of the central nervous system in Alzheimer's disease (AD) and Parkinson's disease (PD). This study aimed to investigate the characteristics of peripheral leukocytes in AD and PD by comprehensively analyzing the transcriptomic and metabolic features in the blood (NCONTROL = 15; NAD = 11; NPD = 13). The study found an ADARB1-centered module that was associated with diagnosis, phenethylamine, and glutamate. The module consisted of ADARB1, a vital RNA-editing enzyme, LINC02960, and 109 miRNAs. The study also predicted that the ADARB1 and involved regulators were targeted by miRNAs in the ADARB1 module. The integrated analysis of transcriptome and metabolic panel revealed a central role of ADARB1, miR-199b-5p, miR-26a, miR-450b-5p, miR-34c-5p, glutamate and phenethylamine in the regulatory relationships. The study highlights a set of synergetic non-coding RNA related to ADARB1 in the blood ecosystem of AD and PD with dynamic glutamate and phenethylamine, providing new insights into the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Zhijie Song
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Ding
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Yan Yang
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining 272000, China.
| |
Collapse
|
2
|
Plonski NM, Johnson E, Frederick M, Mercer H, Fraizer G, Meindl R, Casadesus G, Piontkivska H. Automated Isoform Diversity Detector (AIDD): a pipeline for investigating transcriptome diversity of RNA-seq data. BMC Bioinformatics 2020; 21:578. [PMID: 33375933 PMCID: PMC7772930 DOI: 10.1186/s12859-020-03888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022] Open
Abstract
Background As the number of RNA-seq datasets that become available to explore transcriptome diversity increases, so does the need for easy-to-use comprehensive computational workflows. Many available tools facilitate analyses of one of the two major mechanisms of transcriptome diversity, namely, differential expression of isoforms due to alternative splicing, while the second major mechanism—RNA editing due to post-transcriptional changes of individual nucleotides—remains under-appreciated. Both these mechanisms play an essential role in physiological and diseases processes, including cancer and neurological disorders. However, elucidation of RNA editing events at transcriptome-wide level requires increasingly complex computational tools, in turn resulting in a steep entrance barrier for labs who are interested in high-throughput variant calling applications on a large scale but lack the manpower and/or computational expertise. Results Here we present an easy-to-use, fully automated, computational pipeline (Automated Isoform Diversity Detector, AIDD) that contains open source tools for various tasks needed to map transcriptome diversity, including RNA editing events. To facilitate reproducibility and avoid system dependencies, the pipeline is contained within a pre-configured VirtualBox environment. The analytical tasks and format conversions are accomplished via a set of automated scripts that enable the user to go from a set of raw data, such as fastq files, to publication-ready results and figures in one step. A publicly available dataset of Zika virus-infected neural progenitor cells is used to illustrate AIDD’s capabilities. Conclusions AIDD pipeline offers a user-friendly interface for comprehensive and reproducible RNA-seq analyses. Among unique features of AIDD are its ability to infer RNA editing patterns, including ADAR editing, and inclusion of Guttman scale patterns for time series analysis of such editing landscapes. AIDD-based results show importance of diversity of ADAR isoforms, key RNA editing enzymes linked with the innate immune system and viral infections. These findings offer insights into the potential role of ADAR editing dysregulation in the disease mechanisms, including those of congenital Zika syndrome. Because of its automated all-inclusive features, AIDD pipeline enables even a novice user to easily explore common mechanisms of transcriptome diversity, including RNA editing landscapes.
Collapse
Affiliation(s)
- Noel-Marie Plonski
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA.,School of Biomedical Sciences, Kent State University, PO Box 5190, Kent, OH, 44242, USA
| | - Emily Johnson
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA
| | - Madeline Frederick
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA
| | - Heather Mercer
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA.,University of Mount Union, 1972 Clark Ave, Alliance, OH, 44601, USA
| | - Gail Fraizer
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA.,School of Biomedical Sciences, Kent State University, PO Box 5190, Kent, OH, 44242, USA
| | - Richard Meindl
- School of Biomedical Sciences, Kent State University, PO Box 5190, Kent, OH, 44242, USA.,Department of Anthropology, Kent State University, Kent, OH, 44242, USA
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA.,School of Biomedical Sciences, Kent State University, PO Box 5190, Kent, OH, 44242, USA.,Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.,Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, 256 Cunningham Hall, Kent, OH, 44242, USA. .,School of Biomedical Sciences, Kent State University, PO Box 5190, Kent, OH, 44242, USA. .,Brain Health Research Institute, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
3
|
Gasparini CF, Sutherland HG, Maher B, Rodriguez-Acevedo AJ, Khlifi E, Haupt LM, Griffiths LR. Case-control study of ADARB1 and ADARB2 gene variants in migraine. J Headache Pain 2015; 16:511. [PMID: 25916332 PMCID: PMC4397221 DOI: 10.1186/s10194-015-0511-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/06/2015] [Indexed: 01/03/2023] Open
Abstract
Background Migraine causes crippling attacks of severe head pain along with associated nausea, vomiting, photophobia and/or phonophobia. The aim of this study was to investigate single nucleotide polymorphisms (SNPs) in the adenosine deaminase, RNA-specific, B1 (ADARB1) and adenosine deaminase, RNA specific, B2 (ADARB2) genes in an Australian case–control Caucasian population for association with migraine. Both candidate genes are highly expressed in the central nervous system and fit criteria for migraine neuropathology. SNPs in the ADARB2 gene were previously found to be positively associated with migraine in a pedigree-based genome wide association study using the genetic isolate of Norfolk Island, Australia. The ADARB1 gene was also chosen for investigation due to its important function in editing neurotransmitter receptor transcripts. Methods Four SNPs in ADARB1 and nine in ADARB2 were selected by inspecting blocks of linkage disequilibrium in Haploview for genotyping using either TaqMan or Sequenom assays. These SNPs were genotyped in two-hundred and ninety one patients who satisfied the International Classification of Headache Disorders-II 2004 diagnostic criteria for migraine, and three-hundred and fourteen controls, and PLINK was used for association testing. Results Chi-square analysis found no significant association between any of the SNPs tested in the ADARB1 and ADARB2 genes in this study and the occurrence of migraine. Conclusions In contrast to findings that SNPs in the ADARB2 gene were positively associated with migraine in the Norfolk Island population, we find no evidence to support the involvement of RNA editing genes in migraine susceptibility in an Australian Caucasian population.
Collapse
Affiliation(s)
- Claudia F Gasparini
- Menzies Health Institute Queensland, Griffith University Gold Coast, Parklands Drive, Southport, QLD, 4222, Australia,
| | | | | | | | | | | | | |
Collapse
|
4
|
Drago A, Serretti A. Focus on HTR2C: A possible suggestion for genetic studies of complex disorders. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:601-37. [PMID: 18802918 DOI: 10.1002/ajmg.b.30864] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HTR2C is one of the most relevant and investigated serotonin receptors. Its role in important brain structures such as the midbrain, the lateral septal complex, the hypothalamus, the olfactory bulb, the pons, the choroid plexus, the nucleus pallidus, the striatum and the amygdala, the nucleus accumbens and the anterior cingulated gyrus candidate it as a promising target for genetic association studies. The biological relevance of these brain structures is reviewed by way of the focus on HTR2C activity, with a special attention paid to psychiatric disorders. Evidence from the genetic association studies that dealt with HTR2C is reviewed and discussed alongside the findings derived from the neuronatmic investigations. The reasons for the discrepancies between these two sets of reports are discussed. As a result, HTR2C is shown to play a pivotal role in many different psychiatric behaviors or psychiatric related disrupted molecular balances, nevertheless, genetic association studies brought inconsistent results so far. The most replicated association involve the feeding behavior and antipsychotic induced side effects, both weight gain and motor related: Cys23Ser (rs6318) and -759C/T (rs3813929) report the most consistent results. The lack of association found in other independent studies dampens the clinical impact of these reports. Here, we report a possible explanation for discrepant findings that is poorly or not at all usually considered, that is that HTR2C may exert different or even opposite activities in the brain depending on the structure analyzed and that mRNA editing activity may compensate possible genetically controlled functional effects. The incomplete coverage of the HTR2C variants is proposed as the best cost-benefit ratio bias to fix. The evidence of brain area specific HTR2C mRNA editing opens a debate about how the brain can differently modulate stress events, and process antidepressant treatments, in different brain areas. The mRNA editing activity on HTR2C may play a major role for the negative association results.
Collapse
Affiliation(s)
- Antonio Drago
- Institute of Psychiatry, University of Bologna, Italy
| | | |
Collapse
|