1
|
Saberi A, Ebneabbasi A, Rahimi S, Sarebannejad S, Sen ZD, Graf H, Walter M, Sorg C, Camilleri JA, Laird AR, Fox PT, Valk SL, Eickhoff SB, Tahmasian M. Convergent functional effects of antidepressants in major depressive disorder: a neuroimaging meta-analysis. Mol Psychiatry 2025; 30:736-751. [PMID: 39406999 PMCID: PMC11746144 DOI: 10.1038/s41380-024-02780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Neuroimaging studies have provided valuable insights into the macroscale impacts of antidepressants on brain functions in patients with major depressive disorder. However, the findings of individual studies are inconsistent. Here, we aimed to provide a quantitative synthesis of the literature to identify convergence of the reported findings at both regional and network levels and to examine their associations with neurotransmitter systems. METHODS Through a comprehensive search in PubMed and Scopus databases, we reviewed 5258 abstracts and identified 36 eligible functional neuroimaging studies on antidepressant effects in major depressive disorder. Activation likelihood estimation was used to investigate regional convergence of the reported foci of antidepressant effects, followed by functional decoding and connectivity mapping of the convergent clusters. Additionally, utilizing group-averaged data from the Human Connectome Project, we assessed convergent resting-state functional connectivity patterns of the reported foci. Next, we compared the convergent circuit with the circuits targeted by transcranial magnetic stimulation therapy. Last, we studied the association of regional and network-level convergence maps with selected neurotransmitter receptors/transporters maps. RESULTS No regional convergence was found across foci of treatment-associated alterations in functional imaging. Subgroup analysis in the Treated > Untreated contrast revealed a convergent cluster in the left dorsolateral prefrontal cortex, which was associated with working memory and attention behavioral domains. Moreover, we found network-level convergence of the treatment-associated alterations in a circuit more prominent in the frontoparietal areas. This circuit was co-aligned with circuits targeted by "anti-subgenual" and "Beam F3" transcranial magnetic stimulation therapy. We observed no significant correlations between our meta-analytic findings with the maps of neurotransmitter receptors/transporters. CONCLUSION Our findings highlight the importance of the frontoparietal network and the left dorsolateral prefrontal cortex in the therapeutic effects of antidepressants, which may relate to their role in improving executive functions and emotional processing.
Collapse
Affiliation(s)
- Amin Saberi
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Amir Ebneabbasi
- Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, UK
- Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Sama Rahimi
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Neuroscience Center, Goethe University, Frankfurt, Hessen, Germany
| | - Sara Sarebannejad
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Zumrut Duygu Sen
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
- German Center for Mental Health, partner site Halle-Jena-Magdeburg, Jena, Germany
| | - Heiko Graf
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
- German Center for Mental Health, partner site Halle-Jena-Magdeburg, Jena, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Christian Sorg
- TUM-Neuroimaging Center, School of Medicine and Healthy, Technical University Munich, Munich, Germany
- Department of Neuroradiology,School of Medicine and Healthy, Technical University Munich, Munich, Germany
- Department of Psychiatry, School of Medicine and Healthy, Technical University Munich, Munich, Germany
| | - Julia A Camilleri
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sofie L Valk
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Simon B Eickhoff
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Masoud Tahmasian
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Department of Nuclear Medicine, University Hospital and Medical Faculty, University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Saberi A, Ebneabbasi A, Rahimi S, Sarebannejad S, Sen ZD, Graf H, Walter M, Sorg C, Camilleri JA, Laird AR, Fox PT, Valk SL, Eickhoff SB, Tahmasian M. Convergent functional effects of antidepressants in major depressive disorder: a neuroimaging meta-analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.24.23298991. [PMID: 38076878 PMCID: PMC10705609 DOI: 10.1101/2023.11.24.23298991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Background Neuroimaging studies have provided valuable insights into the macroscale impacts of antidepressants on brain functions in patients with major depressive disorder. However, the findings of individual studies are inconsistent. Here, we aimed to provide a quantitative synthesis of the literature to identify convergence of the reported findings at both regional and network levels and to examine their associations with neurotransmitter systems. Methods Through a comprehensive search in PubMed and Scopus databases, we reviewed 5,258 abstracts and identified 36 eligible functional neuroimaging studies on antidepressant effects in major depressive disorder. Activation likelihood estimation was used to investigate regional convergence of the reported foci of consistent antidepressant effects, followed by functional decoding and connectivity mapping of the convergent clusters. Additionally, utilizing group-averaged data from the Human Connectome Project, we assessed convergent resting-state functional connectivity patterns of the reported foci. Next, we compared the convergent circuit with the circuits targeted by transcranial magnetic stimulation (TMS) therapy. Last, we studied the association of regional and network-level convergence maps with selected neurotransmitter receptors/transporters maps. Results No regional convergence was found across foci of treatment-associated alterations in functional imaging. Subgroup analysis across the Treated > Untreated contrast revealed a convergent cluster in the left dorsolateral prefrontal cortex, which was associated with working memory and attention behavioral domains. Moreover, we found network-level convergence of the treatment-associated alterations in a circuit more prominent in the frontoparietal areas. This circuit was co-aligned with circuits targeted by "anti-subgenual" and "Beam F3" TMS therapy. We observed no significant correlations between our meta-analytic findings with the maps of neurotransmitter receptors/transporters. Conclusion Our findings highlight the importance of the frontoparietal network and the left dorsolateral prefrontal cortex in the therapeutic effects of antidepressants, which may relate to their role in improving executive functions and emotional processing.
Collapse
|
3
|
Chen Y, Dhingra I, Le TM, Zhornitsky S, Zhang S, Li CSR. Win and Loss Responses in the Monetary Incentive Delay Task Mediate the Link between Depression and Problem Drinking. Brain Sci 2022; 12:brainsci12121689. [PMID: 36552149 PMCID: PMC9775947 DOI: 10.3390/brainsci12121689] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Depression and alcohol misuse, frequently comorbid, are associated with altered reward processing. However, no study has examined whether and how the neural markers of reward processing are shared between depression and alcohol misuse. We studied 43 otherwise-healthy drinking adults in a monetary incentive delay task (MIDT) during fMRI. All participants were evaluated with the Alcohol Use Disorders Identification Test (AUDIT) and Beck's Depression Inventory (BDI-II) to assess the severity of drinking and depression. We performed whole brain regressions against each AUDIT and BDI-II score to investigate the neural correlates and evaluated the findings at a corrected threshold. We performed mediation analyses to examine the inter-relationships between win/loss responses, alcohol misuse, and depression. AUDIT and BDI-II scores were positively correlated across subjects. Alcohol misuse and depression shared win-related activations in frontoparietal regions and parahippocampal gyri (PHG), and right superior temporal gyri (STG), as well as loss-related activations in the right PHG and STG, and midline cerebellum. These regional activities (β's) completely mediated the correlations between BDI-II and AUDIT scores. The findings suggest shared neural correlates interlinking depression and problem drinking both during win and loss processing and provide evidence for co-morbid etiological processes of depressive and alcohol use disorders.
Collapse
Affiliation(s)
- Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Isha Dhingra
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Thang M. Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06520, USA
- Correspondence: ; Tel.: +1-203-974-7354
| |
Collapse
|
4
|
Gray JP, Manuello J, Alexander-Bloch AF, Leonardo C, Franklin C, Choi KS, Cauda F, Costa T, Blangero J, Glahn DC, Mayberg HS, Fox PT. Co-alteration Network Architecture of Major Depressive Disorder: A Multi-modal Neuroimaging Assessment of Large-scale Disease Effects. Neuroinformatics 2022; 21:443-455. [PMID: 36469193 DOI: 10.1007/s12021-022-09614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2022] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) exhibits diverse symptomology and neuroimaging studies report widespread disruption of key brain areas. Numerous theories underpinning the network degeneration hypothesis (NDH) posit that neuropsychiatric diseases selectively target brain areas via meaningful network mechanisms rather than as indistinct disease effects. The present study tests the hypothesis that MDD is a network-based disorder, both structurally and functionally. Coordinate-based meta-analysis and Activation Likelihood Estimation (CBMA-ALE) were used to assess the convergence of findings from 92 previously published studies in depression. An extension of CBMA-ALE was then used to generate a node-and-edge network model representing the co-alteration of brain areas impacted by MDD. Standardized measures of graph theoretical network architecture were assessed. Co-alteration patterns among the meta-analytic MDD nodes were then tested in independent, clinical T1-weighted structural magnetic resonance imaging (MRI) and resting-state functional (rs-fMRI) data. Differences in co-alteration profiles between MDD patients and healthy controls, as well as between controls and clinical subgroups of MDD patients, were assessed. A 65-node 144-edge co-alteration network model was derived for MDD. Testing of co-alteration profiles in replication data using the MDD nodes provided distinction between MDD and healthy controls in structural data. However, co-alteration profiles were not distinguished between patients and controls in rs-fMRI data. Improved distinction between patients and healthy controls was observed in clinically homogenous MDD subgroups in T1 data. MDD abnormalities demonstrated both structural and functional network architecture, though only structural networks exhibited between-groups differences. Our findings suggest improved utility of structural co-alteration networks for ongoing biomarker development.
Collapse
|
5
|
Cattarinussi G, Delvecchio G, Moltrasio C, Ferro A, Sambataro F, Brambilla P. Effects of pharmacological treatments on neuroimaging findings in borderline personality disorder: A review of FDG-PET and fNIRS studies. J Affect Disord 2022; 308:314-321. [PMID: 35429522 DOI: 10.1016/j.jad.2022.04.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 03/23/2022] [Accepted: 04/10/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Borderline personality disorder (BPD) is a serious mental condition characterized by instability in identity, interpersonal relationships, emotion regulation and impulsivity. These symptoms seem to be associated to specific brain alterations, which have been largely investigated. In particular, positron emission tomography (PET) and functional near-infrared spectroscopy (fNIRS) have demonstrated abnormalities in brain metabolism and hemodynamics in BPD, specifically in the fronto-limbic system. However, the role of medications on brain metabolism and hemodynamics in BPD is still largely unknown. METHODS We conducted a search on PubMed, Scopus and Web of Science of PET and fNIRS studies exploring the effect of medications on brain metabolism and hemodynamics in BPD. A total of 10 studies met the inclusion criteria. RESULTS Overall, PET studies showed an effect of psychotropic agents on brain metabolism, especially in frontal and temporal areas. Also, higher metabolic rates in frontal areas were found to correlate with clinical improvements. In contrast, fNIRS investigations reported an inconclusive or absent effects on brain hemodynamics in BPD patients. LIMITATIONS The small sample size, the elevated percentage of women, the heterogeneity in pharmacological agents and the presence of comorbidities limit the conclusions of the present review. CONCLUSIONS Serotoninergic agents and second-generation antipsychotics produce changes in frontal and temporal metabolism in BPD, which appear to correlate with clinical improvements. Differently, brain hemodynamics do not seem to be significantly affected by the most commonly prescribed drugs in BPD, suggesting that the therapeutic actions of medications are not mediated by changes in neural hemodynamics.
Collapse
Affiliation(s)
- Giulia Cattarinussi
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Chiara Moltrasio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Adele Ferro
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Sambataro
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Magaraggia I, Kuiperes Z, Schreiber R. Improving cognitive functioning in major depressive disorder with psychedelics: A dimensional approach. Neurobiol Learn Mem 2021; 183:107467. [PMID: 34048913 DOI: 10.1016/j.nlm.2021.107467] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/06/2021] [Accepted: 05/23/2021] [Indexed: 12/28/2022]
Abstract
The high symptomatic and biological heterogeneity of major depressive disorder (MDD) makes it very difficult to find broadly efficacious treatments that work against all symptoms. Concentrating on single core symptoms that are biologically well understood might consist of a more viable approach. The Research Domain Criteria (RDoC) framework is a trans-diagnostic dimensional approach that focuses on symptoms and their underlying neurobiology. Evidence is accumulating that psychedelics may possess antidepressant activity, and this can potentially be explained through a multi-level (psychobiological, circuitry, (sub)cellular and molecular) analysis of the cognitive systems RDoC domain. Cognitive deficits, such as negative emotional processing and negativity bias, often lead to depressive rumination. Psychedelics can increase long-term cognitive flexibility, leading to normalization of negativity bias and reduction in rumination. We propose a theoretical model that explains how psychedelics can reduce the negativity bias in depressed patients. At the psychobiological level, we hypothesize that the negativity bias in MDD is due to impaired pattern separation and that psychedelics such as psilocybin help in depression because they enhance pattern separation and hence reduce negativity bias. Pattern separation is a mnemonic process that relies on adult hippocampal neurogenesis, where similar inputs are made more distinct, which is essential for optimal encoding of contextual information. Impairment in this process may underlie the negative cognitive bias in MDD by, for example, increased pattern separation of cues with a negative valence that can lead to excessive deliberation on aversive outcomes. On the (sub) cellular level, psychedelics stimulate hippocampal neurogenesis as well as synaptogenesis, spinogenesis and dendritogenesis in the prefrontal cortex. Together, these effects help restoring resilience to chronic stress and lead to modulation of the major connectivity hubs of the prefrontal cortex, hippocampus, and amygdala. Based on these observations, we propose a new translational framework to guide the development of a novel generation of therapeutics to treat the cognitive symptoms in MDD.
Collapse
Affiliation(s)
- Igor Magaraggia
- Faculty of Psychology and Neuroscience, Section Neuropsychology & Psychopharmacology, Maastricht University, Maastricht, the Netherlands
| | - Zilla Kuiperes
- Faculty of Health, Medicine and Life Sciences (FHML), the Netherlands
| | - Rudy Schreiber
- Faculty of Psychology and Neuroscience, Section Neuropsychology & Psychopharmacology, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
7
|
Bremner JD, Gurel NZ, Wittbrodt MT, Shandhi MH, Rapaport MH, Nye JA, Pearce BD, Vaccarino V, Shah AJ, Park J, Bikson M, Inan OT. Application of Noninvasive Vagal Nerve Stimulation to Stress-Related Psychiatric Disorders. J Pers Med 2020; 10:E119. [PMID: 32916852 PMCID: PMC7563188 DOI: 10.3390/jpm10030119] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vagal Nerve Stimulation (VNS) has been shown to be efficacious for the treatment of depression, but to date, VNS devices have required surgical implantation, which has limited widespread implementation. METHODS New noninvasive VNS (nVNS) devices have been developed which allow external stimulation of the vagus nerve, and their effects on physiology in patients with stress-related psychiatric disorders can be measured with brain imaging, blood biomarkers, and wearable sensing devices. Advantages in terms of cost and convenience may lead to more widespread implementation in psychiatry, as well as facilitate research of the physiology of the vagus nerve in humans. nVNS has effects on autonomic tone, cardiovascular function, inflammatory responses, and central brain areas involved in modulation of emotion, all of which make it particularly applicable to patients with stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD) and depression, since dysregulation of these circuits and systems underlies the symptomatology of these disorders. RESULTS This paper reviewed the physiology of the vagus nerve and its relevance to modulating the stress response in the context of application of nVNS to stress-related psychiatric disorders. CONCLUSIONS nVNS has a favorable effect on stress physiology that is measurable using brain imaging, blood biomarkers of inflammation, and wearable sensing devices, and shows promise in the prevention and treatment of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- James Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
- Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
| | - Matthew T. Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
| | - Mobashir H. Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
| | - Mark H. Rapaport
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
| | - Jonathon A. Nye
- Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Bradley D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
- Department of Medicine, Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amit J. Shah
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
- Department of Medicine, Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeanie Park
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
- Department of Medicine, Renal Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City University of New York, New York, NY 10010, USA;
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
8
|
Bremner JD, Fani N, Cheema FA, Ashraf A, Vaccarino V. Effects of a mental stress challenge on brain function in coronary artery disease patients with and without depression. Health Psychol 2019; 38:910-924. [PMID: 31380683 PMCID: PMC6746592 DOI: 10.1037/hea0000742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Coronary artery disease (CAD) patients with comorbid depression show an increase in mortality compared to cardiac patients without depression, but the mechanisms mediating this effect remain obscure. One possible explanation for this finding is that depressed patients with CAD exhibit an increased vulnerability to stress. The purpose of this study was to assess the effects of stress and depression on brain function and to explore its relationship with myocardial ischemia in CAD patients. METHODS Patients with CAD and depression (N = 13) and CAD without depression (N = 15) underwent imaging of the brain with positron emission tomography and [O-15] water and imaging of the heart with single photon emission computed tomography (SPECT) and [Tc-99m] sestamibi under mental stress task and control conditions. RESULTS CAD patients with depression compared to nondepressed showed decreased function with mental stress in the rostral anterior cingulate, the hippocampus, parts of the dorsolateral temporal and parietal cortex, the cerebellum, and the uncus, with increased blood flow in the parahippocampus, visual association cortex, and posterior cingulate. Depressed CAD patients who became ischemic during a mental stress task had relative decreases in the caudal and posterior cingulate, orbitofrontal cortex, and cerebellum, and increased activation in the parietal cortex and precuneus/visual association cortex compared to nonischemic depressed CAD patients. CONCLUSIONS These findings are consistent with dysfunction in a network of brain regions involved in the stress response in patients with comorbid CAD and depression that has direct and indirect links to the heart, suggesting a pathway by which stress and depression could lead to increased risk of heart disease related morbidity and mortality. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences
| | | | - Ali Ashraf
- Department of Psychiatry and Behavioral Sciences
| | | |
Collapse
|
9
|
Bremner JD, Campanella C, Khan Z, Fani N, Kasher N, Evans S, Reiff C, Mishra S, Ladd S, Nye JA, Raggi P, Vaccarino V. Brain mechanisms of stress and depression in coronary artery disease. J Psychiatr Res 2019; 109:76-88. [PMID: 30508746 PMCID: PMC6317866 DOI: 10.1016/j.jpsychires.2018.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/24/2018] [Accepted: 11/20/2018] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Major depression is associated with an increased risk for and mortality from coronary artery disease (CAD), however the mechanisms by which this occurs are not clear. Depression, which is linked to stress, is associated with changes in brain areas involved in memory and the stress response, and it is likely that these regions play an important role in this increased risk. This study assessed the effects of stress on brain and cardiac function in patients with CAD with and without depression. METHODS CAD patients with (N = 17) and without (N = 21) major depression based on the Structured Clinical Interview for DSM-IV (DSM-IV) and/or a Hamilton Depression Scale score of nine or greater underwent imaging of the brain with high resolution positron emission tomography (HR-PET) and [O-15] water and imaging of the heart with single photon emission tomography (SPECT) and [Tc-99 m] sestamibi during mental stress (mental arithmetic) and control conditions. RESULTS Patients with CAD and major depression showed increased parietal cortex activation and a relative failure of medial prefrontal/anterior cingulate activation during mental stress compared to CAD patients without depression. Depressed CAD patients with stress-induced myocardial ischemia, however, when compared to depressed CAD patients without showed increased activation in rostral portions of the anterior cingulate. CONCLUSIONS These findings are consistent with a role for brain areas implicated in stress and depression in the mechanism of increased risk for CAD morbidity and mortality in CAD patients with the diagnosis of major depression.
Collapse
Affiliation(s)
- J Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA; Department of Radiology, and Internal Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA.
| | | | - Zehra Khan
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Nicole Kasher
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Sarah Evans
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Collin Reiff
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Sanskriti Mishra
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Stacy Ladd
- Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Jonathon A Nye
- Department of Radiology, and Internal Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA, USA
| | - Paolo Raggi
- Mazankowski Alberta Heart Institute and the Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Viola Vaccarino
- Department of Internal Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA, USA; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
10
|
Acute and chronic escitalopram alter EEG gamma oscillations differently: relevance to therapeutic effects. Eur J Pharm Sci 2018; 121:347-355. [DOI: 10.1016/j.ejps.2018.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/24/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
|
11
|
Boccia M, Piccardi L, Guariglia P. How treatment affects the brain: meta-analysis evidence of neural substrates underpinning drug therapy and psychotherapy in major depression. Brain Imaging Behav 2017; 10:619-27. [PMID: 26164169 DOI: 10.1007/s11682-015-9429-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The idea that modifications of affect, behavior and cognition produced by psychotherapy are mediated by biological underpinnings predates the advent of the modern neurosciences. Recently, several studies demonstrated that psychotherapy outcomes are linked to modifications in specific brain regions. This opened the debate over the similarities and dissimilarities between psychotherapy and pharmacotherapy. In this study, we used activation likelihood estimation meta-analysis to investigate the effects of psychotherapy (PsyTh) and pharmacotherapy (DrugTh) on brain functioning in Major Depression (MD). Our results demonstrate that the two therapies modify different neural circuits. Specifically, PsyTh induces selective modifications in the left inferior and superior frontal gyri, middle temporal gyrus, lingual gyrus and middle cingulate cortex, as well as in the right middle frontal gyrus and precentral gyrus. Otherwise, DrugTh selectively affected brain activation in the right insula in MD patients. These results are in line with previous evidence of the synergy between psychotherapy and pharmacotherapy but they also demonstrate that the two therapies have different neural underpinnings.
Collapse
Affiliation(s)
- Maddalena Boccia
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy. .,Neuropsychology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Laura Piccardi
- Neuropsychology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Life, Health and Environmental Sciences, L'Aquila University, L'Aquila, Italy
| | - Paola Guariglia
- Department of Human Science and Society, University of Enna "Kore", Enna, Italy
| |
Collapse
|
12
|
Sankar A, Adams TM, Costafreda SG, Marangell LB, Fu CH. Effects of antidepressant therapy on neural components of verbal working memory in depression. J Psychopharmacol 2017; 31:1176-1183. [PMID: 28857654 DOI: 10.1177/0269881117724594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Impairments in verbal working memory are evident in major depression. Verbal working memory is comprised of the components of encoding, maintenance and retrieval. Whether the neural impairments are expressed in specific components, and how pharmacological therapy could modify the neural correlates are not well understood. We investigated the neural correlates of verbal working memory components in depression using the Sternberg task in a longitudinal magnetic resonance imaging study. Serial scans were acquired in 23 patients (mean age 39.8 years) during an acute depressive episode and following 12 weeks of pharmacological therapy with duloxetine and in 22 matched healthy controls (mean age 39.1 years) at the same time points. A significant group by time interaction was evident during the long maintenance phase, extending from the left middle frontal to the middle temporal and caudate regions, in which there was reduced activation in healthy participants at the follow -up scan but there were no changes in patients. Persistent neural engagement during the maintenance phase following treatment was revealed in major depression. The findings emphasize that impairments in verbal working memory may be initiated in the maintenance phase in major depression in order to sustain performance. Further research with larger sample size and using randomized, placebo-controlled double-blind studies are required to confirm our results.
Collapse
Affiliation(s)
- Anjali Sankar
- 1 Department of Psychiatry, Stony Brook University, Stony Brook, USA
| | - Tracey M Adams
- 2 Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | | | | | - Cynthia Hy Fu
- 5 School of Psychology, University of East London, London, UK.,6 Centre for Affective Disorders, King's College London, London, UK
| |
Collapse
|
13
|
Steen NE, Aas M, Simonsen C, Dieset I, Tesli M, Nerhus M, Gardsjord E, Mørch R, Agartz I, Melle I, Vaskinn A, Spigset O, Andreassen OA. Serum level of venlafaxine is associated with better memory in psychotic disorders. Schizophr Res 2015; 169:386-392. [PMID: 26516101 DOI: 10.1016/j.schres.2015.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/08/2015] [Accepted: 10/15/2015] [Indexed: 12/18/2022]
Abstract
Cognitive impairment is a core feature of psychosis spectrum disorders. Antipsychotics have at best small positive effects on cognitive performance. There is a lack of knowledge regarding the effects of antidepressants on cognitive functioning in these disorders. In the present study cognitive performance was investigated in relation to serum levels of antidepressants in persons with bipolar disorder and schizophrenia. Serum concentrations of escitalopram, citalopram and venlafaxine plus O-desmethylvenlafaxine were measured in a total of 187 participants with bipolar disorder (N=74) or schizophrenia spectrum disorders (N=113), and analyzed in relation to neuropsychological tests performance of verbal learning, verbal memory, attention, working memory, executive functioning and processing speed. Analyses were performed using linear regression adjusting for a range of confounders. There was a significant positive association between the serum level of venlafaxine plus O-desmethylvenlafaxine and verbal memory (immediate recall: Logical Memory Test immediate recall [p=0.015], and long term delayed recall: Logical Memory Test delayed recall [p=0.011]). No significant associations were seen between citalopram or escitalopram and verbal memory. There were no significant associations between the tested antidepressants and verbal learning, attention, working memory, executive functioning, or processing speed. Venlafaxine seem to be associated with better verbal memory in bipolar disorder and schizophrenia. This suggests a possible beneficial role of certain antidepressants on cognitive dysfunction, which may have clinical implications and provide insight into underlying pathophysiology. However, the current findings should be replicated in independent samples.
Collapse
Affiliation(s)
- Nils Eiel Steen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, PO Box 4956, Nydalen, 0424, Oslo, Norway; Drammen District Psychiatric Center, Clinic of Mental Health and Addiction, Vestre Viken Hospital Trust, 3004 Drammen, Norway.
| | - Monica Aas
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, PO Box 4956, Nydalen, 0424, Oslo, Norway
| | - Carmen Simonsen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, PO Box 4956, Nydalen, 0424, Oslo, Norway
| | - Ingrid Dieset
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, PO Box 4956, Nydalen, 0424, Oslo, Norway
| | - Martin Tesli
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, PO Box 4956, Nydalen, 0424, Oslo, Norway
| | - Mari Nerhus
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, PO Box 4956, Nydalen, 0424, Oslo, Norway
| | - Erlend Gardsjord
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, PO Box 4956, Nydalen, 0424, Oslo, Norway
| | - Ragni Mørch
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, PO Box 4956, Nydalen, 0424, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, PO Box 4956, Nydalen, 0424, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, PO Box 85, Vinderen, 0319 Oslo, Norway
| | - Ingrid Melle
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, PO Box 4956, Nydalen, 0424, Oslo, Norway
| | - Anja Vaskinn
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, PO Box 4956, Nydalen, 0424, Oslo, Norway; Department of Psychology, University of Oslo, PO Box 1094, Blindern, 0317 Oslo, Norway
| | - Olav Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, PO Box 3250, Sluppen, 7006 Trondheim, Norway; Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, PO Box 4956, Nydalen, 0424, Oslo, Norway
| |
Collapse
|
14
|
Palmer SM, Crewther SG, Carey LM. A meta-analysis of changes in brain activity in clinical depression. Front Hum Neurosci 2015; 8:1045. [PMID: 25642179 PMCID: PMC4294131 DOI: 10.3389/fnhum.2014.01045] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 12/15/2014] [Indexed: 12/29/2022] Open
Abstract
Insights into neurobiological mechanisms of depression are increasingly being sought via brain imaging studies. Our aim was to quantitatively summarize overlap and divergence in regions of altered brain activation associated with depression under emotionally valenced compared to cognitively demanding task conditions, and with reference to intrinsic functional connectivity. We hypothesized differences reflective of task demands. A co-ordinate-based meta-analysis technique, activation likelihood estimation, was used to analyze relevant imaging literature. These studies compared brain activity in depressed adults relative to healthy controls during three conditions: (i) emotionally valenced (cognitively easy) tasks (n = 29); (ii) cognitively demanding tasks (n = 15); and (iii) resting conditions (n = 21). The meta-analyses identified five, eight, and seven significant clusters of altered brain activity under emotion, cognition, and resting conditions, respectively, in depressed individuals compared to healthy controls. Regions of overlap and divergence between pairs of the three separate meta-analyses were quantified. There were no significant regions of overlap between emotion and cognition meta-analyses, but several divergent clusters were found. Cognitively demanding conditions were associated with greater activation of right medial frontal and insula regions while bilateral amygdala was more significantly altered during emotion (cognitively undemanding) conditions; consistent with task demands. Overlap was present in left amygdala and right subcallosal cingulate between emotion and resting meta-analyses, with no significant divergence. Our meta-analyses highlight alteration of common brain regions, during cognitively undemanding emotional tasks and resting conditions but divergence of regions between emotional and cognitively demanding tasks. Regions altered reflect current biological and system-level models of depression and highlight the relationship with task condition and difficulty.
Collapse
Affiliation(s)
- Susan M. Palmer
- Neurorehabilitation and Recovery, Stroke Division, The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
| | - Sheila G. Crewther
- Neurorehabilitation and Recovery, Stroke Division, The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- School of Psychological Science, La Trobe University, Bundoora, VIC, Australia
| | - Leeanne M. Carey
- Neurorehabilitation and Recovery, Stroke Division, The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, VIC, Australia
- Department of Occupational Therapy, School of Allied Health, La Trobe University, Bundoora, VIC, Australia
| | | |
Collapse
|
15
|
Botelho de Oliveira S, Flórez RNS, Caballero DAV. [Consistent Declarative Memory with Depressive Symptomatology]. ACTA ACUST UNITED AC 2014; 41:881-99. [PMID: 26572272 DOI: 10.1016/s0034-7450(14)60053-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/06/2012] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Some studies have suggested that potentiated remembrance of negative events on people with depressive disorders seems to be an important factor in the etiology, course and maintenance of depression. OBJECTIVE Evaluate the emotional memory in people with and without depressive symptomatology by means of an audio-visual test. METHODOLOGY 73 university students were evaluated, male and female, between 18 and 40 years old, distributed in two groups: with depressive symptomatology (32) and without depressive symptomatology (40), using the Scale from the Center of Epidemiologic Studies for Depression (CES-D, English Abbreviation) and a cutting point of 20. RESULTS There were not meaningful differences between free and voluntary recalls, with and without depressive symptomatology, in spite of the fact that both groups had granted a higher emotional value to the audio-visual test and that they had associated it with emotional sadness. CONCLUSION People with depressive symptomatology did not exhibit the effect of mnemonic potentiation generally associated to the content of the emotional version of the test; therefore, the hypothesis of emotional consistency was not validated.
Collapse
Affiliation(s)
- Silvia Botelho de Oliveira
- Psicóloga, Universidade Estadual Paulista São Paulo, Brasil. Magíster y PhD en Psicobiología de la Universidade de São Paulo, São Paulo, Brasil. Docente titular de la Facultad de Psicología de la Universidad Pontificia Bolivariana Seccional Bucaramanga, Bucaramanga, Colombia. Directora del Laboratorio de Neurociencias y Comportamiento, Universidad Pontificia Bolivariana Seccional Bucaramanga, Bucaramanga, Colombia.
| | - Ruth Natalia Suárez Flórez
- Psicólogos, Universidad Pontificia Bolivariana. Grupo Neurociencias y Comportamiento (NYC), Universidad Industrial de Santander y Universidad Pontificia Bolivariana, Bucaramanga, Colombia
| | - Diego Andrés Vásquez Caballero
- Psicólogos, Universidad Pontificia Bolivariana. Grupo Neurociencias y Comportamiento (NYC), Universidad Industrial de Santander y Universidad Pontificia Bolivariana, Bucaramanga, Colombia
| |
Collapse
|
16
|
Diener C, Kuehner C, Brusniak W, Ubl B, Wessa M, Flor H. A meta-analysis of neurofunctional imaging studies of emotion and cognition in major depression. Neuroimage 2012; 61:677-85. [PMID: 22521254 DOI: 10.1016/j.neuroimage.2012.04.005] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 03/13/2012] [Accepted: 04/03/2012] [Indexed: 11/25/2022] Open
|
17
|
van Tol MJ, Demenescu LR, van der Wee NJA, Kortekaas R, Marjan M A N, Boer JAD, Renken RJ, van Buchem MA, Zitman FG, Aleman A, Veltman DJ. Functional magnetic resonance imaging correlates of emotional word encoding and recognition in depression and anxiety disorders. Biol Psychiatry 2012; 71:593-602. [PMID: 22206877 DOI: 10.1016/j.biopsych.2011.11.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 01/04/2023]
Abstract
BACKGROUND Major depressive disorder (MDD), panic disorder, and social anxiety disorder are among the most prevalent and frequently co-occurring psychiatric disorders in adults and may be characterized by a common deficiency in processing of emotional information. METHODS We used functional magnetic resonance imaging during the performance of an emotional word encoding and recognition paradigm in patients with MDD (n = 51), comorbid MDD and anxiety (n = 59), panic disorder and/or social anxiety disorder without comorbid MDD (n = 56), and control subjects (n = 49). In addition, we studied effects of illness severity, regional brain volume, and antidepressant use. RESULTS Patients with MDD, prevalent anxiety disorders, or both showed a common hyporesponse in the right hippocampus during positive (>neutral) word encoding compared with control subjects. During negative encoding, increased insular activation was observed in both depressed groups (MDD and MDD + anxiety), whereas increased amygdala and anterior cingulate cortex activation during positive word encoding were observed as depressive state-dependent effects in MDD only. During recognition, anxiety patients showed increased inferior frontal gyrus activation. Overall, effects were unaffected by medication use and regional brain volume. CONCLUSIONS Hippocampal blunting during positive word encoding is a generic effect in depression and anxiety disorders, which may constitute a common vulnerability factor. Increased insular and amygdalar involvement during negative word encoding may underlie heightened experience of, and an inability to disengage from, negative emotions in depressive disorders. Our results emphasize a common neurobiological deficiency in both MDD and anxiety disorders, which may mark a general insensitiveness to positive information.
Collapse
Affiliation(s)
- Marie-José van Tol
- Neuroimaging Center, University Medical Center Groningen, University of Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Calabrese F, Molteni R, Riva MA. Antistress properties of antidepressant drugs and their clinical implications. Pharmacol Ther 2011; 132:39-56. [DOI: 10.1016/j.pharmthera.2011.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/09/2011] [Indexed: 02/07/2023]
|
19
|
Yilmaz N, Demirdas A, Yilmaz M, Sutcu R, Kirbas A, Cure MC, Eren I. Effects of venlafaxine and escitalopram treatments on NMDA receptors in the rat depression model. J Membr Biol 2011; 242:145-151. [PMID: 21755298 DOI: 10.1007/s00232-011-9385-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 06/27/2011] [Indexed: 02/07/2023]
Abstract
Depression may relate to neurocognitive impairment that results from alteration of N-methyl-D: -aspartate receptor (NMDAR) levels. Venlafaxine and escitalopram are two drugs commonly used to treat depression. The drugs may affect expression of NMDARs, which mediate learning and memory formation. The aim of the study was to examine whether the effects of venlafaxine and escitalopram treatments are associated with NMDARs in a rat model of depression. Forty male Wistar albino rats were randomly divided into four groups (n = 10) as follows: control group, chronic mild stress group (CMS), venlafaxine (20 mg/kg body weight per day) + CMS, and escitalopram (10 mg/kg body weight per day) + CMS. After induction of depression, a decrease in the concentration of NR2B was observed; venlafaxine treatment prevented the reduction of NR2B expression. Escitalopram treatment did not effect the reduced levels of NR2B resulting from depression. There was no significant difference in NR2A concentration among groups. The present data support the notion that venlafaxine plays a role in maintaining NR2B receptor in experimental depression. It may be possible that treatment with escitalopram has no effect on NMDARs in experimental depression.
Collapse
Affiliation(s)
- Nigar Yilmaz
- Department of Biochemistry, Mustafa Kemal University Medical School, 31040 Hatay, Turkey.
| | | | | | | | | | | | | |
Collapse
|
20
|
Effects of venlafaxine and escitalopram treatments on NMDA receptors in the rat depression model. J Membr Biol 2011. [PMID: 21755298 DOI: 10.1007/s00232-011-9385-3.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Depression may relate to neurocognitive impairment that results from alteration of N-methyl-D: -aspartate receptor (NMDAR) levels. Venlafaxine and escitalopram are two drugs commonly used to treat depression. The drugs may affect expression of NMDARs, which mediate learning and memory formation. The aim of the study was to examine whether the effects of venlafaxine and escitalopram treatments are associated with NMDARs in a rat model of depression. Forty male Wistar albino rats were randomly divided into four groups (n = 10) as follows: control group, chronic mild stress group (CMS), venlafaxine (20 mg/kg body weight per day) + CMS, and escitalopram (10 mg/kg body weight per day) + CMS. After induction of depression, a decrease in the concentration of NR2B was observed; venlafaxine treatment prevented the reduction of NR2B expression. Escitalopram treatment did not effect the reduced levels of NR2B resulting from depression. There was no significant difference in NR2A concentration among groups. The present data support the notion that venlafaxine plays a role in maintaining NR2B receptor in experimental depression. It may be possible that treatment with escitalopram has no effect on NMDARs in experimental depression.
Collapse
|
21
|
Arnold JF, Fitzgerald DA, Fernández G, Rijpkema M, Rinck M, Eling PATM, Becker ES, Speckens A, Tendolkar I. Rose or black-coloured glasses? Altered neural processing of positive events during memory formation is a trait marker of depression. J Affect Disord 2011; 131:214-23. [PMID: 21256599 DOI: 10.1016/j.jad.2010.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/14/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Valence-specific memory enhancement is one of the core cognitive functions that causes and maintains Major Depressive Disorder (MDD). While previous neuroimaging studies have elucidated the neural underpinnings of this emotional enhancement effect in depressed patients, this study aimed at detecting processing biases that are maintained throughout remission while patients were euthymic. METHODS Fourteen medication-free women remitted from unipolar MDD and 14 matched controls were scanned while learning negative, positive, and neutral words, which were subsequently tested with free recall. RESULTS The two groups did not differ in memory performance and showed no neural differences during successful encoding of neutral or negative words. However, during successful encoding of positive words, patients exhibited a larger recruitment of a set of areas, comprising cingulate gyrus, right inferior- and left medial-frontal gyrus as well as the right anterior hippocampus/amygdala. LIMITATIONS Restriction to female participants may limit the generalization of the findings. CONCLUSION Female MDD patients in clinical remission exert greater neural recruitment of memory-related brain regions when successfully encoding positive words, suggesting that neural biases related to memory formation of positive information do not entirely normalize. Further research is needed to establish whether this processing bias during successful memory formation of positive information is predictive for future relapse thereby offering the possibility to develop more focused therapeutic interventions to specifically target these processes.
Collapse
Affiliation(s)
- Jennifer F Arnold
- Radboud University Nijmegen Medical Centre, Department of Psychiatry, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Impact of glucocorticoids on brain function: relevance for mood disorders. Psychoneuroendocrinology 2011; 36:406-14. [PMID: 20382481 DOI: 10.1016/j.psyneuen.2010.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/10/2010] [Accepted: 03/10/2010] [Indexed: 01/13/2023]
Abstract
Exposure to stressful situations activates two hormonal systems that help the organism to adapt. On the one hand stress hormones achieve adaptation by affecting peripheral organs, on the other hand by altering brain function such that appropriate behavioral strategies are selected for optimal performance at the short term, while relevant information is stored for reference in the future. In this chapter we describe how cellular effects induced by stress hormones--in particular by glucocorticoids--may contribute to the behavioral outcome after a single stressor. In addition to situations of acute stress, chronic uncontrollable and unpredictable stress also exerts profound effects on structure and function of limbic neurons. The impact of chronic stress is not a mere cumulative effect of what is seen after acute stress exposure. Dendritic trees are expanded in some regions but reduced in others. In general, cells are exposed to a higher calcium load upon depolarization, but show attenuated responses to serotonin. Synaptic strengthening is largely impaired. In this viewpoint we speculate how cellular effects after chronic stress may be maladaptive and could contribute to the development of psychopathology in genetically vulnerable individuals.
Collapse
|
23
|
Delaveau P, Jabourian M, Lemogne C, Guionnet S, Bergouignan L, Fossati P. Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies. J Affect Disord 2011; 130:66-74. [PMID: 21030092 DOI: 10.1016/j.jad.2010.09.032] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND A consistent brain activity pattern has been identified in major depression across many resting positron emission tomography (PET) studies. This dysfunctional pattern seems to be normalized by antidepressant treatment. The aim of this meta-analysis was to identify more clearly the pattern associated with clinical improvement of depression following an antidepressant drug treatment, in emotional activation studies using functional magnetic resonance imaging (fMRI). METHODS A quantitative Activation Likelihood Estimation (ALE) meta-analysis was performed across 9 emotional activation fMRI and PET studies (126 patients) using the Activation Likelihood Estimation technique. RESULTS Following the antidepressant drug treatment, the activation of dorsolateral, dorsomedial and ventrolateral prefrontal cortices was increased whereas the activation of the amygdala, hippocampus, parahippocampal region, ventral anterior cingulate cortex, orbitofrontal cortex, and insula was decreased. Additionally, there was a decreased activation in the anterior (BA 32) and posterior cingulate cortices, as well as in the precuneus and inferior parietal lobule, which could reflect a restored deactivation of the default mode network. LIMITATIONS The small number of emotional activation studies, using heterogeneous tasks, included in the ALE analysis. CONCLUSIONS The activation of several brain regions involved in major depression, in response to emotional stimuli, was normalized after antidepressant treatment. To refine our knowledge of antidepressants' effect on the neural bases of emotional processing in major depression, neuroimaging studies should use consistent emotional tasks related to depressive symptoms and that involve the default mode network, such as self-referential processing tasks.
Collapse
Affiliation(s)
- Pauline Delaveau
- CNRS USR 3246, Emotion Center, Groupe Hospitalier Pitié-Salpétrière, Paris, France.
| | | | | | | | | | | |
Collapse
|
24
|
van Wingen GA, van Eijndhoven P, Cremers HR, Tendolkar I, Verkes RJ, Buitelaar JK, Fernández G. Neural state and trait bases of mood-incongruent memory formation and retrieval in first-episode major depression. J Psychiatr Res 2010; 44:527-34. [PMID: 20004914 DOI: 10.1016/j.jpsychires.2009.11.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/23/2009] [Accepted: 11/12/2009] [Indexed: 11/18/2022]
Abstract
Mood-congruent cognitive biases constitute critical factors for the vulnerability to depression and its maintenance. One important aspect is impaired memory for positive information during depression and after recovery. To elucidate its state (during depression only) and trait (during depression and recovery) related neural bases, we investigated medication free depressed, recovered, and healthy individuals with functional MRI while they memorized and recognized happy and neutral face stimuli. The imaging results revealed group differences in mood-incongruent successful memory encoding and retrieval activity already in the absence of significant memory performance differences. State effects were observed in the amygdala and posterior cingulate cortex. Whereas the amygdala was generally involved in memory formation, its activity predicted subsequent forgetting of neutral faces in depressed patients. Furthermore, the amygdala and posterior cingulate cortex were involved in memory retrieval of happy faces in depressed patients only. Trait effects were observed in the fusiform gyrus and prefrontal cortex. The fusiform gyrus was involved in memory formation and retrieval of happy faces in both patient groups, whereas it was involved in memory formation and retrieval of neutral faces in healthy individuals. Similar trait effects were observed during memory retrieval in the orbitofrontal cortex and left inferior frontal gyrus. Thus, while memory processing of positive information in the amygdala and posterior cingulate cortex is biased during depression only, memory processing in the fusiform gyrus and prefrontal cortex is biased also after recovery. These distinct neural mechanisms may respectively constitute symptom maintenance and cognitive vulnerability factors for depression.
Collapse
Affiliation(s)
- Guido A van Wingen
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
25
|
Remijnse PL, Nielen MMA, van Balkom AJLM, Hendriks GJ, Hoogendijk WJ, Uylings HBM, Veltman DJ. Differential frontal-striatal and paralimbic activity during reversal learning in major depressive disorder and obsessive-compulsive disorder. Psychol Med 2009; 39:1503-1518. [PMID: 19171077 DOI: 10.1017/s0033291708005072] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Several lines of research suggest a disturbance of reversal learning (reward and punishment processing, and affective switching) in patients with major depressive disorder (MDD). Obsessive-compulsive disorder (OCD) is also characterized by abnormal reversal learning, and is often co-morbid with MDD. However, neurobiological distinctions between the disorders are unclear. Functional neuroimaging (activation) studies comparing MDD and OCD directly are lacking. METHOD Twenty non-medicated OCD-free patients with MDD, 20 non-medicated MDD-free patients with OCD, and 27 healthy controls performed a self-paced reversal learning task in an event-related design during functional magnetic resonance imaging (fMRI). RESULTS Compared with healthy controls, both MDD and OCD patients displayed prolonged mean reaction times (RTs) but normal accuracy. In MDD subjects, mean RTs were correlated with disease severity. Imaging results showed MDD-specific hyperactivity in the anterior insula during punishment processing and in the putamen during reward processing. Moreover, blood oxygen level-dependent (BOLD) responses in the dorsolateral prefrontal cortex (DLPFC) and the anterior PFC during affective switching showed a linear decrease across controls, MDD and OCD. Finally, the OCD group showed blunted responsiveness of the orbitofrontal (OFC)-striatal loop during reward, and in the OFC and anterior insula during affective switching. CONCLUSIONS This study shows frontal-striatal and (para)limbic functional abnormalities during reversal learning in MDD, in the context of generic psychomotor slowing. These data converge with currently influential models on the neuropathophysiology of MDD. Moreover, this study reports differential neural patterns in frontal-striatal and paralimbic structures on this task between MDD and OCD, confirming previous findings regarding the neural correlates of deficient reversal learning in OCD.
Collapse
Affiliation(s)
- P L Remijnse
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
26
|
Spadone C. 6e Workshop international sur la neuroplasticité, 27–28 sept, 2008. Encephale 2008; 34:629-31. [DOI: 10.1016/j.encep.2008.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|