1
|
Ciubuc-Batcu MT, Stapelberg NJC, Headrick JP, Renshaw GMC. A mitochondrial nexus in major depressive disorder: Integration with the psycho-immune-neuroendocrine network. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166920. [PMID: 37913835 DOI: 10.1016/j.bbadis.2023.166920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Nervous system processes, including cognition and affective state, fundamentally rely on mitochondria. Impaired mitochondrial function is evident in major depressive disorder (MDD), reflecting cumulative detrimental influences of both extrinsic and intrinsic stressors, genetic predisposition, and mutation. Glucocorticoid 'stress' pathways converge on mitochondria; oxidative and nitrosative stresses in MDD are largely mitochondrial in origin; both initiate cascades promoting mitochondrial DNA (mtDNA) damage with disruptions to mitochondrial biogenesis and tryptophan catabolism. Mitochondrial dysfunction facilitates proinflammatory dysbiosis while directly triggering immuno-inflammatory activation via released mtDNA, mitochondrial lipids and mitochondria associated membranes (MAMs), further disrupting mitochondrial function and mitochondrial quality control, promoting the accumulation of abnormal mitochondria (confirmed in autopsy studies). Established and putative mechanisms highlight a mitochondrial nexus within the psycho-immune neuroendocrine (PINE) network implicated in MDD. Whether lowering neuronal resilience and thresholds for disease, or linking mechanistic nodes within the MDD pathogenic network, impaired mitochondrial function emerges as an important risk, a functional biomarker, providing a therapeutic target in MDD. Several treatment modalities have been demonstrated to reset mitochondrial function, which could benefit those with MDD.
Collapse
Affiliation(s)
- M T Ciubuc-Batcu
- Griffith University School of Medicine and Dentistry, Australia; Gold Coast Health, Queensland, Australia
| | - N J C Stapelberg
- Bond University Faculty of Health Sciences and Medicine, Australia; Gold Coast Health, Queensland, Australia
| | - J P Headrick
- Griffith University School of Pharmacy and Medical Science, Australia
| | - G M C Renshaw
- Hypoxia and Ischemia Research Unit, Griffith University, School of Health Sciences and Social Work, Australia.
| |
Collapse
|
2
|
Liu X, Yang L, Zhang G, Ling J. Neuroprotective Effects of Phenolic Antioxidant Tert-butylhydroquinone (tBHQ) in Brain Diseases. Mol Neurobiol 2023; 60:4909-4923. [PMID: 37191855 DOI: 10.1007/s12035-023-03370-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Human life and health are gravely threatened by brain diseases. The onset and progression of the illnesses are influenced by a variety of factors, including pathogenic causes, environmental factors, mental issues, etc. According to scientific studies, neuroinflammation and oxidative stress play a significant role in the development and incidence of brain diseases by producing pro-inflammatory cytokines and oxidative tissue damage to induce inflammation and apoptosis. Neuroinflammation, oxidative stress, and oxidative stress-related changes are inseparable factors in the etiology of several brain diseases. Numerous neurodegenerative diseases have undergone substantial research into the therapeutic alternatives that target oxidative stress, the function of oxidative stress, and the possible therapeutic use of antioxidants. Formerly, tBHQ is a synthetic phenolic antioxidant, which has been widely used as a food additive. According to recent researches, tBHQ can suppress the processes that lead to neuroinflammation and oxidative stress, which offers a fresh approach to treating brain diseases. In order to achieve the goal of decreasing inflammation and apoptosis, tBHQ is a specialized nuclear factor erythroid 2-related factor (Nrf2) activator that decreases oxidative stress and enhances antioxidant status by upregulating the Nrf2 gene and reducing nuclear factor kappa-B (NF-κB) activity. This article reviews the effects of tBHQ on neuroinflammation and oxidative stress in recent years and looks into how tBHQ inhibits neuroinflammation and oxidative stress through human, animal, and cell experiments to play a neuroprotective role in Alzheimer's disease (AD), stroke, depression, and Parkinson's disease (PD). It is anticipated that this article will be useful as a reference for upcoming research and the creation of drugs to treat brain diseases.
Collapse
Affiliation(s)
- Xiaojin Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Shandong Medical College, Linyi, 276000, China
| | - Luodan Yang
- College of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Guoying Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jianya Ling
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
3
|
Xu H, Li T, Gong Q, Xu H, Hu Y, Lü W, Yang X, Li J, Xu W, Kuang W. Genetic variations in the retrograde endocannabinoid signaling pathway in Chinese patients with major depressive disorder. Front Neurol 2023; 14:1153509. [PMID: 37168668 PMCID: PMC10165312 DOI: 10.3389/fneur.2023.1153509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/20/2023] [Indexed: 05/13/2023] Open
Abstract
Background The retrograde endocannabinoid (eCB) pathway is closely associated with the etiology of major depressive disorder (MDD) at both pathophysiological and genetic levels. This study aimed to investigate the potential role of genetic mutations in the eCB pathway and underlying mechanisms in Han Chinese patients with MDD. Methods A total of 96 drug-naïve patients with first-episode MDD and 62 healthy controls (HCs) were recruited. Whole-exome sequencing was performed to identify the gene mutation profiles in patients with MDD. Results were filtered to focus on low-frequency variants and rare mutations (minor allele frequencies <0.05) related to depressive phenotypes. Enrichment analyses were performed for 146 selected genes to examine the pathways in which the most significant enrichment occurred. A protein-protein interaction (PPI) network analysis was performed to explore the biological functions of the eCB pathway. Finally, based on current literature, a preliminary analysis was conducted to explore the effect of genetic mutations on the function of this pathway. Results Our analysis identified 146 (15.02%) depression-related genetic mutations in patients with MDD when compared with HCs, and 37 of the mutations were enriched in the retrograde eCB signaling pathway. Seven hub genes in the eCB pathway were closely related to mitochondrial function, including Complex I genes (NDUFS4, NDUFV2, NDUFA2, NDUFA12, NDUFB11) and genes associated with protein (PARK7) and enzyme (DLD) function in the regulation of mitochondrial oxidative stress. Conclusion These results indicate that genetic mutations in the retrograde eCB pathway represent potential etiological factors associated with the pathogenesis of MDD.
Collapse
Affiliation(s)
- Huifang Xu
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tongtong Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Haizhen Xu
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yongbo Hu
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenqi Lü
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Yang
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Li
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wenming Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Wenming Xu,
| | - Weihong Kuang
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Weihong Kuang,
| |
Collapse
|
4
|
Norkeviciene A, Gocentiene R, Sestokaite A, Sabaliauskaite R, Dabkeviciene D, Jarmalaite S, Bulotiene G. A Systematic Review of Candidate Genes for Major Depression. Medicina (B Aires) 2022; 58:medicina58020285. [PMID: 35208605 PMCID: PMC8875554 DOI: 10.3390/medicina58020285] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: The aim of this systematic review was to analyse which candidate genes were examined in genetic association studies and their association with major depressive disorder (MDD). Materials and Methods: We searched PUBMED for relevant studies published between 1 July 2012 and 31 March 2019, using combinations of keywords: “major depressive disorder” OR “major depression” AND “gene candidate”, “major depressive disorder” OR “major depression” AND “polymorphism”. Synthesis focused on assessing the likelihood of bias and investigating factors that may explain differences between the results of studies. For selected gene list after literature overview, functional enrichment analysis and gene ontology term enrichment analysis were conducted. Results: 141 studies were included in the qualitative review of gene association studies focusing on MDD. 86 studies declared significant results (p < 0.05) for 172 SNPs in 85 genes. The 13 SNPs associations were confirmed by at least two studies. The 18 genetic polymorphism associations were confirmed in both the previous and this systematic analysis by at least one study. The majority of the studies (68.79 %) did not use or describe power analysis, which may have had an impact over the significance of their results. Almost a third of studies (N = 54) were conducted in Chinese Han population. Conclusion: Unfortunately, there is still insufficient data on the links between genes and depression. Despite the reported genetic associations, most studies were lacking in statistical power analysis, research samples were small, and most gene polymorphisms have been confirmed in only one study. Further genetic research with larger research samples is needed to discern whether the relationship is random or causal. Summations: This systematic review had summarized all reported genetic associations and has highlighted the genetic associations that have been replicated. Limitations: Unfortunately, most gene polymorphisms have been confirmed only once, so further studies are warranted for replicating these genetic associations. In addition, most studies included a small number of MDD cases that could be indicative for false positive. Considering that polymorphism loci and associations with MDD is also vastly dependent on interpersonal variation, extensive studies of gene interaction pathways could provide more answers to the complexity of MDD.
Collapse
Affiliation(s)
- Audrone Norkeviciene
- Clinic of Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania; (A.N.); (R.G.)
| | - Romena Gocentiene
- Clinic of Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania; (A.N.); (R.G.)
| | - Agne Sestokaite
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Rasa Sabaliauskaite
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Daiva Dabkeviciene
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Sonata Jarmalaite
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Giedre Bulotiene
- Clinic of Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania; (A.N.); (R.G.)
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
- Correspondence:
| |
Collapse
|
5
|
Wang X, Wang T, Sun L, Zhang H, Liu C, Zhang C, Yu L. B-vitamin supplementation ameliorates anxiety- and depression-like behavior induced by gestational urban PM 2.5 exposure through suppressing neuroinflammation in mice offspring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115146. [PMID: 32663728 DOI: 10.1016/j.envpol.2020.115146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/03/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
PM2.5 exposure is an emerging environmental concern and severe health insult closely related to psychological conditions such as anxiety and depression in adolescence. Adolescence is a critical period for neural system development characterized by continuous brain maturation, especially in the prefrontal cortex. The etiology of these adolescent conditions may derive from fetal origin, probably attributed to the adverse effects induced by intrauterine environmental exposure. Anxiety- and depression-like behavior can be induced by gestational exposure to PM2.5 in mice offspring which act as a useful model system. Recent studies show that B-vitamin may alleviate PM2.5-induced hippocampal neuroinflammation- and function-related spatial memory impairment in adolescent mice offspring. However, cortical damage and related neurobehavioral defects induced by gestational PM2.5 exposure, as well as the potential reversibility by interventions in mice offspring require to be elucidated. Here, we aimed to investigate whether B-vitamin would protect mice offspring from the adverse effects derived from gestational exposure to urban PM2.5 on cortical areas to which anxiety and depression are closely related. Pregnant mice were divided into three groups: control group (treated with PBS alone), model group (treated with both PM2.5 and PBS), and intervention group (treated with both PM2.5 and B-vitamin), respectively. The mice offspring were then applied to comprehensive neurobehavioral, ultrastructural, biochemical, and molecular biological analyses. Interestingly, we observed that gestational PM2.5 exposure led to neurobehavioral defects including anxiety- and depression-like behavior. In addition, neuroinflammation, oxidative damage, increased apoptosis, and caspase-1-mediated inflammasome activation in the prefrontal cortex were observed. Notably, both behavioral and molecular changes could be significantly alleviated by B-vitamin treatment. In summary, our results suggest that the anxiety- and depression-like behavior induced by gestational PM2.5 exposure in mice offspring can be ameliorated by B-vitamin supplementation, probably through the suppression of apoptosis, oxidative damage, neuroinflammation, and caspase-1-mediated inflammasome activation.
Collapse
Affiliation(s)
- Xia Wang
- School of Public Health, Weifang Medical University, Weifang, China
| | - Tingting Wang
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Lijuan Sun
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Haoyun Zhang
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Chong Liu
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Li Yu
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China.
| |
Collapse
|
6
|
Two novel genomic regions associated with fearfulness in dogs overlap human neuropsychiatric loci. Transl Psychiatry 2019; 9:18. [PMID: 30655508 PMCID: PMC6336819 DOI: 10.1038/s41398-018-0361-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
Anxiety disorders are among the leading health issues in human medicine. The complex phenotypic and allelic nature of these traits as well as the challenge of establishing reliable measures of the heritable component of behaviour from the associated environmental factors hampers progress in their molecular aetiology. Dogs exhibit large natural variation in fearful and anxious behaviour and could facilitate progress in the molecular aetiology due to their unique genetic architecture. We have performed a genome-wide association study with a canine high-density SNP array in a cohort of 330 German Shepherds for two phenotypes, fear of loud noises (noise sensitivity) and fear of strangers or in novel situations. Genome-widely significant loci were discovered for the traits on chromosomes 20 and 7, respectively. The regions overlap human neuropsychiatric loci, including 18p11.2, with physiologically relevant candidate genes that contribute to glutamatergic and dopaminergic neurotransmission in the brain. In addition, the noise-sensitivity locus includes hearing-related candidate genes. These results indicate a genetic contribution for canine fear and suggest a shared molecular aetiology of anxiety across species. Further characterisation of the identified loci will pave the way to molecular understanding of the conditions as a prerequisite for improved therapy.
Collapse
|
7
|
Asor E, Ben-Shachar D. Gene expression dynamics following mithramycin treatment: A possible model for post-chemotherapy cognitive impairment. Clin Exp Pharmacol Physiol 2018; 45:1028-1037. [PMID: 29851136 DOI: 10.1111/1440-1681.12975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/23/2018] [Accepted: 05/11/2018] [Indexed: 12/20/2022]
Abstract
Chemotherapy-induced cognitive changes is a major burden on a substantial number of cancer survivors. The mechanism of this sequel is unknown. In this study, we followed long-term effects of early in life mithramycin (MTR) treatment on behaviour and on the normal course of alterations of gene expression in brain. Between post-natal days (PND) 7 and 10, male rats were divided into 2 groups, 1 receiving MTR (0.1 mg/kg s.c. per day) and the other receiving saline. At PND11, frontal cortex tissue samples were dissected from 4 rats from each group. At PND 65 the remaining rats underwent behavioural tests after which all the rats were decapitated and their prefrontal cortex incised. Rats treated transiently with MTR early in life, showed impairments in spatial working memory and anxious-like behaviour in adulthood. The immediate molecular effect of MTR was expressed in a limited number of altered genes of different unconnected trajectories, which were simultaneously distorted by the drug. In contrast, 3 months later we observed a change in the expression of more than 1000 genes that converged into specific cellular processes. Time-dependent gene expression dynamics of several genes was significantly different between treated and untreated rats. The differences in the total number of altered genes and in gene expression trends, immediately and long after MTR treatment cessation, suggest the evolution of a new cellular homeostatic set point, which can lead to behavioural abnormalities following chemotherapy treatment.
Collapse
Affiliation(s)
- Eyal Asor
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center, Haifa, Israel.,B. Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center, Haifa, Israel.,B. Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel.,The Rappaport Family Institute for Research in Medical Sciences, Technion-IIT, Haifa, Israel
| |
Collapse
|
8
|
Tang W, Chen Y, Fang X, Wang Y, Fan W, Zhang C. SIRT1 rs3758391 and Major Depressive Disorder: New Data and Meta-Analysis. Neurosci Bull 2018; 34:863-866. [PMID: 29786760 DOI: 10.1007/s12264-018-0235-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Wei Tang
- Department of Psychiatry, Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yan Chen
- Department of Biochemistry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xinyu Fang
- Department of Biochemistry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yewei Wang
- Department of Biochemistry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Weixing Fan
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, 321016, China
| | - Chen Zhang
- Department of Biochemistry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
9
|
Shadrina M, Bondarenko EA, Slominsky PA. Genetics Factors in Major Depression Disease. Front Psychiatry 2018; 9:334. [PMID: 30083112 PMCID: PMC6065213 DOI: 10.3389/fpsyt.2018.00334] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/02/2018] [Indexed: 12/22/2022] Open
Abstract
Depressive disorders (DDs) are one of the most widespread forms of psychiatric pathology. According to the World Health Organization, about 350 million people in the world are affected by this condition. Family and twin studies have demonstrated that the contribution of genetic factors to the risk of the onset of DDs is quite large. Various methodological approaches (analysis of candidate genes, genome-wide association analysis, genome-wide sequencing) have been used, and a large number of the associations between genes and different clinical DD variants and DD subphenotypes have been published. However, in most cases, these associations have not been confirmed in replication studies, and only a small number of genes have been proven to be associated with DD development risk. To ascertain the role of genetic factors in DD pathogenesis, further investigations of the relevant conditions are required. Special consideration should be given to the polygenic characteristics noted in whole-genome studies of the heritability of the disorder without a pronounced effect of the major gene. These observations accentuate the relevance of the analysis of gene-interaction roles in DD development and progression. It is important that association studies of the inherited variants of the genome should be supported by analysis of dynamic changes during DD progression. Epigenetic changes that cause modifications of a gene's functional state without changing its coding sequence are of primary interest. However, the opportunities for studying changes in the epigenome, transcriptome, and proteome during DD are limited by the nature of the disease and the need for brain tissue analysis, which is possible only postmortem. Therefore, any association studies between DD pathogenesis and epigenetic factors must be supplemented through the use of different animal models of depression. A threefold approach comprising the combination of gene association studies, assessment of the epigenetic state in DD patients, and analysis of different "omic" changes in animal depression models will make it possible to evaluate the contribution of genetic, epigenetic, and environmental factors to the development of different forms of depression and to help develop ways to decrease the risk of depression and improve the treatment of DD.
Collapse
Affiliation(s)
- Maria Shadrina
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Elena A Bondarenko
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Petr A Slominsky
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Genome-wide haplotype-based association analysis of major depressive disorder in Generation Scotland and UK Biobank. Transl Psychiatry 2017; 7:1263. [PMID: 29187746 PMCID: PMC5802488 DOI: 10.1038/s41398-017-0010-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 12/22/2022] Open
Abstract
Genome-wide association studies using genotype data have had limited success in the identification of variants associated with major depressive disorder (MDD). Haplotype data provide an alternative method for detecting associations between variants in weak linkage disequilibrium with genotyped variants and a given trait of interest. A genome-wide haplotype association study for MDD was undertaken utilising a family-based population cohort, Generation Scotland: Scottish Family Health Study (n = 18,773), as a discovery cohort with UK Biobank used as a population-based replication cohort (n = 25,035). Fine mapping of haplotype boundaries was used to account for overlapping haplotypes potentially tagging the same causal variant. Within the discovery cohort, two haplotypes exceeded genome-wide significance (P < 5 × 10-8) for an association with MDD. One of these haplotypes was nominally significant in the replication cohort (P < 0.05) and was located in 6q21, a region which has been previously associated with bipolar disorder, a psychiatric disorder that is phenotypically and genetically correlated with MDD. Several haplotypes with P < 10-7 in the discovery cohort were located within gene coding regions associated with diseases that are comorbid with MDD. Using such haplotypes to highlight regions for sequencing may lead to the identification of the underlying causal variants.
Collapse
|
11
|
Veronese N, Stubbs B, Solmi M, Vaona A, Demurtas J, Carvalho AF, Koyanagi A, Thompson T, Zoratti M, Maggi S. Mitochondrial genetic haplogroups and depressive symptoms: A large study among people in North America. J Affect Disord 2017; 217:55-59. [PMID: 28391108 PMCID: PMC5482362 DOI: 10.1016/j.jad.2017.03.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/24/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND A possible relationship between mitochondrial haplogroups and psychiatric diseases (e.g. schizophrenia and bipolar disorder) has been postulated, but data regarding depression is still limited. We investigated whether any mitochondrial haplogroup carried a significant higher risk of depressive symptoms in a large prospective cohort of North American people included in the Osteoarthritis Initiative. METHODS Cross sectional data was derived from the Osteoarthritis Initiative. The haplogroup was assigned through a combination of sequencing and PCR-RFLP techniques. All the mitochondrial haplogroups were named following this nomenclature: H, U, K, J, T, V, SuperHV, I, W, X or Others. Depression was ascertained through the 20-item Center for Epidemiologic Studies-Depression (CES-D), with ≥16 indicating depressive symptoms. RESULTS Overall, 3601 Caucasian participants (55.9% women), mean age of 61.7±9.3 years were included. No difference was observed in mitochondrial haplogroups frequency among those with depressive symptoms (n=285, =7.9% of the baseline population) compared to participants with no depressive symptoms (N=3316) (chi-square test=0.53). Using a logistic regression analysis, adjusted for eight potential confounders, with those having the haplogroup H as the reference group (the most common haplogroup), no significant mitochondrial haplogroup was associated with prevalent depressive symptoms. The same results were evident in secondary analysis in which we matched depressed and non-depressed participants for age and sex. LIMITATIONS Cross-sectional design; only CES-D for evaluating mood; participants not totally representative of general population. CONCLUSIONS We found no evidence of any relationship between specific mitochondrial haplogroups and depressive symptoms. Future longitudinal research is required to confirm/ refute these findings.
Collapse
Affiliation(s)
- Nicola Veronese
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy; Institute for clinical Research and Education in Medicine (IREM), Padova, Italy.
| | - Brendon Stubbs
- South London and Maudsley NHS Foundation Trust, Denmark Hill, London SE5 8AZ, United Kingdom; Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8 AF, United Kingdom; Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Marco Solmi
- Institute for clinical Research and Education in Medicine (IREM), Padova, Italy; Department of Neurosciences, University of Padova, Padova, Italy
| | - Alberto Vaona
- Primary Care Department, Azienda ULSS20 Verona, Verona, Italy
| | - Jacopo Demurtas
- Primary Care Department, Azienda USL Toscana Sud Est, Grosseto, Italy
| | - Andre F Carvalho
- Translational Psychiatry Research Group, Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, CIBERSAM, Barcelona, Spain
| | - Trevor Thompson
- Faculty of Education and Health, University of Greenwich, London, United Kingdom
| | - Mario Zoratti
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy; Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefania Maggi
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy
| |
Collapse
|
12
|
Zhang C, Wu Z, Zhao G, Wang F, Fang Y. Identification of IL6 as a susceptibility gene for major depressive disorder. Sci Rep 2016; 6:31264. [PMID: 27502736 PMCID: PMC4977523 DOI: 10.1038/srep31264] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023] Open
Abstract
Our previous work implied that interleukin 6 (IL6) may be a biological marker for major depressive disorder (MDD). In this study, we performed a comprehensive genetic study to determine the association between the gene encoding IL6 (IL6) and MDD in Han Chinese. There were 50 drug-naïve MDD patients and 50 healthy controls undergoing an mRNA expression study. A sample of 772 patients with MDD and 759 healthy controls were used for genetic analysis. Next, we performed an eQTL analysis to identify whether risk SNP(s) is associated with IL6 expression in brain. Our results showed that patients with MDD have higher levels of IL6 than healthy controls (P = 0.008). The SNP rs1800797 has a significant association with MDD (P = 0.01) in a dominant model. The eQTL analysis showed a marginally significant association between the rs1800797 and IL6 expression in the frontal cortex (P = 0.087). Our preliminary findings are suggestive of an association between rs1800797 and the risk of MDD. Further investigations are required to evaluate this association in larger samples to increase statistical power, and to examine the correlation between rs1800797 and IL6 methylation patterns.
Collapse
Affiliation(s)
- Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiguo Wu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqing Zhao
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|