1
|
Colic L, Sankar A, Goldman DA, Kim JA, Blumberg HP. Towards a neurodevelopmental model of bipolar disorder: a critical review of trait- and state-related functional neuroimaging in adolescents and young adults. Mol Psychiatry 2025; 30:1089-1101. [PMID: 39333385 PMCID: PMC11835756 DOI: 10.1038/s41380-024-02758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Neurodevelopmental mechanisms are increasingly implicated in bipolar disorder (BD), highlighting the importance of their study in young persons. Neuroimaging studies have demonstrated a central role for frontotemporal corticolimbic brain systems that subserve processing and regulation of emotions, and processing of reward in adults with BD. As adolescence and young adulthood (AYA) is a time when fully syndromal BD often emerges, and when these brain systems undergo dynamic maturational changes, the AYA epoch is implicated as a critical period in the neurodevelopment of BD. Functional magnetic resonance imaging (fMRI) studies can be especially informative in identifying the functional neuroanatomy in adolescents and young adults with BD (BDAYA) and at high risk for BD (HR-BDAYA) that is related to acute mood states and trait vulnerability to the disorder. The identification of early emerging brain differences, trait- and state-based, can contribute to the elucidation of the developmental neuropathophysiology of BD, and to the generation of treatment and prevention targets. In this critical review, fMRI studies of BDAYA and HR-BDAYA are discussed, and a preliminary neurodevelopmental model is presented based on a convergence of literature that suggests early emerging dysfunction in subcortical (e.g., amygdalar, striatal, thalamic) and caudal and ventral cortical regions, especially ventral prefrontal cortex (vPFC) and insula, and connections among them, persisting as trait-related features. More rostral and dorsal cortical alterations, and bilaterality progress later, with lateralization, and direction of functional imaging findings differing by mood state. Altered functioning of these brain regions, and regions they are strongly connected to, are implicated in the range of symptoms seen in BD, such as the insula in interoception, precentral gyrus in motor changes, and prefrontal cortex in cognition. Current limitations, and outlook on the future use of neuroimaging evidence to inform interventions and prevent the onset of mood episodes in BDAYA, are outlined.
Collapse
Affiliation(s)
- Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health, partner site Halle-Jena-Magdeburg, Jena, Germany
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Anjali Sankar
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Neurobiology Research Unit, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Danielle A Goldman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Jihoon A Kim
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Hilary P Blumberg
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
- Child Study Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Klahn AL, Thompson WH, Momoh I, Abé C, Liberg B, Landén M. Provincial and connector qualities of somatosensory brain network hubs in bipolar disorder. Cereb Cortex 2024; 34:bhae366. [PMID: 39270674 PMCID: PMC11398877 DOI: 10.1093/cercor/bhae366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/15/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Brain network hubs are highly connected brain regions serving as important relay stations for information integration. Recent studies have linked mental disorders to impaired hub function. Provincial hubs mainly integrate information within their own brain network, while connector hubs share information between different brain networks. This study used a novel time-varying analysis to investigate whether hubs aberrantly follow the trajectory of other brain networks than their own. The aim was to characterize brain hub functioning in clinically remitted bipolar patients. We analyzed resting-state functional magnetic resonance imaging data from 96 euthymic individuals with bipolar disorder and 61 healthy control individuals. We characterized different hub qualities within the somatomotor network. We found that the somatomotor network comprised mainly provincial hubs in healthy controls. Conversely, in bipolar disorder patients, hubs in the primary somatosensory cortex displayed weaker provincial and stronger connector hub function. Furthermore, hubs in bipolar disorder showed weaker allegiances with their own brain network and followed the trajectories of the limbic, salience, dorsal attention, and frontoparietal network. We suggest that these hub aberrancies contribute to previously shown functional connectivity alterations in bipolar disorder and may thus constitute the neural substrate to persistently impaired sensory integration despite clinical remission.
Collapse
Affiliation(s)
- Anna Luisa Klahn
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Blå Stråket 15, 413 45 Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Medicinaregatan 7B, 413 90 Gothenburg, Sweden
| | - William Hedley Thompson
- Department of Applied Information Technology, Forskningsgången 6, 417 56 Gothenburg University, Gothenburg, Sweden
- Centre for Cognitive and Computation Neuropsychiatry, Karolinska Institutet, Retzius väg 8, 171 65 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Retzius väg 8, 171 65 Stockholm, Sweden
| | - Imiele Momoh
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Blå Stråket 15, 413 45 Gothenburg, Sweden
| | - Christoph Abé
- Centre for Cognitive and Computation Neuropsychiatry, Karolinska Institutet, Retzius väg 8, 171 65 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Retzius väg 8, 171 65 Stockholm, Sweden
| | - Benny Liberg
- Department of Clinical Neuroscience, Karolinska Institutet, Retzius väg 8, 171 65 Stockholm, Sweden
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Blå Stråket 15, 413 45 Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 65 Stockholm, Sweden
| |
Collapse
|
3
|
Tsai CJ, Lin HY, Gau SSF. Correlation of altered intrinsic functional connectivity with impaired self-regulation in children and adolescents with ADHD. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01787-y. [PMID: 38906983 DOI: 10.1007/s00406-024-01787-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/16/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Attention-deficit hyperactivity disorder (ADHD) has a high prevalence of co-occurring impaired self-regulation (dysregulation), exacerbating adverse outcomes. Neural correlates underlying impaired self-regulation in ADHD remain inconclusive. We aimed to investigate the impact of dysregulation on intrinsic functional connectivity (iFC) in children with ADHD and the correlation of iFC with dysregulation among children with ADHD relative to typically developing controls (TDC). METHODS Resting-state functional MRI data of 71 children with ADHD (11.38 ± 2.44 years) and 117 age-matched TDC were used in the final analysis. We restricted our analyses to resting-state networks (RSNs) of interest derived from independent component analysis. Impaired self-regulation was estimated based on the Child Behavioral Checklist-Dysregulation Profile. RESULTS Children with ADHD showed stronger iFC than TDC in the left frontoparietal network, somatomotor network (SMN), visual network (VIS), default-mode network (DMN), and dorsal attention network (DAN) (FWE-corrected alpha < 0.05). After adding dysregulation levels as an extra regressor, the ADHD group only showed stronger iFC in the VIS and SMN. ADHD children with high dysregulation had higher precuneus iFC within DMN than ADHD children with low dysregulation. Angular gyrus iFC within DMN was positively correlated with dysregulation in the ADHD group but negatively correlated with dysregulation in the TDC group. Functional network connectivity showed ADHD had a greater DMN-DAN connection than TDC, regardless of the dysregulation level. CONCLUSIONS Our findings suggest that DMN connectivity may contribute to impaired self-regulation in ADHD. Impaired self-regulation should be considered categorical and dimensional moderators for the neural correlates of altered iFC in ADHD.
Collapse
Affiliation(s)
- Chia-Jui Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Susan Shur-Fen Gau
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei, 10002, Taiwan.
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Thomas SA, Ryan SK, Gilman J. Resting state network connectivity is associated with cognitive flexibility performance in youth in the Adolescent Brain Cognitive Development Study. Neuropsychologia 2023; 191:108708. [PMID: 37898357 PMCID: PMC10842068 DOI: 10.1016/j.neuropsychologia.2023.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Cognitive flexibility is an executive functioning skill that develops in childhood, and when impaired, has transdiagnostic implications for psychiatric disorders. To identify how intrinsic neural architecture at rest is linked to cognitive flexibility performance, we used the data-driven method of independent component analysis (ICA) to investigate resting state networks (RSNs) and their whole-brain connectivity associated with levels of cognitive flexibility performance in children. We hypothesized differences by cognitive flexibility performance in RSN connectivity strength in cortico-striatal circuitry, which would manifest via the executive control network, right and left frontoparietal networks (FPN), salience network, default mode network (DMN), and basal ganglia network. We selected participants from the Adolescent Brain Cognitive Development (ABCD) Study who scored at the 25th, ("CF-Low"), 50th ("CF-Average"), or 75th percentiles ("CF-High") on a cognitive flexibility task, were early to middle puberty, and did not exhibit significant psychopathology (n = 967, 47.9% female; ages 9-10). We conducted whole-brain ICA, identifying 14 well-characterized RSNs. Groups differed in connectivity strength in the right FPN, anterior DMN, and posterior DMN. Planned comparisons indicated CF-High had stronger connectivity between right FPN and supplementary motor/anterior cingulate than CF-Low. CF-High had more anti-correlated connectivity between anterior DMN and precuneus than CF-Average. CF-Low had stronger connectivity between posterior DMN and supplementary motor/anterior cingulate than CF-Average. Post-hoc correlations with reaction time by trial type demonstrated significant associations with connectivity. In sum, our results suggest childhood cognitive flexibility performance is associated with DMN and FPN connectivity strength at rest, and that there may be optimal levels of connectivity associated with task performance that vary by network.
Collapse
Affiliation(s)
- Sarah A Thomas
- Bradley Hasbro Children's Research Center, 25 Hoppin St., Box #36, Providence, RI, 02903, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA; Carney Institute for Brain Science, Brown University, Box 1901, 164 Angell St., 4th Floor, Providence, RI, 02912, USA.
| | - Sarah K Ryan
- Bradley Hasbro Children's Research Center, 25 Hoppin St., Box #36, Providence, RI, 02903, USA.
| | - Jodi Gilman
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Chan CC, Alter S, Hazlett EA, Shafritz KM, Yehuda R, Goodman M, Haznedar MM, Szeszko PR. Neural correlates of impulsivity in bipolar disorder: A systematic review and clinical implications. Neurosci Biobehav Rev 2023; 147:105109. [PMID: 36813146 PMCID: PMC11073484 DOI: 10.1016/j.neubiorev.2023.105109] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Impulsivity is a common feature of bipolar disorder (BD) with ramifications for functional impairment and premature mortality. This PRISMA-guided systematic review aims to integrate findings on the neurocircuitry associated with impulsivity in BD. We searched for functional neuroimaging studies that examined rapid-response impulsivity and choice impulsivity using the Go/No-Go Task, Stop-Signal Task, and Delay Discounting Task. Findings from 33 studies were synthesized with an emphasis on the effect of mood state of the sample and affective salience of the task. Results suggest trait-like brain activation abnormalities in regions implicated in impulsivity that persist across mood states. During rapid-response inhibition, BD exhibit under-activation of key frontal, insular, parietal, cingulate, and thalamic regions, but over-activation of these regions when the task involves emotional stimuli. Delay discounting tasks with functional neuroimaging in BD are lacking, but hyperactivity of orbitofrontal and striatal regions associated with reward hypersensitivity may be related to difficulty delaying gratification. We propose a working model of neurocircuitry dysfunction underlying behavioral impulsivity in BD. Clinical implications and future directions are discussed.
Collapse
Affiliation(s)
- Chi C Chan
- Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Sharon Alter
- Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Erin A Hazlett
- Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keith M Shafritz
- Department of Psychology, Hofstra University, Hempstead, NY, USA; Institute of Behavioral Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Rachel Yehuda
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Marianne Goodman
- Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Mehmet Haznedar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Philip R Szeszko
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| |
Collapse
|
6
|
Altered language network lateralization in euthymic bipolar patients: a pilot study. Transl Psychiatry 2022; 12:435. [PMID: 36202786 PMCID: PMC9537562 DOI: 10.1038/s41398-022-02202-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Bipolar patients (BD) in the euthymic phase show almost no symptoms, nevertheless possibility of relapse is still present. We expected to find a psychobiological trace of their vulnerability by analyzing a specific network-the Language Network (LN)-connecting many high-level processes and brain regions measured at rest. According to Crow's hypothesis on the key role of language in the origin of psychoses, we expected an altered asymmetry of the LN in euthymic BDs. Eighteen euthymic BD patients (10 females; age = 54.50 ± 11.38 years) and 16 healthy controls (HC) (8 females; age = 51.16 ± 11.44 years) underwent a functional magnetic resonance imaging scan at rest. The LN was extracted through independent component analysis. Then, LN time series was used to compute the fractional amplitude of the low-frequency fluctuation (fALFF) index, which was then correlated with clinical scales. Compared with HC, euthymic patients showed an altered LN with greater activation of Broca's area right homologous and anterior insula together with reduced activation of left middle temporal gyrus. The normalized fALFF analysis on BD patients' LN time series revealed that the Slow-5 fALFF band was positively correlated with residual mania symptoms but negatively associated with depression scores. In line with Crow's hypothesis postulating an altered language hemispheric asymmetry in psychoses, we revealed, in euthymic BD patients, a right shift involving both the temporal and frontal linguistic hubs. The fALFF applied to LN allowed us to highlight a number of significant correlations of this measure with residual mania and depression psychiatric symptoms.
Collapse
|
7
|
Hu YS, Yue J, Ge Q, Feng ZJ, Wang J, Zang YF. Test-retest reliability of peak location in the sensorimotor network of resting state fMRI for potential rTMS targets. Front Neuroinform 2022; 16:882126. [PMID: 36262839 PMCID: PMC9574049 DOI: 10.3389/fninf.2022.882126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
Most stroke repetitive transcranial magnetic stimulation (rTMS) studies have used hand motor hotspots as rTMS stimulation targets; in addition, recent studies demonstrated that functional magnetic resonance imaging (fMRI) task activation could be used to determine suitable targets due to its ability to reveal individualized precise and stronger functional connectivity with motor-related brain regions. However, rTMS is unlikely to elicit motor evoked potentials in the affected hemisphere, nor would activity be detected when stroke patients with severe hemiplegia perform an fMRI motor task using the affected limbs. The current study proposed that the peak voxel in the resting-state fMRI (RS-fMRI) motor network determined by independent component analysis (ICA) could be a potential stimulation target. Twenty-one healthy young subjects underwent RS-fMRI at three visits (V1 and V2 on a GE MR750 scanner and V3 on a Siemens Prisma) under eyes-open (EO) and eyes-closed (EC) conditions. Single-subject ICA with different total number of components (20, 30, and 40) were evaluated, and then the locations of peak voxels on the left and right sides of the sensorimotor network (SMN) were identified. While most ICA RS-fMRI studies have been carried out on the group level, that is, Group-ICA, the current study performed individual ICA because only the individual analysis could guide the individual target of rTMS. The intra- (test-retest) and inter-scanner reliabilities of the peak location were calculated. The use of 40 components resulted in the highest test-retest reliability of the peak location in both the left and right SMN compared with that determined when 20 and 30 components were used for both EC and EO conditions. ICA with 40 components might be another way to define a potential target in the SMN for poststroke rTMS treatment.
Collapse
Affiliation(s)
- Yun-Song Hu
- Center for Cognition and Brain Disorders, The Affiliated Hospital Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Juan Yue
- Center for Cognition and Brain Disorders, The Affiliated Hospital Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qiu Ge
- Center for Cognition and Brain Disorders, The Affiliated Hospital Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Zi-Jian Feng
- Center for Cognition and Brain Disorders, The Affiliated Hospital Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jue Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
- *Correspondence: Jue Wang
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, The Affiliated Hospital Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
- Yu-Feng Zang
| |
Collapse
|
8
|
Chen G, Chen P, Gong J, Jia Y, Zhong S, Chen F, Wang J, Luo Z, Qi Z, Huang L, Wang Y. Shared and specific patterns of dynamic functional connectivity variability of striato-cortical circuitry in unmedicated bipolar and major depressive disorders. Psychol Med 2022; 52:747-756. [PMID: 32648539 DOI: 10.1017/s0033291720002378] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Accumulating studies have found structural and functional abnormalities of the striatum in bipolar disorder (BD) and major depressive disorder (MDD). However, changes in intrinsic brain functional connectivity dynamics of striato-cortical circuitry have not been investigated in BD and MDD. This study aimed to investigate the shared and specific patterns of dynamic functional connectivity (dFC) variability of striato-cortical circuitry in BD and MDD. METHODS Brain resting-state functional magnetic resonance imaging data were acquired from 128 patients with unmedicated BD II (current episode depressed), 140 patients with unmedicated MDD, and 132 healthy controls (HCs). Six pairs of striatum seed regions were selected: the ventral striatum inferior (VSi) and the ventral striatum superior (VSs), the dorsal-caudal putamen (DCP), the dorsal-rostral putamen (DRP), and the dorsal caudate and the ventral-rostral putamen (VRP). The sliding-window analysis was used to evaluate dFC for each seed. RESULTS Both BD II and MDD exhibited increased dFC variability between the left DRP and the left supplementary motor area, and between the right VRP and the right inferior parietal lobule. The BD II had specific increased dFC variability between the right DCP and the left precentral gyrus compared with MDD and HCs. The MDD had increased dFC variability between the left VSi and the left medial prefrontal cortex compared with BD II and HCs. CONCLUSIONS The patients with BD and MDD shared common dFC alteration in the dorsal striatal-sensorimotor and ventral striatal-cognitive circuitries. The patients with MDD had specific dFC alteration in the ventral striatal-affective circuitry.
Collapse
Affiliation(s)
- Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - JiaYing Gong
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jurong Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhenye Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
9
|
Marino M, Romeo Z, Angrilli A, Semenzato I, Favaro A, Magnolfi G, Padovan GB, Mantini D, Spironelli C. Default mode network shows alterations for low-frequency fMRI fluctuations in euthymic bipolar disorder. J Psychiatr Res 2021; 144:59-65. [PMID: 34600288 DOI: 10.1016/j.jpsychires.2021.09.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022]
Abstract
Bipolar disorder (BD) is a psychiatric condition causing acute dysfunctional mood states and emotion regulation. Specific neuropsychological features are often present also among patients in euthymic phase, who do not show clear psychotic symptoms, and for whom the characterization from functional magnetic resonance imaging (fMRI) is very limited. This study aims at identifying the neural and behavioral correlates of the default mode network (DMN) using the fractional amplitude of low frequency fluctuations (fALFF). Eighteen euthymic BD patients (10 females; age = 54.50 ± 11.38 years) and sixteen healthy controls (HC) (8 females; age = 51.16 ± 11.44 years) underwent a 1.5T fMRI scan at rest. The DMN was extracted through independent component analysis. Then, DMN time series was used to compute the fALFF, which was correlated with clinical scales. From the between-group comparison, no significant differences emerged in correspondence to regions belonging to the DMN. For fALFF analysis, we reported significant increase of low-frequency fluctuations for lower frequencies, and decreases for higher frequencies compared to HC. Correlations with clinical scales showed that an increase in higher frequency spectral content was associated with lower levels of mania and higher levels of anxious symptoms, while an increase in lower frequencies was linked to lower depressive symptoms. Starting from our findings on the DMN in euthymic BD patients, we suggest that the fALFF derived from network time series represents a viable approach to investigate the behavioral correlates of resting state networks, and the pathophysiological mechanisms of different psychiatric conditions.
Collapse
Affiliation(s)
- Marco Marino
- Department of Movement Sciences, Research Center for Motor Control and Neuroplasticity, KU, Leuven, Belgium; IRCCS San Camillo Hospital, Venice, Italy.
| | - Zaira Romeo
- Department of General Psychology, University of Padova, Italy
| | - Alessandro Angrilli
- Department of General Psychology, University of Padova, Italy; Padova Neuroscience Center, University of Padova, Italy
| | | | - Angela Favaro
- Padova Neuroscience Center, University of Padova, Italy; Psychiatric Clinic, Neuroscience Department, University of Padova, Italy
| | - Gianna Magnolfi
- Psychiatric Clinic, Neuroscience Department, University of Padova, Italy
| | - Giordano Bruno Padovan
- Psychiatric Clinic, Neuroscience Department, University of Padova, Italy; Unit of Penitentiary Medicine, ULSS6, Padova, Italy
| | - Dante Mantini
- Department of Movement Sciences, Research Center for Motor Control and Neuroplasticity, KU, Leuven, Belgium; IRCCS San Camillo Hospital, Venice, Italy
| | - Chiara Spironelli
- Department of General Psychology, University of Padova, Italy; Padova Neuroscience Center, University of Padova, Italy.
| |
Collapse
|
10
|
Canario E, Chen D, Biswal B. A review of resting-state fMRI and its use to examine psychiatric disorders. PSYCHORADIOLOGY 2021; 1:42-53. [PMID: 38665309 PMCID: PMC10917160 DOI: 10.1093/psyrad/kkab003] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 04/28/2024]
Abstract
Resting-state fMRI (rs-fMRI) has emerged as an alternative method to study brain function in human and animal models. In humans, it has been widely used to study psychiatric disorders including schizophrenia, bipolar disorder, autism spectrum disorders, and attention deficit hyperactivity disorders. In this review, rs-fMRI and its advantages over task based fMRI, its currently used analysis methods, and its application in psychiatric disorders using different analysis methods are discussed. Finally, several limitations and challenges of rs-fMRI applications are also discussed.
Collapse
Affiliation(s)
- Edgar Canario
- Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ, 07102, US
| | - Donna Chen
- Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ, 07102, US
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ, 07102, US
| |
Collapse
|
11
|
Yoon S, Kim TD, Kim J, Lyoo IK. Altered functional activity in bipolar disorder: A comprehensive review from a large-scale network perspective. Brain Behav 2021; 11:e01953. [PMID: 33210461 PMCID: PMC7821558 DOI: 10.1002/brb3.1953] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/08/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Growing literature continues to identify brain regions that are functionally altered in bipolar disorder. However, precise functional network correlates of bipolar disorder have yet to be determined due to inconsistent results. The overview of neurological alterations from a large-scale network perspective may provide more comprehensive results and elucidate the neuropathology of bipolar disorder. Here, we critically review recent neuroimaging research on bipolar disorder using a network-based approach. METHODS A systematic search was conducted on studies published from 2009 through 2019 in PubMed and Google Scholar. Articles that utilized functional magnetic resonance imaging technique to examine altered functional activity of major regions belonging to a large-scale brain network in bipolar disorder were selected. RESULTS A total of 49 studies were reviewed. Within-network hypoconnectivity was reported in bipolar disorder at rest among the default mode, salience, and central executive networks. In contrast, when performing a cognitive task, hyperconnectivity among the central executive network was found. Internetwork functional connectivity in the brain of bipolar disorder was greater between the salience and default mode networks, while reduced between the salience and central executive networks at rest, compared to control. CONCLUSION This systematic review suggests disruption in the functional activity of large-scale brain networks at rest as well as during a task stimuli in bipolar disorder. Disrupted intra- and internetwork functional connectivity that are also associated with clinical symptoms suggest altered functional connectivity of and between large-scale networks plays an important role in the pathophysiology of bipolar disorder.
Collapse
Affiliation(s)
- Sujung Yoon
- Ewha Brain InstituteEwha W. UniversitySeoulSouth Korea
- Department of Brain and Cognitive SciencesEwha W. UniversitySeoulSouth Korea
| | - Tammy D. Kim
- Ewha Brain InstituteEwha W. UniversitySeoulSouth Korea
| | - Jungyoon Kim
- Ewha Brain InstituteEwha W. UniversitySeoulSouth Korea
- Department of Brain and Cognitive SciencesEwha W. UniversitySeoulSouth Korea
| | - In Kyoon Lyoo
- Ewha Brain InstituteEwha W. UniversitySeoulSouth Korea
- Department of Brain and Cognitive SciencesEwha W. UniversitySeoulSouth Korea
- Graduate School of Pharmaceutical SciencesEwha W. UniversitySeoulSouth Korea
- The Brain Institute and Department of PsychiatryUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
12
|
Lin X, Zhou RB, Huang J, Su YS, Mao RZ, Niu ZA, Cao L, Hu YY, Yang T, Wang X, Zhao GQ, Wang Y, Peng DH, Wu ZG, Wang ZW, Yuan CM, Chen J, Fang YR. Altered resting-state fMRI signals and network topological properties of bipolar depression patients with anxiety symptoms. J Affect Disord 2020; 277:358-367. [PMID: 32861836 DOI: 10.1016/j.jad.2020.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/13/2020] [Accepted: 08/09/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND This study aims to explore the changes in functional neuroimaging in bipolar depression patients with anxiety symptoms (BDP-A). METHODS Forty-five BDP-A patients, 22 bipolar depression patients without anxiety symptoms (BDP-NA), and 48 healthy controls (HC) were finally involved. The low-frequency oscillation characteristics, functional connectivity (FC), and network properties among the three groups of participants were analyzed. RESULTS Compared with the BDP-NA group, BDP-A patients exhibited significantly decreased amplitude of low-frequency fluctuation (ALFF) in the left middle frontal gyrus (MFG), superior occipital gyrus, and inferior parietal, but supramarginal and angular gyri (IPL). Enhanced FC from left IPL to middle temporal gyrus, from left precentral gyrus (PreCG) to bilateral angular gyri, medial superior frontal gyrus, and left superior frontal gyrus (SFG)/MFG were also revealed. Compared with HC, the BDP-A group showed remarkably increased ALFF in the left MFG/PreCG, right superior parietal gyrus, while decreased ALFF in the left inferior frontal gyrus, opercular part, and SFG. In addition, higher regional homogeneity in the left MFG/PreCG was found. LIMITATIONS The limitations are as follows: (1) relatively small sample size; (2) not all the patients were drug-naive; (3) lack of pure anxiety disorder patients as a controlled group; (4) mental health conditions of HC were not systemic evaluated. CONCLUSIONS BDP-A patients showed significant differences in resting-state fMRI properties when compared with BDP-NA or HC group. These results may infer the dysfunction of the dorsal attention network, the default network, and the fronto-limbic system as well as disrupted brain network efficiency in BDP-A patients.
Collapse
Affiliation(s)
- Xiao Lin
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Rd, Shanghai 200030, China
| | - Ru-Bai Zhou
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Rd, Shanghai 200030, China
| | - Jia Huang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Rd, Shanghai 200030, China
| | - You-Song Su
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Rd, Shanghai 200030, China
| | - Rui-Zhi Mao
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Rd, Shanghai 200030, China
| | - Zhi-Ang Niu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Rd, Shanghai 200030, China
| | - Lan Cao
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Rd, Shanghai 200030, China
| | - Ying-Yan Hu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Rd, Shanghai 200030, China
| | - Tao Yang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Rd, Shanghai 200030, China
| | - Xing Wang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Rd, Shanghai 200030, China
| | - Guo-Qing Zhao
- Department of Psychology, Provincial Hospital Affiliated to Shandong University, Jinan 250021,China
| | - Yong Wang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Rd, Shanghai 200030, China
| | - Dai-Hui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Rd, Shanghai 200030, China
| | - Zhi-Guo Wu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Rd, Shanghai 200030, China
| | - Zuo-Wei Wang
- Shanghai Hongkou District Mental Health Center, Shanghai 200080, China
| | - Cheng-Mei Yuan
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Rd, Shanghai 200030, China
| | - Jun Chen
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Rd, Shanghai 200030, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China.
| | - Yi-Ru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Rd, Shanghai 200030, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China.
| |
Collapse
|
13
|
Wei SY, Tseng HH, Chang HH, Lu TH, Chang WH, Chiu NT, Yang YK, Chen PS. Dysregulation of oxytocin and dopamine in the corticostriatal circuitry in bipolar II disorder. Transl Psychiatry 2020; 10:281. [PMID: 32788579 PMCID: PMC7423887 DOI: 10.1038/s41398-020-00972-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
The oxytocin (OXT) and dopamine systems synergistically facilitate striatal reactivity. Abnormal striatal activation has repeatedly been observed in patients with bipolar disorder (BD); however, such abnormality remains unclear in BD II. Here we aimed to investigate whether the corticostriatal connectivity was altered and the possible relationships among corticostriatal connectivity, OXT, and dopamine systems in BD II. Twenty-five BD II patients, as defined by the DSM-V, and 29 healthy controls (HC) were enrolled in this study. Plasma OXT was measured and striatal dopamine transporter (DAT) availability was assessed using [99mTc]TRODAT-1 single-photon emission computed tomography (SPECT). Brain network functional connectivity (FC) was measured during the resting-state using functional magnetic resonance imaging, and the dorsal caudate (DC) was selected as the seed region. The results showed that the OXT level was significantly lower in the BD II patients, while the striatal DAT availability was not significantly different between the BD II and HC groups. The BD II patients exhibited significantly lower FC between the DC and the executive control network (dorsolateral prefrontal, anterior cingulate cortex, and posterior parietal cortex) as compared with the HC. Only observed in HC, the DC-posterior parietal cortex FC was negatively correlated with the OXT level and striatal DAT availability. Our findings in the HC support a model in which the OXT and dopamine systems act in tandem to regulate corticostriatal circuitry, while the synergistic interaction was perturbed in BD II. Taken together, these results implied a maladaptive neuroplasticity in BD II.
Collapse
Affiliation(s)
- Shyh-Yuh Wei
- grid.412040.30000 0004 0639 0054Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huai-Hsuan Tseng
- grid.412040.30000 0004 0639 0054Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.64523.360000 0004 0532 3255Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui Hua Chang
- grid.64523.360000 0004 0532 3255Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.64523.360000 0004 0532 3255School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.412040.30000 0004 0639 0054Department of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.412040.30000 0004 0639 0054Department of Pharmacy, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Tsung-Hua Lu
- grid.412040.30000 0004 0639 0054Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei Hung Chang
- grid.412040.30000 0004 0639 0054Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.412040.30000 0004 0639 0054Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Nan Tsing Chiu
- grid.412040.30000 0004 0639 0054Department of Nuclear Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- grid.412040.30000 0004 0639 0054Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.64523.360000 0004 0532 3255Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan ,grid.410770.50000 0004 0639 1057Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan.
| |
Collapse
|
14
|
Bigot M, Alonso M, Houenou J, Sarrazin S, Dargél AA, Lledo PM, Henry C. An emotional-response model of bipolar disorders integrating recent findings on amygdala circuits. Neurosci Biobehav Rev 2020; 118:358-366. [PMID: 32739421 DOI: 10.1016/j.neubiorev.2020.07.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 02/02/2023]
Abstract
Because of our classification system limitations for defining psychiatric disorders and understanding their physiopathology, a new research area based on dimensions has emerged. It consists of exploring domains derived from fundamental behavioral components linked to neurobiological systems. Emotional processing is among the most affected dimensions in bipolar disorders (BD), but is excluded from the definition criteria. The purpose of this review is to synthesize the emotional responses disruption during the different phases of BD, using intensity and valence as the two key characteristics of emotions. We integrate those emotional disruptions into an original, emotion-based model contrasting with the current diagnostic frame built on mood. Emotional processing is underpinned by cortico-limbic circuits involving the amygdala. Recent publications showed the crucial role of the amygdala in emotional processes triggered by stimuli of negative, but also positive valence. We show how these neuroscience data can provide physiological basis for emotional disturbances observed in BD. We conclude with translational perspectives to improve the current knowledge about neural substrates underlying altered emotional responses characterizing BD.
Collapse
Affiliation(s)
- Mathilde Bigot
- Perception and Memory Unit, Institut Pasteur, UMR3571, CNRS, Paris, France; Sorbonne Université, Collège doctoral, Paris, France
| | - Mariana Alonso
- Perception and Memory Unit, Institut Pasteur, UMR3571, CNRS, Paris, France
| | - Josselin Houenou
- Université Paris-Est, INSERM, U955, Créteil, France; NeuroSpin, Commissariat à l'Energie Atomique et aux Énergies Alternatives, Gif-sur-Yvette, France
| | - Samuel Sarrazin
- Université Paris-Est, INSERM, U955, Créteil, France; NeuroSpin, Commissariat à l'Energie Atomique et aux Énergies Alternatives, Gif-sur-Yvette, France
| | - Aroldo A Dargél
- Perception and Memory Unit, Institut Pasteur, UMR3571, CNRS, Paris, France
| | - Pierre-Marie Lledo
- Perception and Memory Unit, Institut Pasteur, UMR3571, CNRS, Paris, France
| | - Chantal Henry
- Perception and Memory Unit, Institut Pasteur, UMR3571, CNRS, Paris, France; Université de Paris, Paris, France; Department of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatrie & Neurosciences, Paris, France.
| |
Collapse
|
15
|
Zhang L, Li W, Wang L, Bai T, Ji GJ, Wang K, Tian Y. Altered functional connectivity of right inferior frontal gyrus subregions in bipolar disorder: a resting state fMRI study. J Affect Disord 2020; 272:58-65. [PMID: 32379621 DOI: 10.1016/j.jad.2020.03.122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/04/2020] [Accepted: 03/29/2020] [Indexed: 11/26/2022]
Abstract
The right inferior frontal gyrus (rIFG) is a key cortical node in the circuits of emotion and cognitive control, and it has been frequently associated with bipolar disorder (BP); however, a reliable pattern of aberrant rIFG activation and connectivity in bipolar disorder has yet to be established. To further elucidate rIFG abnormalities in different states of bipolar disorder, we examined activation and functional connectivity (FC) in five subregions of rIFG in bipolar disorder. A total of 83 participants, including those with bipolar depression (BPD; n = 25) and bipolar mania (BPM; n = 37) along with healthy control (HC) subjects (n = 26), were examined by resting state functional magnetic resonance imaging (rs-fMRI). Both BPD and BPM groups showed higher values of amplitude of low-frequency fluctuations (ALFF) than healthy control in four of the five rIFG subregions except cluster 2(posterior-ventral rIFG). Using five subregions of rIFG as seeds, the decreased FC in bipolar disorder was mainly between posterior-ventral rIFG(cluster 2) and multiple brain regions including the postcentral gyrus, the precentral gyrus, paracentral lobule, lingual Gyrus, fusiform and cerebellum posterior lobe. These results indicated that local activity and FC were altered within specific subregions of the rIFG in BP. These findings may provide the distinct functional connectivity of rIFG subregions in BP and suggest that the cluster2 (posterior-ventral rIFG) circuitry plays a crucial role in BP. Also, such abnormalities might help define a more precise intervention targets.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Wenfei Li
- Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Long Wang
- Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Tongjian Bai
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
| | - Gong-Jun Ji
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China;; Department of Medical Psychology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China;; Department of Medical Psychology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Yanghua Tian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Medical Psychology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|