1
|
Unadkat P, Rebeiz T, Ajmal E, De Souza V, Xia A, Jinu J, Powell K, Li C. Neurobiological Mechanisms Underlying Psychological Dysfunction After Brain Injuries. Cells 2025; 14:74. [PMID: 39851502 PMCID: PMC11763422 DOI: 10.3390/cells14020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Despite the presentation of similar psychological symptoms, psychological dysfunction secondary to brain injury exhibits markedly lower treatment efficacy compared to injury-independent psychological dysfunction. This gap remains evident, despite extensive research efforts. This review integrates clinical and preclinical evidence to provide a comprehensive overview of the neurobiological mechanisms underlying neuropsychological disorders, focusing on the role of key brain regions in emotional regulation across various forms of brain injuries. It examines therapeutic interventions and mechanistic targets, with the primary goal of identifying pathways for targeted treatments. The review highlights promising therapeutic avenues for addressing injury-associated psychological dysfunction, emphasizing Nrf2, neuropeptides, and nonpharmacological therapies as multi-mechanistic interventions capable of modulating upstream mediators to address the complex interplay of factors underlying psychological dysfunction in brain injury. Additionally, it identifies sexually dimorphic factors as potential areas for further exploration and advocates for detailed investigations into sex-specific patterns to uncover additional contributors to these disorders. Furthermore, it underscores significant gaps, particularly the inadequate consideration of interactions among causal factors, environmental influences, and individual susceptibilities. By addressing these gaps, this review provides new insights and calls for a paradigm shift toward a more context-specific and integrative approach to developing targeted therapies for psychological dysfunction following brain injuries.
Collapse
Affiliation(s)
- Prashin Unadkat
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Neurosurgery, North Shore University Hospital at Northwell Health, Manhasset, NY 11030, USA
| | - Tania Rebeiz
- Department of Neurosurgery, North Shore University Hospital at Northwell Health, Manhasset, NY 11030, USA
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- SUNY Downstate College of Medicine, Brooklyn, NY 11225, USA
| | - Vincent De Souza
- Department of Neurosurgery, Staten Island University Hospital at Northwell Health, Staten Island, NY 10305, USA
| | - Angela Xia
- Department of Neurosurgery, North Shore University Hospital at Northwell Health, Manhasset, NY 11030, USA
| | - Julia Jinu
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Biology Department, Adelphi University, Garden City, NY 11530, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Neurosurgery, North Shore University Hospital at Northwell Health, Manhasset, NY 11030, USA
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
2
|
He Y, Gu R, Deng G, Lin Y, Gan T, Cui F, Liu C, Luo YJ. Psychological and Brain Responses to Artificial Intelligence's Violation of Community Ethics. CYBERPSYCHOLOGY, BEHAVIOR AND SOCIAL NETWORKING 2024; 27:562-570. [PMID: 38757680 DOI: 10.1089/cyber.2023.0524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Human moral reactions to artificial intelligence (AI) agents' behavior constitute an important aspect of modern-day human-AI relationships. Although previous studies have mainly focused on autonomy ethics, this study investigates how individuals judge AI agents' violations of community ethics (including betrayals and subversions) compared with human violations. Participants' behavioral responses, event-related potentials (ERPs), and individual differences were assessed. Behavioral findings reveal that participants rated AI agents' community-violating actions less morally negative than human transgressions, possibly because AI agents are commonly perceived as having less agency than human adults. The ERP N1 component showed the same pattern with moral rating scores, indicating the modulation effect of human-AI differences on initial moral intuitions. Moreover, the level of social withdrawal correlated with a smaller N1 in the human condition but not in the AI condition. The N2 and P2 components were sensitive to the difference between the loyalty/betrayal and authority/subversion domains but not human/AI differences. Individual levels of moral sense and autistic traits also influenced behavioral data, especially on the loyalty/betrayal domain. In our opinion, these findings offer insights for predicting moral responses to AI agents and guiding ethical AI development aligned with human moral values.
Collapse
Affiliation(s)
- Yue He
- School of Psychology, Shenzhen University, Shenzhen, People's Republic of China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ruolei Gu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Guangzhi Deng
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, People's Republic of China
| | - Yongling Lin
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, People's Republic of China
| | - Tian Gan
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
- Research Institute on Aging, School of Science, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Fang Cui
- School of Psychology, Shenzhen University, Shenzhen, People's Republic of China
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging, Center, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, People's Republic of China
| | - Chao Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, People's Republic of China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, People's Republic of China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, People's Republic of China
- National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, People's Republic of China
| | - Yue-Jia Luo
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, People's Republic of China
- Institute for Neuropsychological Rehabilitation, University of Health and Rehabilitation Sciences, Qingdao, People's Republic of China
| |
Collapse
|
3
|
Jindal M, Chhetri A, Ludhiadch A, Singh P, Peer S, Singh J, Brar RS, Munshi A. Neuroimaging Genomics a Predictor of Major Depressive Disorder (MDD). Mol Neurobiol 2024; 61:3427-3440. [PMID: 37989980 DOI: 10.1007/s12035-023-03775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023]
Abstract
Depression is a complex psychiatric disorder influenced by various genetic and environmental factors. Strong evidence has established the contribution of genetic factors in depression through twin studies and the heritability rate for depression has been reported to be 37%. Genetic studies have identified genetic variations associated with an increased risk of developing depression. Imaging genetics is an integrated approach where imaging measures are combined with genetic information to explore how specific genetic variants contribute to brain abnormalities. Neuroimaging studies allow us to examine both structural and functional abnormalities in individuals with depression. This review has been designed to study the correlation of the significant genetic variants with different regions of neural activity, connectivity, and structural alteration in the brain as detected by imaging techniques to understand the scope of biomarkers in depression. This might help in developing novel therapeutic interventions targeting specific genetic pathways or brain circuits and the underlying pathophysiology of depression based on this integrated approach can be established at length.
Collapse
Affiliation(s)
- Manav Jindal
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bathinda, India
| | - Aakash Chhetri
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | - Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | - Paramdeep Singh
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bathinda, India
| | - Sameer Peer
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bathinda, India
| | - Jawahar Singh
- Department of Psychiatry, All India Institute of Medical Sciences, Bathinda, India
| | - Rahatdeep Singh Brar
- Department of Diagnostic and Interventional Radiology, Homi Bhabha Cancer Hospital & Research Center, Mohali, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
4
|
Zhou H, Wei YJ, Xie GY. Research progress on post-stroke depression. Exp Neurol 2024; 373:114660. [PMID: 38141804 DOI: 10.1016/j.expneurol.2023.114660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Stroke is a highly prevalent and widely detrimental cardiovascular disease, frequently resulting in impairments of both motor function and neural psychological capabilities, such as post-stroke depression (PSD). PSD is the most prevalent neuropsychological disorder among stroke patients, characterized by persistent emotional lowness and diminished interest as its primary features. This article summarizes the mechanism research, animal models and related treatments of PSD. Further improvements are needed in the screening of research subjects and the construction of animal models in the study of PSD. At the same time, in the study of the mechanism of PSD, we need to consider the interaction between multiple systems. The treatment of PSD requires more careful consideration. This can help us to find something new in the study of the mechanism of complex PSD, which provides a new direction for us to develop new treatment delivery.
Collapse
Affiliation(s)
- Hui Zhou
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Zhongshan Hospital), Hangzhou, Zhejiang Province, China
| | - Yu-Jiao Wei
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Zhongshan Hospital), Hangzhou, Zhejiang Province, China
| | - Guang-Yao Xie
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Zhongshan Hospital), Hangzhou, Zhejiang Province, China; The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Gui J, Meng L, Huang D, Wang L, Yang X, Ding R, Han Z, Cheng L, Jiang L. Identification of novel proteins for sleep apnea by integrating genome-wide association data and human brain proteomes. Sleep Med 2024; 114:92-99. [PMID: 38160582 DOI: 10.1016/j.sleep.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Sleep apnea is regarded as a significant global public health issue. The relationship between sleep apnea and nervous system diseases is intricate, yet the precise mechanism remains unclear. METHODS In this study, we conducted a comprehensive analysis integrating the human brain proteome and transcriptome with sleep apnea genome-wide association study (GWAS), employing genome-wide association study (PWAS), transcriptome-wide association study (TWAS), Mendelian randomization (MR), and colocalization analysis to identify brain proteins associated with sleep apnea. RESULTS The discovery PWAS identified six genes (CNNM2, XRCC6, C3orf18, CSDC2, SQRDL, and DGUOK) whose altered protein abundances in the brain were found to be associated with sleep apnea. The independent confirmatory PWAS successfully replicated four out of these six genes (CNNM2, C3orf18, CSDC2, and SQRDL). The transcriptome level TWAS analysis further confirmed two out of the four genes (C3orf18 and CSDC2). The subsequent two-sample Mendelian randomization provided compelling causal evidence supporting the association of C3orf18, CSDC2, CNNM2, and SQRDL with sleep apnea. The co-localization analysis further supported the association between CSDC2 and sleep apnea (posterior probability of hypothesis 4 = 0.75). CONCLUSIONS In summary, the integration of brain proteomic and transcriptomic data provided multifaceted evidence supporting causal relationships between four specific brain proteins (CSDC2, C3orf18, CNNM2, and SQRDL) and sleep apnea. Our findings provide new insights into the molecular basis of sleep apnea in the brain, promising to advance understanding of its pathogenesis in future research.
Collapse
Affiliation(s)
- Jianxiong Gui
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Linxue Meng
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Dishu Huang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Lingman Wang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Xiaoyue Yang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Ran Ding
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Ziyao Han
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Li Cheng
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.
| |
Collapse
|
6
|
Tan XM, Liao ZX, Zhao YY, Sun XC, Yi FL. Changes in depressive symptoms before and after the first stroke: A longitudinal study from China Family Panel Study (CFPS). J Affect Disord 2023; 340:567-574. [PMID: 37573890 DOI: 10.1016/j.jad.2023.08.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
OBJECTIVES The study sought to examine the impact of longitudinal changes in depressive symptoms in middle-aged adults before and after their first stroke, and the impact of different ages. METHODS The study monitored middle-aged patients with a first stroke in the China Family Panel Study (CFPS) survey from 2016 to 2020. This study examined longitudinal changes in depressive symptoms in middle-aged adults and their controls before and after stroke using multilevel models, and also explored factors influencing middle-aged adults at the time of their respective stroke and depressive symptoms using conditional regression models and stepwise regression models, respectively. A chi-square test was used to determine whether long-term changes in depressive symptoms in patients before and after stroke could be attributed to changes in a single depressive symptom. RESULTS The study identified 582 first-time stroke patients and 5522 controls from a population of 17,588 participants. Middle-aged populations may have an increased risk of depressive symptoms after a first stroke compared to older populations. First-time stroke victims showed increased severity of depressive symptoms in both the two years before and the two years after stroke when depressive symptoms were assessed. Differences in the presentation of a single depressive symptom were most pronounced in sleep-related symptoms. CONCLUSIONS The link between first stroke and changes in the trajectory of increased depressive symptoms is complex and bidirectional. Age is an important factor influencing changes in depressive symptoms, some attention should be paid to the middle-aged population. Special attention should also be paid to sleep-related symptoms in the long-term care of patients.
Collapse
Affiliation(s)
- Xiao-Min Tan
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Zi-Xuan Liao
- Guangdong Pharmaceutical University, Guangzhou, China
| | | | - Xiao-Cui Sun
- Guangdong Pharmaceutical University, Guangzhou, China; Engineering and Technology Research Center of Guangdong Universities-Real World Engineering and Technology Research Center of Medical Information, Guangzhou, China
| | - Fa-Ling Yi
- Guangdong Pharmaceutical University, Guangzhou, China; Engineering and Technology Research Center of Guangdong Universities-Real World Engineering and Technology Research Center of Medical Information, Guangzhou, China.
| |
Collapse
|
7
|
Sun S, Li Z, Xiao Q, Tan S, Hu B, Jin H. An updated review on prediction and preventive treatment of post-stroke depression. Expert Rev Neurother 2023; 23:721-739. [PMID: 37427452 DOI: 10.1080/14737175.2023.2234081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
INTRODUCTION Post-stroke depression (PSD), one of the most common complications following stroke, affects approximately one-third of stroke patients and is significantly associated with increased disability and mortality as well as decreased quality of life, which makes it an important public health concern. Treatment of PSD significantly ameliorates depressive symptoms and improves the prognosis of stroke. AREAS COVERED The authors discuss the critical aspects of the clinical application of prediction and preventive treatment of PSD. Then, the authors update the biological factors associated with the onset of PSD. Furthermore, they summarize the recent progress in pharmacological preventive treatment in clinical trials and propose potential treatment targets. The authors also discuss the current roadblocks in the preventive treatment of PSD. Finally, the authors put postulate potential directions for future studies so as to discover accurate predictors and provide individualized preventive treatment. EXPERT OPINION Sorting out high-risk PSD patients using reliable predictors will greatly assist PSD management. Indeed, some predictors not only predict the incidence of PSD but also predict prognosis, which indicates that they might also aid the development of an individualized treatment scheme. Preventive application of antidepressants may also be considered.
Collapse
Affiliation(s)
- Shuai Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhifang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qinghui Xiao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Senwei Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Yue Y, You L, Zhao F, Zhang K, Shi Y, Tang H, Lu J, Li S, Cao J, Geng D, Wu A, Yuan Y. Common susceptibility variants of KDR and IGF-1R are associated with poststroke depression in the Chinese population. Gen Psychiatr 2023; 36:e100928. [PMID: 36721715 PMCID: PMC9827236 DOI: 10.1136/gpsych-2022-100928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/17/2022] [Indexed: 01/08/2023] Open
Abstract
Background Depression, one of the most frequent complications after stroke, increases the disease's burden and physical disability. Poststroke depression (PSD) is a multifactorial disease with genetic, environmental and biological factors involved in its occurrence. Genetic studies on PSD to date have mainly focused on the monoamine system and brain-derived neurotrophic factors. However, understanding is still limited about the influence of the single nucleotide polymorphism (SNP) of other neurotrophic factors on PSD. Aims The present study aimed to investigate the relationship between seven vascular endothelial growth factor (VEGF) family gene variants that occur with PSD. Methods A multicentre candidate gene study from five hospitals in Jiangsu Province from June 2013 to December 2014 involved 121 patients with PSD and 131 patients with non-PSD. Demographic characteristics and neuropsychological assessments were collected. The χ2 test was used to evaluate categorical variables, while the independent t-test was applied to continuous variables. SNPs in seven genes (VEGFA, VEGFB, KDR, FLT-1, IGF-1, IGF-1R and PlGF) were genotyped. Single-marker association for PSD was analysed by χ2 tests and logistic regression using SPSS and PLINK software. Results Patients with PSD included more women and those with lower education levels, lower body mass indexes, lower Mini-Mental State Examination scores, and higher scores on the 17-item Hamilton Depression Rating Scale than non-PSD patients. Ninety-two SNPs with seven genes were genotyped and passed quality control. The rs7692791 CC genotypes, the C allele of KDR and the rs9282715 T allele of IGF-1R increased the risk for PSD (χ2=7.881, p=0.019; χ2=4.259, p=0.039; χ2=4.222, p=0.040, respectively). In addition, the SNP rs7692791 of KDR was significantly associated with PSD by the logistic regression of an additive model (p=0.015, OR=9.584, 95% CI: 1.549 to 59.31). Conclusions Patients with rs7692791 C allele carriers or the CC genotype of KDR and the rs9282715 T allele of IGF-1R may have PSD susceptibility. Findings such as these may help clinicians to identify the high-risk population for PSD earlier and, thus, enable them to provide more timely interventions. Trial registration number ChiCTR-OCH-13003133.
Collapse
Affiliation(s)
- Yingying Yue
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, Southeast University, Nanjing, China
| | - Linlin You
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, Southeast University, Nanjing, China
| | - Fuying Zhao
- Department of Psychiatry, Suzhou High-Tech Development District Yangshan Community Hospital, Suzhou, China
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanyan Shi
- Department of Neurology, Nanjing First Hospital, Nangjing, China
| | - Hua Tang
- Department of Neurology, The Third People's Hospital of Huai'an, Huai'an, China
| | - Jianxin Lu
- Department of Neurology, People's Hospital of Gaochun County, Nanjing, China
| | - Shenghua Li
- Department of Neurology, The Affiliated Nanjing Jiangning Hospital of Nanjing Medical Hospital, Nanjing, China
| | - Jinxia Cao
- Department of Neurology, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Deqin Geng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Aiqin Wu
- Department of Psychosomatics, The Affiliated First Hospital of Soochow University, Soochow, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, Southeast University, Nanjing, China
| |
Collapse
|
9
|
Guo J, Wang J, Sun W, Liu X. The advances of post-stroke depression: 2021 update. J Neurol 2021; 269:1236-1249. [PMID: 34052887 DOI: 10.1007/s00415-021-10597-4] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022]
Abstract
Post-stroke depression (PSD) is one of common and serious sequelae of stroke. Approximately, one in three stroke survivors suffered from depression after stroke. It heavily affected functional rehabilitation, which leaded to poor quality of life. What is worse, it is strongly associated with high mortality. In this review, we aimed to derive a comprehensive and integrated understanding of PSD according to recently published papers and previous classic articles. Based on the considerable number of studies, we found that within 2 years incidence of PSD has a range from 11 to 41%. Many factors contribute to the occurrence of PSD, including the history of depression, stroke severity, lesion location, and so on. Currently, the diagnosis of PSD is mainly based on the DSM guidelines and combined with various depression scales. Unfortunately, we lack a unified mechanism to explain PSD which mechanisms now involve dysregulation of hypothalamic-pituitary-adrenal (HPA) axis, increased inflammatory factors, decreased levels of monoamines, glutamate-mediated excitotoxicity, and abnormal neurotrophic response. At present, both pharmacotherapy and psychological therapies are employed in treating PSD. Although great advance has been made by researchers, there are still a lot of issues need to be addressed. Especially, the mechanism of PSD is not completely clear.
Collapse
Affiliation(s)
- Jianglong Guo
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Jinjing Wang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wen Sun
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
| | - Xinfeng Liu
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
10
|
Hou Z, Liu X, Jiang W, Hou Z, Yin Y, Xie C, Zhang H, Zhang H, Zhang Z, Yuan Y. Effect of NEUROG3 polymorphism rs144643855 on regional spontaneous brain activity in major depressive disorder. Behav Brain Res 2021; 409:113310. [PMID: 33878431 DOI: 10.1016/j.bbr.2021.113310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 11/15/2022]
Abstract
PURPOSE Our previous study identified a significant association between a single nucleotide polymorphism (SNP) located in the neurogenin3 (NEUROG3) gene and post-stroke depression (PSD) in Chinese populations. The present work explores whether polymorphism rs144643855 affects regional brain activity and clinical phenotypes in major depressive disorder (MDD). METHOD A total of 182 participants were included: 116 MDD patients and 66 normal controls. All participants underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning at baseline. Spontaneous brain activity was assessed using amplitude of low-frequency fluctuation (ALFF). The Hamilton Depression Scale-24 (HAMD-24) and Snaith-Hamilton Pleasure Scale (SHAPS) were used to assess participants at baseline. Two-way analysis of covariance (ANCOVA) was used to explore the interaction between diagnostic groups and NEUROG3 rs144643855 on regional brain activity. We performed correlation analysis to further test the association between these interactive brain regions and clinical manifestations of MDD. RESULTS Genotype and disease significantly interacted in the left inferior frontal gyrus (IFG-L), right superior frontal gyrus (SFG-R), and left paracentral lobule (PCL-L) (P < 0.05). ALFF values of the IFG-L were found to be significantly associated with anhedonia in MDD patients. CONCLUSION These findings suggest a potential relationship between rs144643855 variations and altered frontal brain activity in MDD. NEUROG3 may play an important role in the neuropathophysiology of MDD.
Collapse
Affiliation(s)
- Zhuoliang Hou
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Southeast University, Nanjing, China
| | - Xiaoyun Liu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Southeast University, Nanjing, China
| | - Wenhao Jiang
- Department of Psychology, Georgia State University, Atlanta, USA
| | - Zhenghua Hou
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Southeast University, Nanjing, China
| | - Yingying Yin
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Southeast University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China; The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Haisan Zhang
- Departments of Clinical Magnetic Resonance Imaging, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongxing Zhang
- Departments of Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhijun Zhang
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China; The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Southeast University, Nanjing, China; The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| |
Collapse
|
11
|
Park JJ, Kim BJ, Youn DH, Choi HJ, Jeon JP. A Preliminary Study of the Association between SOX17 Gene Variants and Intracranial Aneurysms Using Exome Sequencing. J Korean Neurosurg Soc 2020; 63:559-565. [PMID: 32380586 PMCID: PMC7477156 DOI: 10.3340/jkns.2019.0225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/22/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Conflicting results regarding SOX17 genes and the risk of intracranial aneurysms (IA) exist in the Korean population, although significant positive correlations were noted in genome-wide association studies in European and Japanese populations. Therefore, we aimed to investigate an association between SOX17 gene variants and IA using exome sequencing data. METHODS This study included 26 age-gender matched IA patients and 26 control subjects. The SOX17 gene variants identified from whole-exome sequencing data were examined. Genetic associations to estimate odds ratio (OR) and 95% confidence interval (CI) were performed using the software EPACTS. RESULTS The mean age of the IA and control groups were 51.0±9.3 years and 49.4±14.3 years, respectively (p=0.623). Seven variants of SOX17, including six single nucleotide polymorphisms and one insertion and deletion, were observed. Among these variants, rs12544958 (A>G) showed the most association with IA, but the association was not statistically significant (OR, 1.97; 95% CI, 0.81-4.74; p=0.125). Minor allele frequencies of the IA patients and controls were 0.788 and 0.653, respectively. None of the remaining variants were significantly associated with IA formation. CONCLUSION No significant association between SOX17 gene variants and IA were noted in the Korean population. A large-scale exome sequencing study is necessary to investigate any Korean-specific genetic susceptibility to IA.
Collapse
Affiliation(s)
- Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul, Korea
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Hyuk Jai Choi
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| | - Jin Pyeong Jeon
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| |
Collapse
|