1
|
Li S, Yang D, Zhou X, Chen L, Liu L, Lin R, Li X, Liu Y, Qiu H, Cao H, Liu J, Cheng Q. Neurological and metabolic related pathophysiologies and treatment of comorbid diabetes with depression. CNS Neurosci Ther 2024; 30:e14497. [PMID: 37927197 PMCID: PMC11017426 DOI: 10.1111/cns.14497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The comorbidity between diabetes mellitus and depression was revealed, and diabetes mellitus increased the prevalence of depressive disorder, which ranked 13th in the leading causes of disability-adjusted life-years. Insulin resistance, which is common in diabetes mellitus, has increased the risk of depressive symptoms in both humans and animals. However, the mechanisms behind the comorbidity are multi-factorial and complicated. There is still no causal chain to explain the comorbidity exactly. Moreover, Selective serotonin reuptake inhibitors, insulin and metformin, which are recommended for treating diabetes mellitus-induced depression, were found to be a risk factor in some complications of diabetes. AIMS Given these problems, many researchers made remarkable efforts to analyze diabetes complicating depression from different aspects, including insulin resistance, stress and Hypothalamic-Pituitary-Adrenal axis, neurological system, oxidative stress, and inflammation. Drug therapy, such as Hydrogen Sulfide, Cannabidiol, Ascorbic Acid and Hesperidin, are conducive to alleviating diabetes mellitus and depression. Here, we reviewed the exact pathophysiology underlying the comorbidity between depressive disorder and diabetes mellitus and drug therapy. METHODS The review refers to the available literature in PubMed and Web of Science, searching critical terms related to diabetes mellitus, depression and drug therapy. RESULTS In this review, we found that brain structure and function, neurogenesis, brain-derived neurotrophic factor and glucose and lipid metabolism were involved in the pathophysiology of the comorbidity. Obesity might lead to diabetes mellitus and depression through reduced adiponectin and increased leptin and resistin. In addition, drug therapy displayed in this review could expand the region of potential therapy. CONCLUSIONS The review summarizes the mechanisms underlying the comorbidity. It also overviews drug therapy with anti-diabetic and anti-depressant effects.
Collapse
Affiliation(s)
- Sixin Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Dong Yang
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Xuhui Zhou
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of GastroenterologyBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lini Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ruoheng Lin
- Department of Psychiatry, National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ying Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Hui Cao
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital, Hunan University of Chinese MedicineChangshaHunanChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
2
|
Martos D, Lőrinczi B, Szatmári I, Vécsei L, Tanaka M. The Impact of C-3 Side Chain Modifications on Kynurenic Acid: A Behavioral Analysis of Its Analogs in the Motor Domain. Int J Mol Sci 2024; 25:3394. [PMID: 38542368 PMCID: PMC10970565 DOI: 10.3390/ijms25063394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
The central nervous system (CNS) is the final frontier in drug delivery because of the blood-brain barrier (BBB), which poses significant barriers to the access of most drugs to their targets. Kynurenic acid (KYNA), a tryptophan (Trp) metabolite, plays an important role in behavioral functions, and abnormal KYNA levels have been observed in neuropsychiatric conditions. The current challenge lies in delivering KYNA to the CNS owing to its polar side chain. Recently, C-3 side chain-modified KYNA analogs have been shown to cross the BBB; however, it is unclear whether they retain the biological functions of the parent molecule. This study examined the impact of KYNA analogs, specifically, SZR-72, SZR-104, and the newly developed SZRG-21, on behavior. The analogs were administered intracerebroventricularly (i.c.v.), and their effects on the motor domain were compared with those of KYNA. Specifically, open-field (OF) and rotarod (RR) tests were employed to assess motor activity and skills. SZR-104 increased horizontal exploratory activity in the OF test at a dose of 0.04 μmol/4 μL, while SZR-72 decreased vertical activity at doses of 0.04 and 0.1 μmol/4 μL. In the RR test, however, neither KYNA nor its analogs showed any significant differences in motor skills at either dose. Side chain modification affects affective motor performance and exploratory behavior, as the results show for the first time. In this study, we showed that KYNA analogs alter emotional components such as motor-associated curiosity and emotions. Consequently, drug design necessitates the development of precise strategies to traverse the BBB while paying close attention to modifications in their effects on behavior.
Collapse
Affiliation(s)
- Diána Martos
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry and HUN-REN–SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.)
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and HUN-REN–SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.L.); (I.S.)
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged, Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| |
Collapse
|
3
|
Liu W, Yuan J, Wu Y, Xu L, Wang X, Meng J, Wei Y, Zhang Y, Kang CY, Yang JZ. A randomized controlled trial of mindfulness-based cognitive therapy for major depressive disorder in undergraduate students: Dose- response effect, inflammatory markers and BDNF. Psychiatry Res 2024; 331:115671. [PMID: 38101069 DOI: 10.1016/j.psychres.2023.115671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
To examine the dose-response effect of mindfulness-based cognitive therapy (MBCT) for college students with major depressive disorder (MDD), a randomized control trial with MBCT and a wait-list (WL) group was performed. All participants were invited to self-administer a set of questionnaires at baseline, mid-intervention (4th week), and post-intervention (8th week) by the 9-item Patient Health Questionnaire (PHQ-9), the 7-item Generalized Anxiety Disorder scale (GAD-7), the Pittsburgh Sleep Quality Index (PSQI), the Five Facet Mindfulness Questionnaire (FFMQ), the Self-Compassion Scale (SCS). The serum levels of IL-1β, IL-6, IL-8, TNF-α, BDNF were detected at baseline and post-intervention. After intervention, the scores of PHQ-9, GAD-7, PSQI, and the levels of IL-1β, IL-6, IL-8 and TNF-α in the MBCT were significantly lower than those in WL group, and total scores of FFMQ, SCS, and the level of BDNF were significantly higher than those in WL group. In MBCT group, daily practice time and session numbers positively related to reduction rates of PHQ-9, GAD-7 and PSQI at post-intervention. The reduction rate of PHQ-9, GAD-7 and PSQI at post-intervention in the completers were higher significantly than those in the partial attendees. These findings suggested MBCT is effective for MDD, and the intervention has a dose-response effect. TRIAL REGISTRATION: Registration number is [ChiCTR2100044309].
Collapse
Affiliation(s)
- Wei Liu
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jing Yuan
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yun Wu
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Li Xu
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xin Wang
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Junyu Meng
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yujun Wei
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Zhang
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chuan-Yuan Kang
- Department of Psychosomatic Medicine, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, 200120, China.
| | - Jian-Zhong Yang
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China; Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Wu A, Zhang J. Neuroinflammation, memory, and depression: new approaches to hippocampal neurogenesis. J Neuroinflammation 2023; 20:283. [PMID: 38012702 PMCID: PMC10683283 DOI: 10.1186/s12974-023-02964-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
As one of most common and severe mental disorders, major depressive disorder (MDD) significantly increases the risks of premature death and other medical conditions for patients. Neuroinflammation is the abnormal immune response in the brain, and its correlation with MDD is receiving increasing attention. Neuroinflammation has been reported to be involved in MDD through distinct neurobiological mechanisms, among which the dysregulation of neurogenesis in the dentate gyrus (DG) of the hippocampus (HPC) is receiving increasing attention. The DG of the hippocampus is one of two niches for neurogenesis in the adult mammalian brain, and neurotrophic factors are fundamental regulators of this neurogenesis process. The reported cell types involved in mediating neuroinflammation include microglia, astrocytes, oligodendrocytes, meningeal leukocytes, and peripheral immune cells which selectively penetrate the blood-brain barrier and infiltrate into inflammatory regions. This review summarizes the functions of the hippocampus affected by neuroinflammation during MDD progression and the corresponding influences on the memory of MDD patients and model animals.
Collapse
Affiliation(s)
- Anbiao Wu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
5
|
Song J. Amygdala activity and amygdala-hippocampus connectivity: Metabolic diseases, dementia, and neuropsychiatric issues. Biomed Pharmacother 2023; 162:114647. [PMID: 37011482 DOI: 10.1016/j.biopha.2023.114647] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
With rapid aging of the population worldwide, the number of people with dementia is dramatically increasing. Some studies have emphasized that metabolic syndrome, which includes obesity and diabetes, leads to increased risks of dementia and cognitive decline. Factors such as insulin resistance, hyperglycemia, high blood pressure, dyslipidemia, and central obesity in metabolic syndrome are associated with synaptic failure, neuroinflammation, and imbalanced neurotransmitter levels, leading to the progression of dementia. Due to the positive correlation between diabetes and dementia, some studies have called it "type 3 diabetes". Recently, the number of patients with cognitive decline due to metabolic imbalances has considerably increased. In addition, recent studies have reported that neuropsychiatric issues such as anxiety, depressive behavior, and impaired attention are common factors in patients with metabolic disease and those with dementia. In the central nervous system (CNS), the amygdala is a central region that regulates emotional memory, mood disorders, anxiety, attention, and cognitive function. The connectivity of the amygdala with other brain regions, such as the hippocampus, and the activity of the amygdala contribute to diverse neuropathological and neuropsychiatric issues. Thus, this review summarizes the significant consequences of the critical roles of amygdala connectivity in both metabolic syndromes and dementia. Further studies on amygdala function in metabolic imbalance-related dementia are needed to treat neuropsychiatric problems in patients with this type of dementia.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
6
|
Zhu X, Zhang F, You Y, Wang H, Yuan S, Wu B, Zhu R, Liu D, Yan F, Wang Z. S-Ketamine Exerts Antidepressant Effects by Regulating Rac1 GTPase Mediated Synaptic Plasticity in the Hippocampus of Stressed Rats. Cell Mol Neurobiol 2023; 43:299-314. [PMID: 35083636 PMCID: PMC11415159 DOI: 10.1007/s10571-021-01180-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023]
Abstract
Clinical studies have found that ketamine has a rapid and lasting antidepressant effect, especially in the case of patients with major depressive disorder (MDD). The molecular mechanisms, however, remain unclear. In this study, we observe the effects of S-Ketamine on the expression of Rac1, neuronal morphology, and synaptic transmission function in the hippocampus of stressed rats. Chronic unpredictable mild stress (CUMS) was used to construct stressed rats. The rats were given a different regimen of ketamine (20 mg/kg, i.p.) and Rac1 inhibitor NSC23766 (50 µg, ICV) treatment. The depression-like behavior of rats was evaluated by sucrose preference test and open-field test. The protein expression of Rac1, GluA1, synapsin1, and PSD95 in the hippocampus was detected by Western blot. Pull-down analysis was used to examine the activity of Rac1. Golgi staining and electrophysiological study were used to observe the neuronal morphology and long-term potentiation (LTP). Our results showed that ketamine can up-regulate the expression and activity of Rac1; increase the spine density and the expression of synaptic-related proteins such as GluA1, Synapsin1, and PSD95 in the hippocampus of stressed rats; reduce the CUMS-induced LTP impairments; and consequently improve depression-like behavior. However, Rac1 inhibitor NSC23766 could have effectively reversed ketamine-mediated changes in the hippocampus of rats and counteracted its antidepressant effects. The specific mechanism of S-Ketamine's antidepressant effect may be related to the up-regulation of the expression and activity of Rac1 in the hippocampus of stressed rats, thus enhancing synaptic plasticity.
Collapse
Affiliation(s)
- Xianlin Zhu
- Department of Anesthesiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, 445000, Hubei Province, China
| | - Fan Zhang
- Department of Anesthesiology, Bishan Hospital, Bishan, Chongqing, 402760, China
| | - Yufeng You
- Department of Radiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, 445000, Hubei Province, China
| | - Hongbai Wang
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Su Yuan
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Banglin Wu
- Department of Anesthesiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, 445000, Hubei Province, China
| | - Rongyu Zhu
- Department of Anesthesiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, 445000, Hubei Province, China
| | - Dawei Liu
- Department of Anesthesiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Fuxia Yan
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China.
| | - Zaiping Wang
- Department of Anesthesiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, 445000, Hubei Province, China.
| |
Collapse
|
7
|
Mottarlini F, Rizzi B, Targa G, Fumagalli F, Caffino L. Long-lasting BDNF signaling alterations in the amygdala of adolescent female rats exposed to the activity-based anorexia model. Front Behav Neurosci 2022; 16:1087075. [PMID: 36570702 PMCID: PMC9772010 DOI: 10.3389/fnbeh.2022.1087075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction: Anorexia nervosa (AN) is a severe psychiatric disorder characterized by a pathological fear of gaining weight, excessive physical exercise, and emotional instability. Since the amygdala is a key region for emotion processing and BDNF has been shown to play a critical role in this process, we hypothesized that alteration in the amygdalar BDNF system might underline vulnerability traits typical of AN patients. Methods: To this end, adolescent female rats have been exposed to the Activity-Based Anorexia (ABA) protocol, characterized by the combination of caloric restriction and intense physical exercise. Results: The induction of the anorexic phenotype caused hyperactivity and body weight loss in ABA animals. These changes were paralleled by amygdalar hyperactivation, as measured by the up-regulation of cfos mRNA levels. In the acute phase of the pathology, we observed reduced Bdnf exon IX, exon IV, and exon VI gene expression, while mBDNF protein levels were enhanced, an increase that was, instead, uncoupled from its downstream signaling as the phosphorylation of TrkB, Akt, and S6 in ABA rats were reduced. Despite the body weight recovery observed 7 days later, the BDNF-mediated signaling was still downregulated at this time point. Discussion: Our findings indicate that the BDNF system is downregulated in the amygdala of adolescent female rats under these experimental conditions, which mimic the anorexic phenotype in humans, pointing to such dysregulation as a potential contributor to the altered emotional processing observed in AN patients. In addition, since the modulation of BDNF levels is observed in other psychiatric conditions, the persistent AN-induced changes of the BDNF system in the amygdala might contribute to explaining the onset of comorbid psychiatric disorders that persist in patients even beyond recovery from AN.
Collapse
|
8
|
Tiwari S, Qi L, Wong J, Han Z. Association of peripheral manifestation of brain-derived neurotrophic factor with depression: A meta-analysis. Brain Behav 2022; 12:e32581. [PMID: 35510613 PMCID: PMC9226806 DOI: 10.1002/brb3.2581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/03/2022] [Accepted: 03/26/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The relationship between brain-derived neurotrophic factor (BDNF) and depression is a hot topic in research as several results of preclinical and clinical studies have shown controversial results. Our meta-analysis aims to evaluate and update the current status of peripheral BDNF with depression. METHODS We performed a meta-analysis by comprehensively searching PubMed and Web of Science for English-language literature from inception to 1st of June 2020. The search terms included brain-derived neurotrophic factor or BDNF in combination with depression, without year restriction. Using STATA software, data were pooled using a random-effects model. RESULTS In our literature search, 24 studies involving 1130 depressed patients and 1378 healthy individuals met our inclusion criteria. The results of our meta-analysis showed that the peripheral levels of BDNF levels significantly decreased in depression than nondepressed healthy controls (SMD = -0.89, 95% CI = -1.41, -0.38, p < .0001); however, the significant heterogeneity among studies (Q = 740.91, I2 = 96.8; p < .001) was discovered. Trim-and-fill estimations for the adjustment of publication bias indicated that publication bias had no impact on our results. Our sub-group analysis showed that a history of depression and alcohol consumption had an effect on the level of BDNF. In addition, age and gender did not affect the heterogeneity of BDNF in the meta-analysis. CONCLUSIONS Although decreased peripheral expression of BDNF certainly presents a risk of depression, we cannot find a definite relationship between the peripheral level of BDNF with depression to use BDNF as a reliable biomarker to assess the depression in clinical practice. We propose that future research should consider all the factors affecting BDNF and assess the level of proBDNF and mBDNF separately while evaluating the patients with depression objectively.
Collapse
Affiliation(s)
- Sagun Tiwari
- Department of Neurology and Rehabilitation, Seventh People's Hospital of Shanghai University of TCM, Shanghai, P. R. China.,International Education College, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Lili Qi
- Department of Emergency Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of TCM, Shanghai, P. R. China
| | - John Wong
- School of Nursing and Department of Occupational Therapy, MGH Institute of Health Professions, Boston, Massachusetts, USA
| | - Zhenxiang Han
- Department of Neurology and Rehabilitation, Seventh People's Hospital of Shanghai University of TCM, Shanghai, P. R. China
| |
Collapse
|
9
|
Psychological Status, Compliance, Serum Brain-Derived Neurotrophic Factor, and Nerve Growth Factor Levels of Patients with Depression after Augmented Mindfulness-Based Cognitive Therapy. Genet Res (Camb) 2022; 2022:1097982. [PMID: 35069013 PMCID: PMC8752293 DOI: 10.1155/2022/1097982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
Objective Mindfulness-based cognitive therapy (MBCT) is a cost-effective psychosocial program that prevents relapse/recurrence in major depression. The present study aimed to analyze the effects of augmented MBCT along with standard treatment dominated by pharmacotherapy on psychological state, compliance, brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) expression levels in patients with depression. Methods A total of 160 eligible patients with depression in The First Affiliated Hospital of Zhengzhou University were included in this study. The study randomly assigned the patients to the experimental group (n = 80) and control group (n = 80). All participants were assessed with the questionnaires including the 17-item Hamilton Depression Rating Scale (HAMD-17), Rosenberg Self-esteem Scale (RSES), Self-Acceptance Questionnaire (SAQ), and Stigma Scale (Scale of Stigma in People with Mental Illness, SSPM). The serum levels of BDNF and NGF were detected by enzyme-linked immunosorbent assay (ELISA). Results After 8 weeks of treatment, the experimental group showed significant lower HAMD-17 score, higher RSES, and SAQ score, as well as lower SSPM score compared with the control group (P < 0.01). Furthermore, ELISA revealed that the serum levels of BDNF and NGF remarkably increased in the experimental group after treatment (P < 0.001). Conclusions Our data showed that augmented MBCT combined with pharmacotherapy contributed to improvement on patients' psychological state, compliance, and disease recurrence.
Collapse
|
10
|
Li G, Liu J, Guan Y, Ji X. The role of hypoxia in stem cell regulation of the central nervous system: From embryonic development to adult proliferation. CNS Neurosci Ther 2021; 27:1446-1457. [PMID: 34817133 PMCID: PMC8611781 DOI: 10.1111/cns.13754] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is involved in the regulation of various cell functions in the body, including the regulation of stem cells. The hypoxic microenvironment is indispensable from embryonic development to the regeneration and repair of adult cells. In addition to embryonic stem cells, which need to maintain their self-renewal properties and pluripotency in a hypoxic environment, adult stem cells, including neural stem cells (NSCs), also exist in a hypoxic microenvironment. The subventricular zone (SVZ) and hippocampal dentate gyrus (DG) are the main sites of adult neurogenesis in the brain. Hypoxia can promote the proliferation, migration, and maturation of NSCs in these regions. Also, because most neurons in the brain are non-regenerative, stem cell transplantation is considered as a promising strategy for treating central nervous system (CNS) diseases. Hypoxic treatment also increases the effectiveness of stem cell therapy. In this review, we firstly describe the role of hypoxia in different stem cells, such as embryonic stem cells, NSCs, and induced pluripotent stem cells, and discuss the role of hypoxia-treated stem cells in CNS diseases treatment. Furthermore, we highlight the role and mechanisms of hypoxia in regulating adult neurogenesis in the SVZ and DG and adult proliferation of other cells in the CNS.
Collapse
Affiliation(s)
- Gaifen Li
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jia Liu
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
| | - Yuying Guan
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xunming Ji
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Abstract
Transcranial direct current stimulation (tDCS) is a novel treatment option for major depression which could be provided as a first-line treatment. tDCS is a non-invasive form of transcranial stimulation which changes cortical tissue excitability by applying a weak (0.5-2 mA) direct current via scalp electrodes. Anodal and cathodal stimulation leads to depolarisation and hyperpolarisation, respectively, and cumulative effects are observed with repeated sessions. The montage in depression most often involves anodal stimulation to the left dorsolateral prefrontal cortex. Rates of clinical response, remission, and improvements in depressive symptoms following a course of active tDCS are greater in comparison to a course of placebo sham-controlled tDCS. In particular, the largest treatment effects are evident in first episode and recurrent major depression, while minimal effects have been observed in treatment-resistant depression. The proposed mechanism is neuroplasticity at the cellular and molecular level. Alterations in neural responses have been found at the stimulation site as well as subcortically in prefrontal-amygdala connectivity. A possible mediating effect could be cognitive control in emotion dysregulation. Additional beneficial effects on cognitive impairments have been reported, which would address an important unmet need. The tDCS device is portable and can be used at home. Clinical trials are required to establish the efficacy, feasibility and acceptability of home-based tDCS treatment and mechanisms.
Collapse
Affiliation(s)
- Rachel Woodham
- School of Psychology, University of East London, London, UK
| | | | - Julian Mutz
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Cynthia H Y Fu
- School of Psychology, University of East London, London, UK.,Centre for Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
12
|
Woods SP, Babicz M, Shahani L, Colpo GD, Morgan EE, Teixeira AL. Brain-derived neurotrophic factor (BDNF) is associated with depressive symptoms in older adults with HIV disease. J Neurovirol 2020; 27:70-79. [PMID: 33145707 DOI: 10.1007/s13365-020-00916-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
Symptoms of depression are common among persons with HIV (PWH) and can have a significant impact on socioeconomic and personal well-being, but little is known about their neurobiological substrates in the context of HIV disease. This study examined the possible role of brain-derived neurotrophic factor (BDNF) in symptoms of depression and other aspects of mood in 109 PWH and 43 seronegative participants aged 50 and older. Participants completed the Profile of Mood States (POMS) which measured six dimensions of mood and was normatively adjusted for sex. A model controlling for medical comorbidities and substance use diagnoses among PWH showed a significant interaction between BDNF and POMS subscales. Planned post hoc analyses revealed that lower BDNF was only associated with higher scores on Depression-Dejection and Confusion-Bewilderment POMS subscales among PWH and at small-to-medium effect sizes. Lower levels of BDNF were associated with AIDS diagnoses and CD4 count, but not with viremia or duration of infection. BDNF levels did not differ between the PWH and HIV - samples, and there were no significant correlations between BDNF and any POMS variable in the HIV - group. Findings implicate BDNF in the neuropathophysiology of specific depressive symptoms in the context of HIV disease. Future studies may examine whether BDNF levels change over time, are sensitive to other aspects of mood disorders in HIV, and are associated with markers of HIV-associated neural injury.
Collapse
Affiliation(s)
- Steven Paul Woods
- Department of Psychology, University of Houston, 126 Heyne Bldg., Houston, TX, 77004, USA.
| | - Michelle Babicz
- Department of Psychology, University of Houston, 126 Heyne Bldg., Houston, TX, 77004, USA
| | - Lokesh Shahani
- Neuropsychiatry Program, Department of Psychiatry & Behavioral Science, University of Texas Health Sciences Center At Houston, Houston, TX, 77204, USA
| | - Gabriela Delevati Colpo
- Neuropsychiatry Program, Department of Psychiatry & Behavioral Science, University of Texas Health Sciences Center At Houston, Houston, TX, 77204, USA
| | - Erin E Morgan
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Antonio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry & Behavioral Science, University of Texas Health Sciences Center At Houston, Houston, TX, 77204, USA
| |
Collapse
|
13
|
Spuhler K, Serrano-Sosa M, Cattell R, DeLorenzo C, Huang C. Full-count PET recovery from low-count image using a dilated convolutional neural network. Med Phys 2020; 47:4928-4938. [PMID: 32687608 DOI: 10.1002/mp.14402] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/11/2020] [Accepted: 07/10/2020] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Positron emission tomography (PET) is an essential technique in many clinical applications that allows for quantitative imaging at the molecular level. This study aims to develop a denoising method using a novel dilated convolutional neural network (CNN) to recover full-count images from low-count images. METHODS We adopted similar hierarchical structures as the conventional U-Net and incorporated dilated kernels in each convolution to allow the network to observe larger, more robust features within the image without the requirement of downsampling and upsampling internal representations. Our dNet was trained alongside a U-Net for comparison. Both models were evaluated using a leave-one-out cross-validation procedure on a dataset of 35 subjects (~3500 slabs), which were obtained from an ongoing 18 F-Fluorodeoxyglucose (FDG) study. Low-count PET data (10% count) were generated by randomly selecting one-tenth of all events in the associated listmode file. Analysis was done on the static image from the last 10 minutes of emission data. Both low-count PET and full-count PET were reconstructed using ordered subset expectation maximization (OSEM). Objective image quality metrics, including mean absolute percent error (MAPE), peak signal-to-noise ratio (PSNR), and structural similarity index metric (SSIM), were used to analyze the deep learning methods. Both deep learning methods were further compared to a traditional Gaussian filtering method. Further, region of interest (ROI) quantitative analysis was also used to compare U-Net and dNet architectures. RESULTS Both the U-Net and our proposed network were successfully trained to synthesize full-count PET images from the generated low-count PET images. Compared to low-count PET and Gaussian filtering, both deep learning methods improved MAPE, PSNR, and SSIM. Our dNet also systematically outperformed U-Net on all three metrics (MAPE: 4.99 ± 0.68 vs 5.31 ± 0.76, P < 0.01; PSNR: 31.55 ± 1.31 dB vs 31.05 ± 1.39, P < 0.01; SSIM: 0.9513 ± 0.0154 vs 0.9447 ± 0.0178, P < 0.01). ROI quantification showed greater quantitative improvements using dNet over U-Net. CONCLUSION This study proposed a novel approach of using dilated convolutions for recovering full-count PET images from low-count PET images.
Collapse
Affiliation(s)
- Karl Spuhler
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Mario Serrano-Sosa
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Renee Cattell
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Christine DeLorenzo
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Chuan Huang
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
- Department of Radiology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|