1
|
Li X, Su W, Cai L. A bibliometric analysis of research on dementia comorbid with depression from 2005 to 2024. Front Neurosci 2025; 19:1508662. [PMID: 39981405 PMCID: PMC11841476 DOI: 10.3389/fnins.2025.1508662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction With the global rise in life expectancy, the incidence of dementia is increasing, often accompanied by depressive symptoms. Understanding the interplay between dementia and depression is crucial, as depression may not only co-occur with but also potentially exacerbate the progression of dementia. This study employs bibliometric analysis to map the global research landscape, identify prevailing themes, and discern future research directions. Methods We analyzed reviews and original research articles on dementia and depression extracted from the Web of Science Core Collection spanning from 2005 to 2024. Utilizing tools such as CiteSpace, VOSviewer, and an R-based bibliometric analysis package, we assessed trends in publication volume, citation frequency, contributing countries, leading institutions, predominant journals, influential authors, and emergent keywords. Results A total of 1972 publications were obtained, revealing a consistent increase in both the number of publications and their citation impact over the study period. The United States is the country with the most publications and the most extensive collaborations. The University of Toronto and the Journal of Alzheimer's Disease were identified as key contributors to this field. This research area is currently focused on cognitive impairments, the role of gut microbiota, and non-drug interventions. Future directions emphasize the importance of early detection and intervention, a deeper understanding of the gut-brain axis, and the integration of technology in treatment strategies. Additionally, there is a growing interest in the physiological and psychological interplays such as oxidative stress and its implications. Conclusion This study underscores pathogenesis, comorbid conditions, and non-drug interventions as primary research focal points, suggesting these areas as potential pathways for therapeutic innovation. These insights are intended to deepen our understanding, enhance diagnostics, and improve the management of dementia and depression, providing guidance for future research aimed at addressing these escalating global health challenges.
Collapse
Affiliation(s)
| | - Wei Su
- Department of Psychiatry, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, China
| | | |
Collapse
|
2
|
Huang YY, Gan YH, Yang L, Cheng W, Yu JT. Depression in Alzheimer's Disease: Epidemiology, Mechanisms, and Treatment. Biol Psychiatry 2024; 95:992-1005. [PMID: 37866486 DOI: 10.1016/j.biopsych.2023.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023]
Abstract
Depression and Alzheimer's disease (AD) are substantial public health concerns. In the past decades, a link between the 2 disease entities has received extensive acknowledgment, yet the complex nature of this relationship demands further clarification. Some evidence indicates that midlife depression may be an AD risk factor, while a chronic course of depression in late life may be a precursor to or symptom of dementia. Recently, multiple pathophysiological mechanisms have been proposed to underlie the bidirectional relationship between depression and AD, including genetic predisposition, immune dysregulation, accumulation of AD-related biomarkers (e.g., amyloid-β and tau), and alterations in brain structure. Accordingly, numerous therapeutic approaches, such as pharmacology treatments, psychotherapy, and lifestyle interventions, have been suggested as potential means of interfering with these pathways. However, the current literature on this topic remains fragmented and lacks a comprehensive review characterizing the association between depression and AD. In this review, we aim to address these gaps by providing an overview of the co-occurrence and temporal relationship between depression and AD, as well as exploring their underlying mechanisms. We also examine the current therapeutic regimens for depression and their implications for AD management and outline key challenges facing the field.
Collapse
Affiliation(s)
- Yu-Yuan Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Han Gan
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Du R, Yang K, Li W, Wang Z, Cai H. Research status and global trends of late-life depression from 2004 to 2023: bibliometric analysis. Front Aging Neurosci 2024; 16:1393110. [PMID: 38752209 PMCID: PMC11095109 DOI: 10.3389/fnagi.2024.1393110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Background Global research hotspots and future research trends in the neurobiological mechanisms of late-life depression (LLD) as well as its diagnosis and treatment are not yet clear. Objectives This study profiled the current state of global research on LLD and predicted future research trends in the field. Methods Literature with the subject term LLD was retrieved from the Web of Science Core Collection, and CiteSpace software was used to perform econometric and co-occurrence analyses. The results were visualized using CiteSpace, VOSviewer, and other software packages. Results In total, 10,570 publications were included in the analysis. Publications on LLD have shown an increasing trend since 2004. The United States and the University of California had the highest number of publications, followed consecutively by China and England, making these countries and institutions the most influential in the field. Reynolds, Charles F. was the author with the most publications. The International Journal of Geriatric Psychiatry was the journal with the most articles and citations. According to the co-occurrence analysis and keyword/citation burst analysis, cognitive impairment, brain network dysfunction, vascular disease, and treatment of LLD were research hotspots. Conclusion Late-life depression has attracted increasing attention from researchers, with the number of publications increasing annually. However, many questions remain unaddressed in this field, such as the relationship between LLD and cognitive impairment and dementia, or the impact of vascular factors and brain network dysfunction on LLD. Additionally, the treatment of patients with LLD is currently a clinical challenge. The results of this study will help researchers find suitable research partners and journals, as well as predict future hotspots.
Collapse
Affiliation(s)
| | | | | | - Zhiren Wang
- Huilongguan Clinical Medical School of Peking University, Beijing Huilongguan Hospital, Beijing, China
| | - Haipeng Cai
- Huilongguan Clinical Medical School of Peking University, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
4
|
Cumplido-Mayoral I, Brugulat-Serrat A, Sánchez-Benavides G, González-Escalante A, Anastasi F, Milà-Alomà M, López-Martos D, Akinci M, Falcón C, Shekari M, Cacciaglia R, Arenaza-Urquijo EM, Minguillón C, Fauria K, Molinuevo JL, Suárez-Calvet M, Grau-Rivera O, Vilaplana V, Gispert JD. The mediating role of neuroimaging-derived biological brain age in the association between risk factors for dementia and cognitive decline in middle-aged and older individuals without cognitive impairment: a cohort study. THE LANCET. HEALTHY LONGEVITY 2024; 5:e276-e286. [PMID: 38555920 DOI: 10.1016/s2666-7568(24)00025-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Neuroimaging-based brain-age delta has been shown to be a mediator linking cardiovascular risk factors to cognitive function. We aimed to assess the mediating role of brain-age delta in the association between modifiable risk factors of dementia and longitudinal cognitive decline in middle-aged and older individuals who are asymptomatic, stratified by Alzheimer's disease pathology. We also explored whether the mediation effect is specific to cognitive domain. METHODS In this cohort study, we included participants from the ALFA+ cohort aged between 45 years and 65 years who were cognitively unimpaired and who had available structural MRI, cerebrospinal fluid β-amyloid (Aβ)42 and Aβ40 measurements obtained within 1 year of each other, modifiable risk factors assessment, and cognitive evaluation over 3 years. Participants were recruited from the Barcelonaβeta Brain Research Center (Barcelona, Spain). Included individuals underwent a first assessment between Oct 25, 2016, and Jan 28, 2020, and a follow-up cognitive assessment 3·28 (SD 0·27) years later. We computed brain-age delta and composites of different cognitive function domains (preclinical Alzheimer's cognitive composite [PACC], attention, executive function, episodic memory, visual processing, and language). We used partial least squares path modelling to explore mediation effects in the associations between modifiable risk factors (including cardiovascular, mental health, mood, metabolic or endocrine history, and alcohol use) and changes in cognitive composites. To assess the role of Alzheimer's disease pathology, we computed separate models for Aβ-negative and Aβ-positive individuals. FINDINGS Of the 419 participants enrolled in ALFA+, 302 met our inclusion criteria, of which 108 participants were classified as Aβ-positive and 194 as Aβ-negative. In Aβ-positive individuals, brain-age delta partially mediated (percent mediation proportion 15·73% [95% CI 14·22-16·66]) the association between modifiable risk factors and decline in overall cognition (across cognitive domains). Brain-age delta fully mediated (mediation proportion 28·03% [26·25-29·21]) the effect of modifiable risk factors on the PACC, wherein increased values for risk factors correlated with an older brain-age delta, and, consequently, an older brain-age delta was linked to greater PACC decline. This effect appears to be primarily driven by memory decline. Mediation was not significant in Aβ-negative individuals (3·52% [0·072-4·17]) on PACC, although path coefficients were not significantly different from those in the Aβ-positive group. INTERPRETATION Our findings suggest that brain-age delta captures the association between modifiable risk factors and longitudinal cognitive decline in middle-aged and older people. In asymptomatic middle-aged and older individuals who are Aβ-positive, the pathology might be the strongest driver of cognitive decline, whereas the effect of risk factors is smaller. Our results highlight the potential of brain-age delta as an objective outcome measure for preventive lifestyle interventions targeting cognitive decline. FUNDING La Caixa Foundation, the TriBEKa Imaging Platform, and the Universities and Research Secretariat of the Catalan Government. TRANSLATION For the Spanish translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Irene Cumplido-Mayoral
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Biomedicine, Universitat Pompeu Fabra, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain
| | - Anna Brugulat-Serrat
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain; Global Brain Health Institute, San Francisco, CA, USA
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | - Armand González-Escalante
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Biomedicine, Universitat Pompeu Fabra, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain
| | - Federica Anastasi
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Milà-Alomà
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Department of Veterans Affairs Medical Center, Northern California Institute for Research and Education, San Francisco, CA, USA; Department of Radiology, University of California, San Francisco, CA, USA
| | - David López-Martos
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain
| | - Muge Akinci
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Biomedicine, Universitat Pompeu Fabra, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; Barcelona Institute of Global Health, Barcelona, Spain
| | - Carles Falcón
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Biomedicine, Universitat Pompeu Fabra, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Carolina Minguillón
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; H Lundbeck, Copenhagen, Denmark
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain; Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain; Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Verónica Vilaplana
- Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| |
Collapse
|
5
|
Cortes-Flores H, Torrandell-Haro G, Brinton RD. Association between CNS-active drugs and risk of Alzheimer's and age-related neurodegenerative diseases. Front Psychiatry 2024; 15:1358568. [PMID: 38487578 PMCID: PMC10937406 DOI: 10.3389/fpsyt.2024.1358568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
Objective As neuropsychiatric conditions can increase the risk of age-related neurodegenerative diseases (NDDs), the impact of CNS-active drugs on the risk of developing Alzheimer's Disease (AD), non-AD dementia, Multiple Sclerosis (MS), Parkinson's Disease (PD) and Amyotrophic Lateral Sclerosis (ALS) was investigated. Research design and methods A retrospective cohort analysis of a medical claims dataset over a 10 year span was conducted in patients aged 60 years or older. Participants were propensity score matched for comorbidity severity and demographic parameters. Relative risk (RR) ratios and 95% confidence intervals (CI) were determined for age-related NDDs. Cumulative hazard ratios and treatment duration were determined to assess the association between CNS-active drugs and NDDs at different ages and treatment duration intervals. Results In 309,128 patients who met inclusion criteria, exposure to CNS-active drugs was associated with a decreased risk of AD (0.86% vs 1.73%, RR: 0.50; 95% CI: 0.47-0.53; p <.0001) and all NDDs (3.13% vs 5.76%, RR: 0.54; 95% CI: 0.53-0.56; p <.0001). Analysis of impact of drug class on risk of AD indicated that antidepressant, sedative, anticonvulsant, and stimulant medications were associated with significantly reduced risk of AD whereas atypical antipsychotics were associated with increased AD risk. The greatest risk reduction for AD and NDDs occurred in patients aged 70 years or older with a protective effect only in patients with long-term therapy (>3 years). Furthermore, responders to these therapeutics were characterized by diagnosed obesity and higher prescriptions of anti-inflammatory drugs and menopausal hormonal therapy, compared to patients with a diagnosis of AD (non-responders). Addition of a second CNS-active drug was associated with greater reduction in AD risk compared to monotherapy, with the combination of a Z-drug and an SNRI associated with greatest AD risk reduction. Conclusion Collectively, these findings indicate that CNS-active drugs were associated with reduced risk of developing AD and other age-related NDDs. The exception was atypical antipsychotics, which increased risk. Potential use of combination therapy with atypical antipsychotics could mitigate the risk conferred by these drugs. Evidence from these analyses advance precision prevention strategies to reduce the risk of age-related NDDs in persons with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Helena Cortes-Flores
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Georgina Torrandell-Haro
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
6
|
Zhang T, Zeng Q, Li K, Liu X, Fu Y, Qiu T, Huang P, Luo X, Liu Z, Peng G. Distinct resting-state functional connectivity patterns of Anterior Insula affected by smoking in mild cognitive impairment. Brain Imaging Behav 2023; 17:386-394. [PMID: 37243752 PMCID: PMC10435406 DOI: 10.1007/s11682-023-00766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 05/29/2023]
Abstract
Smoking is a modifiable risk factor for Alzheimer's disease (AD). The insula plays a vital role in both smoking and cognition. However, the smoking effects on insula-related networks in cognitively normal controls (CN) and mild cognitive impairment (MCI) patients remain unknown. We identified 129 CN (85 non-smokers and 44 smokers) and 83 MCI (54 non-smokers and 29 smokers). Each underwent neuropsychological assessment and MRI (structural and resting-state functional). Seed-based functional analyses in the anterior and posterior insula were performed to calculate the functional connectivity (FC) with voxels in the whole brain. Mixed-effect analyses were performed to explore the interactive effects on smoking and cognitive status. Associations between FC and neuropsychological scales were assessed. Mixed-effect analyses revealed the FC differences between the right anterior insula (RAI) with the left middle temporal gyrus (LMTG) and that with the right inferior parietal lobule (RIPL) (p < 0.01, cluster level < 0.05, two-tailed, gaussian random field correction). The FC of RAI in both LMTG and RIPL sees a significant decrease in MCI smokers (p < 0.01). Smoking affects insula FC differently between MCI and CN, and could decrease the insula FC in MCI patients. Our study provides evidence of neural mechanisms between smoking and AD.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Neurology, The 1st Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qing-Chun Road, Shang- Cheng District, Hangzhou, 310002 China
| | - Qingze Zeng
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanv Fu
- Department of Neurology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tiantian Qiu
- Department of Radiology, Linyi People’s Hospital, Linyi, China
| | - Peiyu Huang
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhirong Liu
- Department of Neurology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Guoping Peng
- Department of Neurology, The 1st Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qing-Chun Road, Shang- Cheng District, Hangzhou, 310002 China
| | - for the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
- Department of Neurology, The 1st Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qing-Chun Road, Shang- Cheng District, Hangzhou, 310002 China
- Department of Radiology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology, The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Radiology, Linyi People’s Hospital, Linyi, China
| |
Collapse
|
7
|
Szymkowicz SM, Gerlach AR, Homiack D, Taylor WD. Biological factors influencing depression in later life: role of aging processes and treatment implications. Transl Psychiatry 2023; 13:160. [PMID: 37160884 PMCID: PMC10169845 DOI: 10.1038/s41398-023-02464-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Late-life depression occurring in older adults is common, recurrent, and malignant. It is characterized by affective symptoms, but also cognitive decline, medical comorbidity, and physical disability. This behavioral and cognitive presentation results from altered function of discrete functional brain networks and circuits. A wide range of factors across the lifespan contributes to fragility and vulnerability of those networks to dysfunction. In many cases, these factors occur earlier in life and contribute to adolescent or earlier adulthood depressive episodes, where the onset was related to adverse childhood events, maladaptive personality traits, reproductive events, or other factors. Other individuals exhibit a later-life onset characterized by medical comorbidity, pro-inflammatory processes, cerebrovascular disease, or developing neurodegenerative processes. These later-life processes may not only lead to vulnerability to the affective symptoms, but also contribute to the comorbid cognitive and physical symptoms. Importantly, repeated depressive episodes themselves may accelerate the aging process by shifting allostatic processes to dysfunctional states and increasing allostatic load through the hypothalamic-pituitary-adrenal axis and inflammatory processes. Over time, this may accelerate the path of biological aging, leading to greater brain atrophy, cognitive decline, and the development of physical decline and frailty. It is unclear whether successful treatment of depression and avoidance of recurrent episodes would shift biological aging processes back towards a more normative trajectory. However, current antidepressant treatments exhibit good efficacy for older adults, including pharmacotherapy, neuromodulation, and psychotherapy, with recent work in these areas providing new guidance on optimal treatment approaches. Moreover, there is a host of nonpharmacological treatment approaches being examined that take advantage of resiliency factors and decrease vulnerability to depression. Thus, while late-life depression is a recurrent yet highly heterogeneous disorder, better phenotypic characterization provides opportunities to better utilize a range of nonspecific and targeted interventions that can promote recovery, resilience, and maintenance of remission.
Collapse
Affiliation(s)
- Sarah M Szymkowicz
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew R Gerlach
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Damek Homiack
- Department of Psychiatry, University of Illinois-Chicago, Chicago, IL, USA
| | - Warren D Taylor
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN, USA.
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA.
| |
Collapse
|
8
|
Jellinger KA. The heterogeneity of late-life depression and its pathobiology: a brain network dysfunction disorder. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02648-z. [PMID: 37145167 PMCID: PMC10162005 DOI: 10.1007/s00702-023-02648-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023]
Abstract
Depression is frequent in older individuals and is often associated with cognitive impairment and increasing risk of subsequent dementia. Late-life depression (LLD) has a negative impact on quality of life, yet the underlying pathobiology is still poorly understood. It is characterized by considerable heterogeneity in clinical manifestation, genetics, brain morphology, and function. Although its diagnosis is based on standard criteria, due to overlap with other age-related pathologies, the relationship between depression and dementia and the relevant structural and functional cerebral lesions are still controversial. LLD has been related to a variety of pathogenic mechanisms associated with the underlying age-related neurodegenerative and cerebrovascular processes. In addition to biochemical abnormalities, involving serotonergic and GABAergic systems, widespread disturbances of cortico-limbic, cortico-subcortical, and other essential brain networks, with disruption in the topological organization of mood- and cognition-related or other global connections are involved. Most recent lesion mapping has identified an altered network architecture with "depressive circuits" and "resilience tracts", thus confirming that depression is a brain network dysfunction disorder. Further pathogenic mechanisms including neuroinflammation, neuroimmune dysregulation, oxidative stress, neurotrophic and other pathogenic factors, such as β-amyloid (and tau) deposition are in discussion. Antidepressant therapies induce various changes in brain structure and function. Better insights into the complex pathobiology of LLD and new biomarkers will allow earlier and better diagnosis of this frequent and disabling psychopathological disorder, and further elucidation of its complex pathobiological basis is warranted in order to provide better prevention and treatment of depression in older individuals.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
9
|
Wu J, Kang S, Su J, Liu K, Fan L, Ma X, Tan X, Huang H, Feng Y, Chen Y, Lyu W, Zeng L, Qiu S, Hu D. Altered Functional Network Connectivity of Precuneus and Executive Control Networks in Type 2 Diabetes Mellitus Without Cognitive Impairment. Front Neurosci 2022; 16:887713. [PMID: 35833084 PMCID: PMC9271612 DOI: 10.3389/fnins.2022.887713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
In epidemiological studies, type 2 diabetes mellitus (T2DM) has been associated with cognitive impairment and dementia, but studies about functional network connectivity in T2DM without cognitive impairment are limited. This study aimed to explore network connectivity alterations that may help enhance our understanding of damage-associated processes in T2DM. MRI data were analyzed from 82 patients with T2DM and 66 normal controls. Clinical, biochemical, and neuropsychological assessments were conducted in parallel with resting-state functional magnetic resonance imaging, and the cognitive status of the patients was assessed using the Montreal Cognitive Assessment-B (MoCA-B) score. Independent component analysis revealed a positive correlation between the salience network and the visual network and a negative connection between the left executive control network and the default mode network in patients with T2DM. The differences in dynamic brain network connectivity were observed in the precuneus, visual, and executive control networks. Internal network connectivity was primarily affected in the thalamus, inferior parietal lobe, and left precuneus. Hemoglobin A1c level, body mass index, MoCA-B score, and grooved pegboard (R) assessments indicated significant differences between the two groups (p < 0.05). Our findings show that key changes in functional connectivity in diabetes occur in the precuneus and executive control networks that evolve before patients develop cognitive deficits. In addition, the current study provides useful information about the role of the thalamus, inferior parietal lobe, and precuneus, which might be potential biomarkers for predicting the clinical progression, assessing the cognitive function, and further understanding the neuropathology of T2DM.
Collapse
Affiliation(s)
- Jinjian Wu
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shangyu Kang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianpo Su
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Kai Liu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Liangwei Fan
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Xiaomeng Ma
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Tan
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoming Huang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Feng
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuna Chen
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjiao Lyu
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingli Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Shijun Qiu,
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
- Dewen Hu,
| |
Collapse
|
10
|
Jellinger KA. Pathomechanisms of Vascular Depression in Older Adults. Int J Mol Sci 2021; 23:ijms23010308. [PMID: 35008732 PMCID: PMC8745290 DOI: 10.3390/ijms23010308] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Depression in older individuals is a common complex mood disorder with high comorbidity of both psychiatric and physical diseases, associated with high disability, cognitive decline, and increased mortality The factors predicting the risk of late-life depression (LLD) are incompletely understood. The reciprocal relationship of depressive disorder and age- and disease-related processes has generated pathogenic hypotheses and provided various treatment options. The heterogeneity of depression complicates research into the underlying pathogenic cascade, and factors involved in LLD considerably differ from those involved in early life depression. Evidence suggests that a variety of vascular mechanisms, in particular cerebral small vessel disease, generalized microvascular, and endothelial dysfunction, as well as metabolic risk factors, including diabetes, and inflammation that may induce subcortical white and gray matter lesions by compromising fronto-limbic and other important neuronal networks, may contribute to the development of LLD. The "vascular depression" hypothesis postulates that cerebrovascular disease or vascular risk factors can predispose, precipitate, and perpetuate geriatric depression syndromes, based on their comorbidity with cerebrovascular lesions and the frequent development of depression after stroke. Vascular burden is associated with cognitive deficits and a specific form of LLD, vascular depression, which is marked by decreased white matter integrity, executive dysfunction, functional disability, and poorer response to antidepressive therapy than major depressive disorder without vascular risk factors. Other pathogenic factors of LLD, such as neurodegeneration or neuroimmune regulatory dysmechanisms, are briefly discussed. Treatment planning should consider a modest response of LLD to antidepressants, while vascular and metabolic factors may provide promising targets for its successful prevention and treatment. However, their effectiveness needs further investigation, and intervention studies are needed to assess which interventions are appropriate and effective in clinical practice.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150 Vienna, Austria
| |
Collapse
|
11
|
Youn H, Hyung WSW, Kim J, Lee ES, Eo JS, Han CE, Han C, Kim SH, Jeong HG. Brain amyloid accumulation possibly exacerbates concurrent mild cognitive impairment with subthreshold depression in older adults: A 1-year follow-up study. J Affect Disord 2021; 295:93-100. [PMID: 34418779 DOI: 10.1016/j.jad.2021.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND This study aimed to investigate the 1-year changes in neuropsychological test results in older adults with concomitant late-life depression (LLD) and mild cognitive impairment (MCI) according to the presence or absence of brain amyloidopathy. METHODS All subjects underwent 18F-florbetaben-positron emission tomography and a standardized neuropsychological battery. The subjects were divided based on brain amyloidopathy and severity of depressive symptoms into the following groups: LLD-MCI-A(+), subthreshold depression (STD)-MCI-A(+), major depressive disorder (MDD)-MCI-A(+), LLD-MCI-A(-), STD-MCI-A(-), and MDD-MCI-A(-). After one year, follow-up neurocognitive tests were conducted. Fifty-nine participants completed both the baseline and 1-year follow-up neurocognitive tests. RESULTS In the LLD-MCI-A(+) group, the word list recall and word list recognition scores decreased during the follow-up period. The STD-MCI-A(+) group also showed a significant decrease in word list recall score and the score/Z-score of word list recognition. On the other hand, the word list recall Z-score improved at the 1-year follow-up in the LLD-MCI-A(-) group. In particular, the MDD-MCI-A(-) group showed significant increases in word list memory score/Z-score and word list recall Z-score during the follow-up period. LIMITATIONS Considering that AD progresses slowly, a longer follow-up period may be required. CONCLUSIONS Our findings showed differences in the extent of change of neuropsychological test results depending on the severity of depressive symptoms and presence or absence of brain amyloidopathy. Our results suggest that clinicians might explore the underlying neuropathology when assessing older adults with concomitant depression and cognitive impairment, even if the symptoms of depression are not severe.
Collapse
Affiliation(s)
- HyunChul Youn
- Department of Psychiatry, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Won Seok William Hyung
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Junhyung Kim
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eun Seong Lee
- Department of Nuclear Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Seon Eo
- Department of Nuclear Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Cheol E Han
- Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea
| | - Changsu Han
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung-Hyun Kim
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Ghang Jeong
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Korea University Research Institute of Mental Health, Seoul, Republic of Korea
| |
Collapse
|
12
|
Lee ES, Youn H, Hyung WSW, Suh S, Han CE, Eo JS, Jeong HG. The effects of cerebral amyloidopathy on regional glucose metabolism in older adults with depression and mild cognitive impairment while performing memory tasks. Eur J Neurosci 2021; 54:6663-6672. [PMID: 34528336 DOI: 10.1111/ejn.15461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022]
Abstract
Co-occurring depression and mild cognitive impairment (MCI) in older adults are important because they have a high risk of conversion to dementia. In the present study, task-related F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) was used to analyse older adults with concomitant depression and MCI. We recruited 20 older adults with simultaneous depression and MCI and 10 older adults with normal cognition (NC). The Verbal Paired Associates test and digit span test were used for the task-related FDG-PET. The 20 older adults with depression and MCI were classified into two groups based on the F-18 florbetaben PET results: depressed MCI patients with (LLD-MCI-A[+]; n = 11) and without amyloid accumulation (LLD-MCI-A[-]; n = 9). Reduced regional cerebral glucose metabolism (rCMglc) in the left superior frontal region was observed in the LLD-MCI-A(-) group compared with the NC group. Analyses of the NC and LLD-MCI-A(+) groups showed significantly decreased rCMglc in the right inferior parietal and left middle frontal regions in the LLD-MCI-A(+) group. rCMglc in the left precuneus was lower in the LLD-MCI-A(+) group than in the LLD-MCI-A(-) group. Significant correlations between the rCMglc in the right inferior parietal/left precuneus regions and memory task scores were observed based on correlation analyses of NC and LLD-MCI-A(+) groups. The findings in the present study indicate the presence of amyloid accumulation influences glucose metabolism in depressed elderly subjects with MCI while performing cognitive tasks. Task-related FDG-PET examinations may help differentiate MCI associated with depression from comorbid depression in patients with prodromal Alzheimer's disease.
Collapse
Affiliation(s)
- Eun Seong Lee
- Department of Nuclear Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - HyunChul Youn
- Department of Psychiatry, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | | | - Sangil Suh
- Department of Radiology, Korea University Guro Hospital, Seoul, South Korea
| | - Cheol E Han
- Department of Electronics and Information Engineering, Korea University, Sejong, South Korea
| | - Jae Seon Eo
- Department of Nuclear Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Hyun-Ghang Jeong
- Department of Psychiatry, Korea University Guro Hospital, Seoul, South Korea.,Korea University Research Institute of Mental Health, Seoul, South Korea
| |
Collapse
|
13
|
19th Latest Advances in Psychiatry International Symposium. PROGRESS IN NEUROLOGY AND PSYCHIATRY 2021. [DOI: 10.1002/pnp.710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Lee S, Kim D, Youn H, Hyung WSW, Suh S, Kaiser M, Han CE, Jeong HG. Brain network analysis reveals that amyloidopathy affects comorbid cognitive dysfunction in older adults with depression. Sci Rep 2021; 11:4299. [PMID: 33619307 PMCID: PMC7900108 DOI: 10.1038/s41598-021-83739-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Late-life depression (LLD) may increase the risk of Alzheimer's dementia (AD). While amyloidopathy accelerates AD progression, its role in such patients has not yet been elucidated. We hypothesized that cerebral amyloidopathy distinctly affects the alteration of brain network topology and may be associated with distinct cognitive symptoms. We recruited 26 and 27 depressed mild cognitive impairment (MCI) patients with (LLD-MCI-A(+)) and without amyloid accumulation (LLD-MCI-A(-)), respectively, and 21 normal controls. We extracted structural brain networks using their diffusion-weighted images. We aimed to compare the distinct network deterioration in LLD-MCI with and without amyloid accumulation and the relationship with their distinct cognitive decline. Thus, we performed a group comparison of the network topological measures and investigated any correlations with neurocognitive testing scores. Topological features of brain networks were different according to the presence of amyloid accumulation. Disrupted network connectivity was highly associated with impaired recall and recognition in LLD-MCI-A(+) patients. Inattention and dysexecutive function were more influenced by the altered networks involved in fronto-limbic circuitry dysfunction in LLD-MCI-A(-) patients. Our results show that alterations in brain network topology may reflect different cognitive dysfunction depending on amyloid accumulation in depressed older adults with MCI.
Collapse
Affiliation(s)
- Suji Lee
- Department of Biomedical Sciences, Korea University Graduate School, Seoul, Republic of Korea
| | - Daegyeom Kim
- Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea
| | - HyunChul Youn
- Department of Psychiatry, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Won Seok William Hyung
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sangil Suh
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Marcus Kaiser
- Interdisciplinary Computing and Complex BioSystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG, UK
- Institute of Neuroscience, Newcastle University, The Henry Wellcome Building, Newcastle upon Tyne, NE2 4HH, UK
- Department of Functional Neurosurgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Precision Imaging Beacon, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Cheol E Han
- Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea.
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, Republic of Korea.
| | - Hyun-Ghang Jeong
- Department of Biomedical Sciences, Korea University Graduate School, Seoul, Republic of Korea.
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|