1
|
Feng Y, Zhang S, Li A, Feng X, Hu R, Mei L. The intrinsic functional connectivity patterns of the phonological and semantic networks in word reading. Neuroscience 2025; 571:139-150. [PMID: 39988194 DOI: 10.1016/j.neuroscience.2025.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/15/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
Previous studies have revealed that phonological and semantic processing recruit separate brain networks. However, the intrinsic functional connectivity patterns of the phonological and semantic networks remain unclear. To address this issue, the present study explored the static and dynamic functional connectivity patterns of phonological and semantic networks during the resting state. The static functional connectivity pattern of the two networks was examined by adopting a voxel-based global brain connectivity (GBC) method. In this analysis, we estimated the within-network connectivity (WNC), between-network connectivity between phonological and semantic networks (BNC_PS), and between-network connectivity of the two language networks (i.e., phonological and semantic networks) with the non-language network (BNC_N). The results showed that both phonological and semantic networks exhibited stronger intra-network connectivity (i.e., WNC) than inter-network connectivity (i.e., BNC_PS and BNC_N), indicating that both networks are relatively encapsulated. For dynamic functional connectivity, three distinct dynamic functional states were identified. Specifically, State 1 showed an overall positive connectivity pattern. State 2 exhibited an overall weak connectivity pattern. State 3 showed positive intra-network connectivity and negative inter-network connectivity. These results suggested that phonological and semantic networks exhibited a flexible integration and segregation pattern over time. Taken together, our results revealed that the phonological and semantic networks showed an intra-network integration and inter-network segregation pattern. These findings deepen our understanding of the intrinsic functional connectivity patterns of language networks.
Collapse
Affiliation(s)
- Yuan Feng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; School of Psychology, South China Normal University, 510631 Guangzhou, China
| | - Shuo Zhang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; School of Psychology, South China Normal University, 510631 Guangzhou, China
| | - Aqian Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; School of Psychology, South China Normal University, 510631 Guangzhou, China
| | - Xiaoxue Feng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; School of Psychology, South China Normal University, 510631 Guangzhou, China
| | - Rui Hu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; School of Psychology, South China Normal University, 510631 Guangzhou, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, 510631 Guangzhou, China; School of Psychology, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
2
|
Zhang X, Yang L, Lu J, Yuan Y, Li D, Zhang H, Yao R, Xiang J, Wang B. Reconfiguration of brain network dynamics in bipolar disorder: a hidden Markov model approach. Transl Psychiatry 2024; 14:507. [PMID: 39737898 DOI: 10.1038/s41398-024-03212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025] Open
Abstract
Bipolar disorder (BD) is a neuropsychiatric disorder characterized by severe disturbance and fluctuation in mood. Dynamic functional connectivity (dFC) has the potential to more accurately capture the evolving processes of emotion and cognition in BD. Nevertheless, prior investigations of dFC typically centered on larger time scales, limiting the sensitivity to transient changes. This study employed hidden Markov model (HMM) analysis to delve deeper into the moment-to-moment temporal patterns of brain activity in BD. We utilized resting-state functional magnetic resonance imaging (rs-fMRI) data from 43 BD patients and 51 controls to evaluate the altered dynamic spatiotemporal architecture of the whole-brain network and identify unique activation patterns in BD. Additionally, we investigated the relationship between altered brain dynamics and structural disruption through the ridge regression (RR) algorithm. The results demonstrated that BD spent less time in a hyperconnected state with higher network efficiency and lower segregation. Conversely, BD spent more time in anticorrelated states featuring overall negative correlations, particularly among pairs of default mode network (DMN) and sensorimotor network (SMN), DMN and insular-opercular ventral attention networks (ION), subcortical network (SCN) and SMN, as well as SCN and ION. Interestingly, the hypoactivation of the cognitive control network in BD may be associated with the structural disruption primarily situated in the frontal and parietal lobes. This study investigated the dynamic mechanisms of brain network dysfunction in BD and offered fresh perspectives for exploring the physiological foundation of altered brain dynamics.
Collapse
Affiliation(s)
- Xi Zhang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Lan Yang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jiayu Lu
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yuting Yuan
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Dandan Li
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hui Zhang
- School of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Rong Yao
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jie Xiang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Bin Wang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
3
|
Cattarinussi G, Heidari-Foroozan M, Jafary H, Mohammadi E, Sambataro F, Ferro A, Barone Y, Delvecchio G. Resting-state functional magnetic resonance imaging alterations in first-degree relatives of individuals with bipolar disorder: A systematic review. J Affect Disord 2024; 365:321-331. [PMID: 39142577 DOI: 10.1016/j.jad.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Relatives of individuals with bipolar disorder (BD) are at higher risk of developing the disorder. Identifying brain alterations associated with familial vulnerability in BD can help discover endophenotypes, which are quantifiable biological traits more prevalent in unaffected relatives of BD (BD-RELs) than the general population. This review aimed at expanding our knowledge on endophenotypes of BD by providing an overview of resting-state functional magnetic resonance imaging (rs-fMRI) alterations in BD-RELs. METHODS A systematic search of PubMed, Scopus, and Web of Science was performed to identify all available rs-fMRI studies conducted in BD-RELs up to January 2024. A total of 18 studies were selected. Six included BD-RELs with no history of psychiatric disorders and 10 included BD-RELs that presented psychiatric disorders. Two investigations examined rs-fMRI alterations in BD-RELs with and without subthreshold symptoms for BD. RESULTS BD-RELs presented rs-fMRI alterations in the cortico-limbic network, fronto-thalamic-striatal circuit, fronto-occipital network, and, to a lesser extent, in the default mode network. This was true both for BD-RELs with no history of psychopathology and for BD-RELs that presented psychiatric disorders. The direct comparison of rs-fMRI alterations in BD-RELs with and without psychiatric symptoms displayed largely non-overlapping patterns of rs-fMRI abnormalities. LIMITATIONS Small sample sizes and the clinical heterogeneity of BD-RELs limit the generalizability of our findings. CONCLUSIONS The current literature suggests that first-degree BD-RELs exhibit rs-fMRI alterations in brain circuits involved in emotion regulation, cognition, reward processing, and psychosis susceptibility. Future studies are needed to validate these findings and to explore their potential as biomarkers for early detection and intervention.
Collapse
Affiliation(s)
- Giulia Cattarinussi
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Mahsa Heidari-Foroozan
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hosein Jafary
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Mohammadi
- Department of Neurological Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Fabio Sambataro
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Adele Ferro
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ylenia Barone
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
4
|
Wang H, Zhu Z, Bi H, Jiang Z, Cao Y, Wang S, Zou L. Changes in Community Structure of Brain Dynamic Functional Connectivity States in Mild Cognitive Impairment. Neuroscience 2024; 544:1-11. [PMID: 38423166 DOI: 10.1016/j.neuroscience.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/22/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Recent researches have noted many changes of short-term dynamic modalities in mild cognitive impairment (MCI) patients' brain functional networks. In this study, the dynamic functional brain networks of 82 MCI patients and 85 individuals in the normal control (NC) group were constructed using the sliding window method and Pearson correlation. The window size was determined using single-scale time-dependent (SSTD) method. Subsequently, k-means was applied to cluster all window samples, identifying three dynamic functional connectivity (DFC) states. Collective sparse symmetric non-negative matrix factorization (cssNMF) was then used to perform community detection on these states and quantify differences in brain regions. Finally, metrics such as within-community connectivity strength, community strength, and node diversity were calculated for further analysis. The results indicated high similarity between the two groups in state 2, with no significant differences in optimal community quantity and functional segregation (p < 0.05). However, for state 1 and state 3, the optimal community quantity was smaller in MCI patients compared to the NC group. In state 1, MCI patients had lower within-community connectivity strength and overall strength than the NC group, whereas state 3 showed results opposite to state 1. Brain regions with statistical difference included MFG.L, ORBinf.R, STG.R, IFGtriang.L, CUN.L, CUN.R, LING.R, SOG.L, and PCUN.R. This study on DFC states explores changes in the brain functional networks of patients with MCI from the perspective of alterations in the community structures of DFC states. The findings could provide new insights into the pathological changes in the brains of MCI patients.
Collapse
Affiliation(s)
- Hongwei Wang
- School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhihao Zhu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hui Bi
- School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhongyi Jiang
- School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yin Cao
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213164, China
| | - Suhong Wang
- Clinical Psychology, The Third Affiliated Hospital of Soochow University, Juqian Road No. 185, Changzhou, Jiangsu 213164, China
| | - Ling Zou
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu 213164, China; The Key Laboratory of Brain Machine Collaborative Intelligence Foundation of Zhejiang Province, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
5
|
Wang H, Zhu R, Dai Z, Shao J, Xue L, Sun Y, Wang T, Liao Q, Yao Z, Lu Q. The altered temporal properties of dynamic functional connectivity associated with suicide attempt in bipolar disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110898. [PMID: 38030032 DOI: 10.1016/j.pnpbp.2023.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE The suicide risk in bipolar disorder (BD) is the highest among psychiatric disorders, and the neurobiological mechanism of suicide in BD remains unclear. The study aimed to investigate the underlying relevance between the implicated abnormalities of dynamic functional connectivity (FC) and suicide attempt (SA) in BD. METHODS We used the sliding window method to analyze the dynamic FC patterns from resting-state functional MRI data in 81 healthy controls (HC) and 114 BD patients (50 with SA and 64 with none SA). Then, the temporal properties of dynamic FC and the relationship between altered measures and clinical variables were explored. RESULTS We found that one of the five captured brain functional states was more associated with SA. The SA patients showed significantly increased fractional window and dwell time in the suicide-related state, along with increased number of state transitions compared with none SA (NSA). In addition, the connections within subcortical network-subcortical network (SubC-SubC), default mode network-subcortical network (DMN-SubC), and attention network-subcortical network (AN-SubC) were significantly changed in SA patients relative to NSA and HC in the suicide-related state. Crucially, the above-altered measures were significantly correlated with suicide risk. CONCLUSIONS Our findings suggested that the impaired dynamic FC within SubC-SubC, DMN-SubC, and AN-SubC were the important underlying mechanism in understanding SA for BD patients. It highlights the temporal properties of whole-brain dynamic FC could serve as the valuable biomarker for suicide risk assessment in BD.
Collapse
Affiliation(s)
- Huan Wang
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Rongxin Zhu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Junneng Shao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Li Xue
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Yurong Sun
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Ting Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Qian Liao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China.
| |
Collapse
|
6
|
Li L, Chen Z, Zhang L, Zhang M, Liu H, Wu D, Ren P, Zhang Z. Dynamic reconfiguration of brain coactivation states that underlying working memory correlates with cognitive decline in clinically unimpaired older adults. Cereb Cortex 2024; 34:bhad546. [PMID: 38244565 DOI: 10.1093/cercor/bhad546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024] Open
Abstract
Impairments in working memory (WM) are evident in both clinically diagnosed patients with mild cognitive decline and older adults at risk, as indicated by lower scores on neuropsychological tests. Examining the WM-related neural signatures in at-risk older adults becomes essential for timely intervention. WM functioning relies on dynamic brain activities, particularly within the frontoparietal system. However, it remains unclear whether the cognitive decline would be reflected in the decreased dynamic reconfiguration of brain coactivation states during WM tasks. We enrolled 47 older adults and assessed their cognitive function using the Montreal Cognitive Assessment. The temporal dynamics of brain coactivations during a WM task were investigated through graph-based time-frame modularity analysis. Four primary recurring states emerged: two task-positive states with positive activity in the frontoparietal system (dorsal attention and central executive); two task-negative states with positive activity in the default mode network accompanied by negative activity in the frontoparietal networks. Heightened WM load was associated with increased flexibility of the frontoparietal networks, but the cognitive decline was correlated with reduced capacity for neuroplastic changes in response to increased task demands. These findings advance our understanding of aberrant brain reconfiguration linked to cognitive decline, potentially aiding early identification of at-risk individuals.
Collapse
Affiliation(s)
- Linling Li
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen University Medical School, Shenzhen University, 1066 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, China
| | - Zaili Chen
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen University Medical School, Shenzhen University, 1066 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, China
- Minzu Normal University of Xingyi, No. 1 Xingyi Road, Mulong Street, Xingyi, Guizhou, 562400, China
| | - Li Zhang
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, International Health Science Innovation Center, Shenzhen University Medical School, Shenzhen University, 1066 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, China
| | - Min Zhang
- Department of Computer Science and Technology, Harbin Institute of Technology, HIT Campus of University Town of Shenzhen, NanShan District, Shenzhen, 518055, China
| | - Honghai Liu
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, HIT Campus of University Town of Shenzhen, NanShan District, Shenzhen, 518055, China
| | - Donghui Wu
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, 1080 Cuizhu Road, Luohu District, Shenzhen, 518003, China
| | - Ping Ren
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, 1080 Cuizhu Road, Luohu District, Shenzhen, 518003, China
| | - Zhiguo Zhang
- Department of Computer Science and Technology, Harbin Institute of Technology, HIT Campus of University Town of Shenzhen, NanShan District, Shenzhen, 518055, China
- Peng Cheng Laboratory, 2 Xingke 1st Street, Nanshan District, Shenzhen, 518055, China
| |
Collapse
|
7
|
Cattarinussi G, Di Giorgio A, Moretti F, Bondi E, Sambataro F. Dynamic functional connectivity in schizophrenia and bipolar disorder: A review of the evidence and associations with psychopathological features. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110827. [PMID: 37473954 DOI: 10.1016/j.pnpbp.2023.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Alterations of functional network connectivity have been implicated in the pathophysiology of schizophrenia (SCZ) and bipolar disorder (BD). Recent studies also suggest that the temporal dynamics of functional connectivity (dFC) can be altered in these disorders. Here, we summarized the existing literature on dFC in SCZ and BD, and their association with psychopathological and cognitive features. We systematically searched PubMed, Web of Science, and Scopus for studies investigating dFC in SCZ and BD and identified 77 studies. Our findings support a general model of dysconnectivity of dFC in SCZ, whereas a heterogeneous picture arose in BD. Although dFC alterations are more severe and widespread in SCZ compared to BD, dysfunctions of a triple network system underlying goal-directed behavior and sensory-motor networks were present in both disorders. Furthermore, in SCZ, positive and negative symptoms were associated with abnormal dFC. Implications for understanding the pathophysiology of disorders, the role of neurotransmitters, and treatments on dFC are discussed. The lack of standards for dFC metrics, replication studies, and the use of small samples represent major limitations for the field.
Collapse
Affiliation(s)
- Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Italy; Padova Neuroscience Center, University of Padova, Italy
| | - Annabella Di Giorgio
- Department of Mental Health and Addictions, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Federica Moretti
- Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Emi Bondi
- Department of Mental Health and Addictions, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Italy; Padova Neuroscience Center, University of Padova, Italy.
| |
Collapse
|
8
|
Li D, Hao J, Hao J, Cui X, Niu Y, Xiang J, Wang B. Enhanced Dynamic Laterality Based on Functional Subnetworks in Patients with Bipolar Disorder. Brain Sci 2023; 13:1646. [PMID: 38137094 PMCID: PMC10741828 DOI: 10.3390/brainsci13121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 12/24/2023] Open
Abstract
An ocean of studies have pointed to abnormal brain laterality changes in patients with bipolar disorder (BD). Determining the altered brain lateralization will help us to explore the pathogenesis of BD. Our study will fill the gap in the study of the dynamic changes of brain laterality in BD patients and thus provide new insights into BD research. In this work, we used fMRI data from 48 BD patients and 48 normal controls (NC). We constructed the dynamic laterality time series by extracting the dynamic laterality index (DLI) at each sliding window. We then used k-means clustering to partition the laterality states and the Arenas-Fernandez-Gomez (AFG) community detection algorithm to determine the number of states. We characterized subjects' laterality characteristics using the mean laterality index (MLI) and laterality fluctuation (LF). Compared with NC, in all windows and state 1, BD patients showed higher MLI in the attention network (AN) of the right hemisphere, and AN in the left hemisphere showed more frequent laterality fluctuations. AN in the left hemisphere of BD patients showed higher MLI in all windows and state 3 compared to NC. In addition, in the AN of the right hemisphere in state 1, higher MLI in BD patients was significantly associated with patient symptoms. Our study provides new insights into the understanding of BD neuropathology in terms of brain dynamic laterality.
Collapse
Affiliation(s)
- Dandan Li
- College of Computer Science and Technology, Taiyuan University of Technology, Jinzhong 030600, China; (J.H.)
| | | | | | | | | | | | | |
Collapse
|
9
|
Ye J, Sun H, Gao S, Dadashkarimi J, Rosenblatt M, Rodriguez RX, Mehta S, Jiang R, Noble S, Westwater ML, Scheinost D. Altered Brain Dynamics Across Bipolar Disorder and Schizophrenia During Rest and Task Switching Revealed by Overlapping Brain States. Biol Psychiatry 2023; 94:580-590. [PMID: 37031780 PMCID: PMC10524212 DOI: 10.1016/j.biopsych.2023.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Individuals with bipolar disorder (BD) and schizophrenia (SCZ) show aberrant brain dynamics (i.e., altered recruitment or traversal through different brain states over time). Existing investigations of brain dynamics typically assume that one dominant brain state characterizes each time point. However, as multiple brain states likely are engaged at any given moment, this approach can obscure alterations in less prominent but critical brain states. Here, we examined brain dynamics in BD and SCZ by implementing a novel framework that simultaneously assessed the engagement of multiple brain states. METHODS Four recurring brain states were identified by applying nonlinear manifold learning and k-means clustering to the Human Connectome Project task-based functional magnetic resonance imaging data. We then assessed moment-to-moment state engagement in 2 independent samples of healthy control participants and patients with BD or SCZ using resting-state (N = 336) or task-based (N = 217) functional magnetic resonance imaging data. Relative state engagement and state engagement variability were extracted and compared across groups using multivariate analysis of covariance, controlling for site, medication, age, and sex. RESULTS Our framework identified dynamic alterations in BD and SCZ, while a state discretization approach revealed no significant group differences. Participants with BD or SCZ showed reduced state engagement variability, but not relative state engagement, across multiple brain states during resting-state and task-based functional magnetic resonance imaging. We found decreased state engagement variability in older participants and preliminary evidence suggesting an association with avolition. CONCLUSIONS Assessing multiple brain states simultaneously can reflect the complexity of aberrant brain dynamics in BD and SCZ, providing a more comprehensive understanding of the neural mechanisms underpinning these conditions.
Collapse
Affiliation(s)
- Jean Ye
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut.
| | - Huili Sun
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Siyuan Gao
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | | | - Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | | | - Saloni Mehta
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Rongtao Jiang
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Stephanie Noble
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Margaret L Westwater
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut; Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Child Study Center, Yale School of Medicine, New Haven, Connecticut; Department of Statistics and Data Science, Yale University, New Haven, Connecticut
| |
Collapse
|
10
|
Niu M, Guo H, Zhang Z, Fu Y. Abnormal temporal variability of rich-club organization in three major psychiatric conditions. Front Psychiatry 2023; 14:1226143. [PMID: 37720902 PMCID: PMC10500439 DOI: 10.3389/fpsyt.2023.1226143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Convergent evidence has demonstrated a shared rich-club reorganization across multiple major psychiatric conditions. However, previous studies assessing altered functional couplings between rich-club regions have typically focused on the mean time series from entire functional magnetic resonance imaging (fMRI) scanning session, neglecting their time-varying properties. Methods In this study, we aim to explore the common and/or unique alterations in the temporal variability of rich-club organization among schizophrenia (SZ), bipolar disorder (BD), and attention deficit/hyperactivity disorder (ADHD). We employed a temporal rich-club (TRC) approach to quantitatively assess the propensity of well-connected nodes to form simultaneous and stable structures in a temporal network derived from resting-state fMRI data of 156 patients with major psychiatric disorders (SZ/BD/ADHD = 71/45/40) and 172 healthy controls. We executed the TRC workflow at both whole-brain and subnetwork scales across varying network sparsity, sliding window strategies, lengths and steps of sliding windows, and durations of TRC coefficients. Results The SZ and BD groups displayed significantly decreased TRC coefficients compared to corresponding HC groups at the whole-brain scale and in most subnetworks. In contrast, the ADHD group exhibited reduced TRC coefficients in longer durations, as opposed to shorter durations, which markedly differs from the SZ and BD groups. These findings reveal both transdiagnostic and illness-specific patterns in temporal variability of rich-club organization across SZ, BD, and ADHD. Discussion TRC may serve as an effective metric for detecting brain network disruptions in particular states, offering novel insights and potential biomarkers into the neurobiological basis underpinning the behavioral and cognitive deficits observed in these disorders.
Collapse
Affiliation(s)
- Meng Niu
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, China
- Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
| | - Hanning Guo
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Zhe Zhang
- School of Physics, Hangzhou Normal University, Hangzhou, China
- Institute of Brain Science, Hangzhou Normal University, Hangzhou, China
| | - Yu Fu
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Wang J, Li H, Qu G, Cecil KM, Dillman JR, Parikh NA, He L. Dynamic weighted hypergraph convolutional network for brain functional connectome analysis. Med Image Anal 2023; 87:102828. [PMID: 37130507 PMCID: PMC10247416 DOI: 10.1016/j.media.2023.102828] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/04/2023]
Abstract
The hypergraph structure has been utilized to characterize the brain functional connectome (FC) by capturing the high order relationships among multiple brain regions of interest (ROIs) compared with a simple graph. Accordingly, hypergraph neural network (HGNN) models have emerged and provided efficient tools for hypergraph embedding learning. However, most existing HGNN models can only be applied to pre-constructed hypergraphs with a static structure during model training, which might not be a sufficient representation of the complex brain networks. In this study, we propose a dynamic weighted hypergraph convolutional network (dwHGCN) framework to consider a dynamic hypergraph with learnable hyperedge weights. Specifically, we generate hyperedges based on sparse representation and calculate the hyper similarity as node features. The hypergraph and node features are fed into a neural network model, where the hyperedge weights are updated adaptively during training. The dwHGCN facilitates the learning of brain FC features by assigning larger weights to hyperedges with higher discriminative power. The weighting strategy also improves the interpretability of the model by identifying the highly active interactions among ROIs shared by a common hyperedge. We validate the performance of the proposed model on two classification tasks with three paradigms functional magnetic resonance imaging (fMRI) data from Philadelphia Neurodevelopmental Cohort. Experimental results demonstrate the superiority of our proposed method over existing hypergraph neural networks. We believe our model can be applied to other applications in neuroimaging for its strength in representation learning and interpretation.
Collapse
Affiliation(s)
- Junqi Wang
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hailong Li
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gang Qu
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Kim M Cecil
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jonathan R Dillman
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nehal A Parikh
- Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lili He
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Neurodevelopmental Disorders Prevention Center, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Artificial Intelligence Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Zhang M, Chowdhury S, Saggar M. Temporal Mapper: Transition networks in simulated and real neural dynamics. Netw Neurosci 2023; 7:431-460. [PMID: 37397880 PMCID: PMC10312258 DOI: 10.1162/netn_a_00301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/07/2022] [Indexed: 07/26/2023] Open
Abstract
Characterizing large-scale dynamic organization of the brain relies on both data-driven and mechanistic modeling, which demands a low versus high level of prior knowledge and assumptions about how constituents of the brain interact. However, the conceptual translation between the two is not straightforward. The present work aims to provide a bridge between data-driven and mechanistic modeling. We conceptualize brain dynamics as a complex landscape that is continuously modulated by internal and external changes. The modulation can induce transitions between one stable brain state (attractor) to another. Here, we provide a novel method-Temporal Mapper-built upon established tools from the field of topological data analysis to retrieve the network of attractor transitions from time series data alone. For theoretical validation, we use a biophysical network model to induce transitions in a controlled manner, which provides simulated time series equipped with a ground-truth attractor transition network. Our approach reconstructs the ground-truth transition network from simulated time series data better than existing time-varying approaches. For empirical relevance, we apply our approach to fMRI data gathered during a continuous multitask experiment. We found that occupancy of the high-degree nodes and cycles of the transition network was significantly associated with subjects' behavioral performance. Taken together, we provide an important first step toward integrating data-driven and mechanistic modeling of brain dynamics.
Collapse
Affiliation(s)
- Mengsen Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA
| | - Samir Chowdhury
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
13
|
Long Y, Liu X, Liu Z. Temporal Stability of the Dynamic Resting-State Functional Brain Network: Current Measures, Clinical Research Progress, and Future Perspectives. Brain Sci 2023; 13:429. [PMID: 36979239 PMCID: PMC10046056 DOI: 10.3390/brainsci13030429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Based on functional magnetic resonance imaging and multilayer dynamic network model, the brain network's quantified temporal stability has shown potential in predicting altered brain functions. This manuscript aims to summarize current knowledge, clinical research progress, and future perspectives on brain network's temporal stability. There are a variety of widely used measures of temporal stability such as the variance/standard deviation of dynamic functional connectivity strengths, the temporal variability, the flexibility (switching rate), and the temporal clustering coefficient, while there is no consensus to date which measure is the best. The temporal stability of brain networks may be associated with several factors such as sex, age, cognitive functions, head motion, circadian rhythm, and data preprocessing/analyzing strategies, which should be considered in clinical studies. Multiple common psychiatric disorders such as schizophrenia, major depressive disorder, and bipolar disorder have been found to be related to altered temporal stability, especially during the resting state; generally, both excessively decreased and increased temporal stabilities were thought to reflect disorder-related brain dysfunctions. However, the measures of temporal stability are still far from applications in clinical diagnoses for neuropsychiatric disorders partly because of the divergent results. Further studies with larger samples and in transdiagnostic (including schizoaffective disorder) subjects are warranted.
Collapse
Affiliation(s)
| | | | - Zhening Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
14
|
Dai Y, Zhou Z, Chen F, Zhang L, Ke J, Qi R, Lu G, Zhong Y. Altered dynamic functional connectivity associates with post-traumatic stress disorder. Brain Imaging Behav 2023; 17:294-305. [PMID: 36826627 DOI: 10.1007/s11682-023-00760-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 02/25/2023]
Abstract
Research has been looking into neural pathophysiology of post-traumatic stress disorder (PTSD) and dynamic functioning connectivity (dFC) applying resting state functional magnetic resonance imaging (rs-fMRI). Previous studies showed that PTSD related impairments are associated with alterations distributed across different brain regions and disorganized functional connectivity, especially in Default Mode Network and the cerebellar area. In this study, we specifically looked into dFC on a whole brain level, and we focused on critical regions such as DMN and cerebellum. To explore the characteristics of dFC among patients with PTSD, we collected rs-fMRI data from 27 PTSD patients and 30 healthy controls. The study also added a control group of 33 trauma-exposed individuals to further look into trauma impact. Utilizing group spatial independent component analysis (ICA), the dynamic properties on whole brain level were detected with sliding time window approach, and k-means clustering. Two reoccurring FC "States" were identified, with connections being more concentrated on a within-network level in one state and more strongly inter-connected in the other state. Abnormalities in dFC were found within DMN, between DMN and cerebellum, and between DMN and visual network for PTSD patients. The findings were in accordance with the study hypothesis that the dFC alterations might point to deficits in emotional modulation and dysfunctional self-referential thought. Abnormalities in dFC among PTSD patients might also be indicators of PTSD symptoms including depression and anxiety, hypervigilance, impaired cognitive functioning and self-referential information processing.
Collapse
Affiliation(s)
- Yingliang Dai
- School of Psychology, Nanjing Normal University, Nanjing, 210097, Jiangsu, China.,Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, Nanjing, 210097, People's Republic of China
| | - Zhou Zhou
- School of Psychology, Nanjing Normal University, Nanjing, 210097, Jiangsu, China.,Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, Nanjing, 210097, People's Republic of China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19, Xiuhua St, Xiuying Dic, Haikou, 570311, Hainan, People's Republic of China
| | - Li Zhang
- Mental Health Institute, the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan Province, China
| | - Jun Ke
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, 210097, Jiangsu, China. .,Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, Nanjing, 210097, People's Republic of China.
| |
Collapse
|
15
|
Altered dynamic amplitude of low-frequency fluctuation between bipolar type I and type II in the depressive state. Neuroimage Clin 2022; 36:103184. [PMID: 36095891 PMCID: PMC9472068 DOI: 10.1016/j.nicl.2022.103184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bipolar disorder is a chronic and highly recurrent mental disorder that can be classified as bipolar type I (BD I) and bipolar type II (BD II). BD II is sometimes taken as a milder form of BD I or even doubted as an independent subtype. However, the fact that symptoms and severity differ in patients with BD I and BD II suggests different pathophysiologies and underlying neurobiological mechanisms. In this study, we aimed to explore the shared and unique functional abnormalities between subtypes. METHODS The dynamic amplitude of low-frequency fluctuation (dALFF) was performed to compare 31 patients with BD I, 32 with BD II, and 79 healthy controls (HCs). Global dALFF was calculated using sliding-window analysis. Group differences in dALFF among the 3 groups were compared using analysis of covariance (ANCOVA), with covariates of age, sex, years of education, and mean FD, and Bonferroni correction was applied for post hoc analysis. Pearson and Spearman's correlations were conducted between clusters with significant differences and clinical features in the BD I and BD II groups, after which false error rate (FDR) was used for correction. RESULTS We found a significant decrease in dALFF values in BD patients compared with HCs in the following brain regions: the bilateral-side inferior frontal gyrus (including the triangular, orbital, and opercular parts), inferior temporal gyrus, the medial part of the superior frontal gyrus, middle frontal gyrus, anterior cingulum, insula gyrus, lingual gyrus, calcarine gyrus, precuneus gyrus, cuneus gyrus, left-side precentral gyrus, postcentral gyrus, inferior parietal gyrus, superior temporal pole gyrus, middle temporal gyrus, middle occipital gyrus, superior occipital gyrus and right-side fusiform gyrus, parahippocampal gyrus, hippocampus, middle cingulum, orbital part of the medial frontal gyrus and superior frontal gyrus. Unique alterations in BD I were observed in the right-side supramarginal gyrus and postcentral gyrus. In addition, dALFF values in BD II were significantly higher than those in BD I in the right superior temporal gyrus and middle temporal gyrus. The variables of dALFF correlated with clinical characteristics differently according to the subtypes, but no correlations survived after FDR correction. LIMITATIONS Our study was cross-sectional. Most of our patients were on medication, and the sample was limited. CONCLUSIONS Our findings demonstrated neurobiological characteristics of BD subtypes, providing evidence for BD II as an independent existence, which could be the underlying explanation for the specific symptoms and/or severity and point to potential biomarkers for the differential diagnosis of bipolar subtypes.
Collapse
|
16
|
Wang H, Zhu R, Tian S, Zhang S, Dai Z, Shao J, Xue L, Yao Z, Lu Q. Dynamic connectivity alterations in anterior cingulate cortex associated with suicide attempts in bipolar disorders with a current major depressive episode. J Psychiatr Res 2022; 149:307-314. [PMID: 35325759 DOI: 10.1016/j.jpsychires.2022.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Considering that the physiological mechanism of the anterior cingulate cortex (ACC) in suicide brain remains elusive for bipolar disorder (BD) patients. The study aims to investigate the intrinsic relevance between ACC and suicide attempts (SA) through transient functional connectivity (FC). METHODS We enrolled 50 un-medicated BD patients with at least one SA, 67 none-suicide attempt patients (NSA) and 75 healthy controls (HCs). The sliding window approach was utilized to study the dynamic FC of ACC via resting-state functional MRI data. Subsequently, we probed into the temporal properties of dynamic FC and then estimated the relationship between dynamic characteristics and clinical variables using the Pearson correlation. RESULTS We found six distinct FC states in all populations, with one of them being more associated with SA. Compared with NSA and HCs, the suicide-related functional state showed significantly reduced dwell time in SA patients, accompanied by a significantly increased FC strength between the right ACC and the regions within the subcortical (SubC) network. In addition, the number of transitions was significantly increased in SA patients relative to other groups. All these altered indicators were significantly correlated with the suicide risk. CONCLUSIONS The results suggested that the dysfunction of ACC was relevant to SA from a dynamic FC perspective in BD patients. It highlights the temporal properties in dynamic FC of ACC that could be used as a putative target of suicide risk assessment for BD patients.
Collapse
Affiliation(s)
- Huan Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Rongxin Zhu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shui Tian
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Siqi Zhang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Junneng Shao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Li Xue
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Zhijian Yao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China.
| |
Collapse
|
17
|
Zhang H, Zhou Z, Ding L, Wu C, Qiu M, Huang Y, Jin F, Shen T, Yang Y, Hsu LM, Wang J, Zhang H, Shen D, Peng D. Divergent and convergent imaging markers between bipolar and unipolar depression based on Machine Learning. IEEE J Biomed Health Inform 2022; 26:4100-4110. [PMID: 35412995 DOI: 10.1109/jbhi.2022.3166826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Distinguishing bipolar depression (BD) from unipolar depression (UD) based on symptoms only is challenging. Brain functional connectivity (FC), especially dynamic FC, has emerged as a promising approach to identify possible imaging markers for differentiating BD from UD. However, most of such studies utilized conventional FC and group-level statistical comparisons, which may not be sensitive enough to quantify subtle changes in the FC dynamics between BD and UD. In this paper, we present a more effective individualized differentiation model based on machine learning and the whole-brain high-order functional connectivity (HOFC) network. The HOFC, capturing temporal synchronization among the dynamic FC time series, a more complex chronnectome metric compared to the conventional FC, was used to classify 52 BD, 73 UD, and 76 healthy controls (HC). We achieved a satisfactory accuracy (70.40%) in BD vs. UD differentiation. The resultant contributing features revealed the involvement of the coordinated flexible interactions among sensory (e.g., olfaction, vision, and audition), motor, and cognitive systems. Despite sharing common chronnectome of cognitive and affective impairments, BD and UD also demonstrated unique dynamic FC synchronization patterns. UD is more associated with abnormal visual-somatomotor inter-network connections, while BD is more related to impaired ventral attention-frontoparietal inter-network connections. Moreover, we found that the illness duration modulated the BD vs. UD separation, with the differentiation performance hampered by the secondary disease effects. Our findings suggest that BD and UD may have divergent and convergent neural substrates, which further expand our knowledge of the two different mental disorders.
Collapse
|