1
|
Appleton AA. A polyepigenetic glucocorticoid exposure score and HPA axis-related DNA methylation are associated with gestational epigenetic aging. Epigenetics 2025; 20:2471129. [PMID: 40007075 PMCID: PMC11866962 DOI: 10.1080/15592294.2025.2471129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Gestational epigenetic aging (GEA) is a novel approach for characterizing associations between prenatal exposures and postnatal risks. Psychosocial adversity in pregnancy may influence GEA, but the molecular mechanisms are not well understood. DNA methylation to glucocorticoid regulation and hypothalamic-pituitary-adrenal (HPA) axis genes are implicated but have not been fully examined in association with GEA. This study investigated whether a polyepigenetic glucocorticoid exposure score (PGES) and HPA axis gene (NR3C1, HSD11B2, FKBP5) methylation were associated with GEA, and whether associations were sex-specific. Participants were from a prospective cohort of racial/ethnic diverse and socially disadvantaged pregnant women and infants (n = 200). DNA methylation variables were estimated using umbilical cord blood. PGES was derived with CpGs shown to be sensitive to synthetic dexamethasone exposure. NR3C1, HSD11B2, and FKBP5 methylation was summarized via factor analysis. We found that PGES (β = -1.12, SE = 0.47, p = 0.02) and several NR3C1 and FKBP5 factor scores were associated with decelerated GEA (all p < 0.05). A significant sex interaction was observed for FKBP5 factor score 3 (β = -0.34, SE = 0.15, p = 0.02) suggesting decelerated GEA for males but not females. This study showed that glucocorticoid regulation-related DNA methylation was associated with a decelerated aging phenotype at birth that might indicate a neonatal risk.
Collapse
Affiliation(s)
- Allison A. Appleton
- Department of Epidemiology and Biostatistics, University at Albany College of Integrated Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
2
|
Thomas O, Kudesia R. Healthy Moms, Healthy Babies: Culinary and Lifestyle Medicine for PCOS and Preconception Health. Am J Lifestyle Med 2025:15598276251327923. [PMID: 40124710 PMCID: PMC11924073 DOI: 10.1177/15598276251327923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
Purpose of the Research: Women's reproductive health issues represent a major source of burden to quality of life, productivity, and health care cost, with uneven access to care. Foundational interventions based on lifestyle and food as medicine hold promise as one equitable way to improve individual and family health. In this paper, we summarize the lifestyle and culinary medicine approaches to two of the most common reproductive health diagnoses, polycystic ovary syndrome (PCOS) and infertility. Major findings: For women with PCOS and/or infertility, an overall healthy eating pattern, including a whole-food plant-based or Mediterranean diet, carries clear health benefits. Exercise is of benefit in the PCOS population, and likely so for infertility patients as well. Both diagnoses are risk factors for anxiety and/or depression, and so more attention to mental health and behavioral strategies is needed. Given these findings, the notion of lifestyle interventions holds promise, but studies are overall mixed. Conclusions: PCOS and infertility can respond well to lifestyle and culinary interventions. These approaches, currently underutilized, can be implemented widely with minimal cost, and can also improve obstetric, neonatal, and child health outcomes via epigenetic phenomena. More research is needed to elucidate the best target populations and delivery methods for such interventions.
Collapse
Affiliation(s)
- Olivia Thomas
- Nourishing Our Community Program, Boston Medical Center, Boston, MA, USA (OT)
| | - Rashmi Kudesia
- Department of Reproductive Endocrinology & Infertility, CCRM Fertility Houston, Houston, TX, USA (RK)
| |
Collapse
|
3
|
Vos S, Van den Bergh BRH, Martens DS, Bijnens E, Shkedy Z, Kindermans H, Platzer M, Schwab M, Nawrot TS. Maternal perceived stress and green spaces during pregnancy are associated with adult offspring gene (NR3C1 and IGF2/H19) methylation patterns in adulthood: A pilot study. Psychoneuroendocrinology 2024; 167:107088. [PMID: 38924829 DOI: 10.1016/j.psyneuen.2024.107088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Changes in NR3C1 and IGF2/H19 methylation patterns have been associated with behavioural and psychiatric outcomes. Maternal mental state has been associated with offspring NR3C1 promotor and IGF2/H19 imprinting control region (ICR) methylation patterns. However, there is a lack of prospective studies with long-term follow-up. METHODS 52 mother-offspring pairs were studied from 12 to 22 weeks of pregnancy and offspring was followed-up until 28-29 years-of-age. During pregnancy, mothers filled in a Life Event Scale and a Daily Hassles Scale measuring perceived stress; i.e., appraisal or subjectively experienced severity of impact of important life events and of daily hassles in several life domains during pregnancy, respectively. Green space was quantified around the residence, using high-resolution (1 m2) map data. Saliva and blood samples were obtained from the adult offspring. Absolute DNA methylation levels were determined in blood and saliva on four NR3C1 amplicons, and one IGF2/H19 ICR amplicon using a bisulfite PCR and sequencing method. Linear mixed effect models were used to test the associations between perceived stress and green spaces during pregnancy, and adult offspring methylation patterns. RESULTS We found associations between maternal perceived stress during pregnancy and methylation patterns on two out of the four NR3C1 amplicons, measured in blood, from offspring in adulthood, but not with IGF2/H19 methylation. For an interquartile-range (IQR) increase in maternal perceived life event or daily hassles stress scores, absolute methylation levels on several NR3C1 CpG sites were significantly changed (-1.62 % to +5.89 %, p<0.05). Maternal perceived stress scores were not associated with IGF2/H19 methylation, neither in blood nor in saliva. Maternal exposure to green spaces surrounding the residence during the pregnancy was associated with IGF2/H19 ICR methylation (-0.80 % to -1.04 %, p<0.05) in saliva, but not with NR3C1 promotor methylation. CONCLUSION We observed significant long-term effects of maternal perceived stress during pregnancy on the methylation patterns of the NR3C1 promotor in offspring well into adulthood. This may imply that maternal psychological distress during pregnancy may influence the regulation of the HPA-axis well into adulthood. Additionally, maternal proximity to green spaces was associated with IGF2/H19 ICR methylation patterns, which is a novel finding.
Collapse
Affiliation(s)
- Stijn Vos
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Bea R H Van den Bergh
- Health Psychology Research Group and Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Esmée Bijnens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Environmental Sciences, Open University, Heerlen, the Netherlands
| | - Ziv Shkedy
- Data Science Institute, Centre for Statistics, Hasselt University, Hasselt, Belgium
| | - Hanne Kindermans
- Research Group Healthcare & ethics, Hasselt University, Hasselt, Belgium
| | - Matthias Platzer
- Genome Analysis Group, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Matthias Schwab
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, Occupational & Environmental Medicine, KU Leuven, Belgium
| |
Collapse
|
4
|
Mahadevan J, Gautam M, Benegal V. Mental health and well-being for the prevention of substance use disorders. Indian J Psychiatry 2024; 66:S272-S282. [PMID: 38445279 PMCID: PMC10911324 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_716_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 03/07/2024] Open
Affiliation(s)
- Jayant Mahadevan
- Department of Psychiatry, Centre for Addiction Medicine, NIMHANS, Bangalore, Karnataka, India E-mail:
| | - Manaswi Gautam
- Consultant Psychiatrist, Gautam Hospital and Research Centre, Jaipur, Rajasthan, India
| | - Vivek Benegal
- Department of Psychiatry, Centre for Addiction Medicine, NIMHANS, Bangalore, Karnataka, India E-mail:
| |
Collapse
|
5
|
Ng JWY, Felix JF, Olson DM. A novel approach to risk exposure and epigenetics-the use of multidimensional context to gain insights into the early origins of cardiometabolic and neurocognitive health. BMC Med 2023; 21:466. [PMID: 38012757 PMCID: PMC10683259 DOI: 10.1186/s12916-023-03168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Each mother-child dyad represents a unique combination of genetic and environmental factors. This constellation of variables impacts the expression of countless genes. Numerous studies have uncovered changes in DNA methylation (DNAm), a form of epigenetic regulation, in offspring related to maternal risk factors. How these changes work together to link maternal-child risks to childhood cardiometabolic and neurocognitive traits remains unknown. This question is a key research priority as such traits predispose to future non-communicable diseases (NCDs). We propose viewing risk and the genome through a multidimensional lens to identify common DNAm patterns shared among diverse risk profiles. METHODS We identified multifactorial Maternal Risk Profiles (MRPs) generated from population-based data (n = 15,454, Avon Longitudinal Study of Parents and Children (ALSPAC)). Using cord blood HumanMethylation450 BeadChip data, we identified genome-wide patterns of DNAm that co-vary with these MRPs. We tested the prospective relation of these DNAm patterns (n = 914) to future outcomes using decision tree analysis. We then tested the reproducibility of these patterns in (1) DNAm data at age 7 and 17 years within the same cohort (n = 973 and 974, respectively) and (2) cord DNAm in an independent cohort, the Generation R Study (n = 686). RESULTS We identified twenty MRP-related DNAm patterns at birth in ALSPAC. Four were prospectively related to cardiometabolic and/or neurocognitive childhood outcomes. These patterns were replicated in DNAm data from blood collected at later ages. Three of these patterns were externally validated in cord DNAm data in Generation R. Compared to previous literature, DNAm patterns exhibited novel spatial distribution across the genome that intersects with chromatin functional and tissue-specific signatures. CONCLUSIONS To our knowledge, we are the first to leverage multifactorial population-wide data to detect patterns of variability in DNAm. This context-based approach decreases biases stemming from overreliance on specific samples or variables. We discovered molecular patterns demonstrating prospective and replicable relations to complex traits. Moreover, results suggest that patterns harbour a genome-wide organisation specific to chromatin regulation and target tissues. These preliminary findings warrant further investigation to better reflect the reality of human context in molecular studies of NCDs.
Collapse
Affiliation(s)
- Jane W Y Ng
- Department of Pediatrics, Cummings School of Medicine, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
| | - Janine F Felix
- The Generation F Study Group, Erasmus MC University Medical Center Rotterdam, Postbus, 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - David M Olson
- Departments of Obstetrics and Gynecology, Physiology, and Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 220 HMRC, Edmonton, AB, T6G2S2, Canada.
| |
Collapse
|
6
|
Hukkanen M, Hsu B, Cossin‐Sevrin N, Crombecque M, Delaunay A, Hollmen L, Kaukonen R, Konki M, Lund R, Marciau C, Stier A, Ruuskanen S. From maternal glucocorticoid and thyroid hormones to epigenetic regulation of offspring gene expression: An experimental study in a wild bird species. Evol Appl 2023; 16:1753-1769. [PMID: 38020869 PMCID: PMC10660793 DOI: 10.1111/eva.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 12/01/2023] Open
Abstract
Offspring phenotype at birth is determined by its genotype and the prenatal environment including exposure to maternal hormones. Variation in both maternal glucocorticoids and thyroid hormones can affect offspring phenotype, but the underlying molecular mechanisms, especially those contributing to long-lasting effects, remain unclear. Epigenetic changes (such as DNA methylation) have been postulated as mediators of long-lasting effects of early-life environment. In this study, we determined the effects of elevated prenatal glucocorticoid and thyroid hormones on handling stress response (breath rate) as well as DNA methylation and gene expression of glucocorticoid receptor (GR) and thyroid hormone receptor (THR) in great tits (Parus major). Eggs were injected before incubation onset with corticosterone (the main avian glucocorticoid) and/or thyroid hormones (thyroxine and triiodothyronine) to simulate variation in maternal hormone deposition. Breath rate during handling and gene expression of GR and THR were evaluated 14 days after hatching. Methylation status of GR and THR genes was analyzed from the longitudinal blood cells sampled 7 and 14 days after hatching, as well as the following autumn. Elevated prenatal corticosterone level significantly increased the breath rate during handling, indicating an enhanced metabolic stress response. Prenatal corticosterone manipulation had CpG-site-specific effects on DNA methylation at the GR putative promoter region, while it did not significantly affect GR gene expression. GR expression was negatively associated with earlier hatching date and chick size. THR methylation or expression did not exhibit any significant relationship with the hormonal treatments or the examined covariates, suggesting that TH signaling may be more robust due to its crucial role in development. This study provides some support to the hypothesis suggesting that maternal corticosterone may influence offspring metabolic stress response via epigenetic alterations, yet their possible adaptive role in optimizing offspring phenotype to the prevailing conditions, context-dependency, and the underlying molecular interplay needs further research.
Collapse
Affiliation(s)
- Mikaela Hukkanen
- Institute for Molecular Medicine FinlandUniversity of HelsinkiHelsinkiFinland
| | - Bin‐Yan Hsu
- Department of BiologyUniversity of TurkuTurkuFinland
| | | | | | - Axelle Delaunay
- Institut des Sciences de l'Evolution de Montpellier (ISEM)Université de Montpellier, CNRS, IRD, EPHEMontpellierFrance
| | - Lotta Hollmen
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Riina Kaukonen
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Mikko Konki
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
- Turku Doctoral Programme of Molecular MedicineUniversity of TurkuTurkuFinland
| | - Riikka Lund
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Coline Marciau
- Department of BiologyUniversity of TurkuTurkuFinland
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Antoine Stier
- Department of BiologyUniversity of TurkuTurkuFinland
- Institut Pluridisciplinaire Hubert Curien, UMR 7178University of Strasbourg, CNRSStrasbourgFrance
| | - Suvi Ruuskanen
- Department of BiologyUniversity of TurkuTurkuFinland
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
7
|
Heynen JP, McHugh RR, Boora NS, Simcock G, Kildea S, Austin MP, Laplante DP, King S, Montina T, Metz GAS. Urinary 1H NMR Metabolomic Analysis of Prenatal Maternal Stress Due to a Natural Disaster Reveals Metabolic Risk Factors for Non-Communicable Diseases: The QF2011 Queensland Flood Study. Metabolites 2023; 13:metabo13040579. [PMID: 37110237 PMCID: PMC10145263 DOI: 10.3390/metabo13040579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Prenatal stress alters fetal programming, potentially predisposing the ensuing offspring to long-term adverse health outcomes. To gain insight into environmental influences on fetal development, this QF2011 study evaluated the urinary metabolomes of 4-year-old children (n = 89) who were exposed to the 2011 Queensland flood in utero. Proton nuclear magnetic resonance spectroscopy was used to analyze urinary metabolic fingerprints based on maternal levels of objective hardship and subjective distress resulting from the natural disaster. In both males and females, differences were observed between high and low levels of maternal objective hardship and maternal subjective distress groups. Greater prenatal stress exposure was associated with alterations in metabolites associated with protein synthesis, energy metabolism, and carbohydrate metabolism. These alterations suggest profound changes in oxidative and antioxidative pathways that may indicate a higher risk for chronic non-communicable diseases such obesity, insulin resistance, and diabetes, as well as mental illnesses, including depression and schizophrenia. Thus, prenatal stress-associated metabolic biomarkers may provide early predictors of lifetime health trajectories, and potentially serve as prognostic markers for therapeutic strategies in mitigating adverse health outcomes.
Collapse
Affiliation(s)
- Joshua P Heynen
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Rebecca R McHugh
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Naveenjyote S Boora
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Gabrielle Simcock
- Midwifery Research Unit, Mater Research Institute, University of Queensland, Brisbane, QLD 4072, Australia
- School of Psychology, University of Queensland, Brisbane, QLD 4072, Australia
| | - Sue Kildea
- Midwifery Research Unit, Mater Research Institute, University of Queensland, Brisbane, QLD 4072, Australia
- Molly Wardaguga Research Centre, Faculty of Health, Charles Darwin University, Alice Springs, NT 0870, Australia
| | - Marie-Paule Austin
- Perinatal and Woman's Health Unit, University of New South Wales, Sydney, NSW 2052, Australia
| | - David P Laplante
- Centre for Child Development and Mental Health, Lady Davis Institute for Medical Research, Jewish General Hospital, 4335 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1E4, Canada
| | - Suzanne King
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Montreal, QC H4H 1R3, Canada
| | - Tony Montina
- Southern Alberta Genome Sciences Centre, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|