1
|
Henriquez AR, Godbout-Cheliak M, Filiatreault A, Thomson EM. Ozone and particulate matter co-exposure at the air-liquid interface: Establishing an approach to assess pollutant interactions in vitro. Toxicol In Vitro 2025; 107:106060. [PMID: 40179993 DOI: 10.1016/j.tiv.2025.106060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/22/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Air pollution is a complex mixture of gases and particulates that varies spatially and temporally, making attribution of adverse effects to specific individual air pollutants a challenge. To disentangle effects of mixtures in a controlled setting, reproducible and realistic co-exposures of human-relevant models to gaseous and particulate pollutants are needed. Although air-liquid interface (ALI) exposures offer considerable promise as non-animal models for inhalation toxicity testing, a lack of studies comparing individual and co-exposures to gaseous and particulate pollutants has thus far prevented assessment of their strengths and limitations for disentangling effects of pollutant mixtures. METHODS Using an integrated ALI exposure system, we characterized the interaction between ozone and particles (25 nm fluorescent polystyrene beads) to assess effects on and reproducibility of critical physical endpoints including temperature, humidity, ozone concentration and particle deposition. Particle deposition and concentration were assessed via three independent methods: fluorescence, quartz crystal microbalance (QCM), and airborne particle count. To evaluate the acute biological effects of an air pollutant mixture in vitro, human lung type 2 epithelial-like cells (A549) were exposed at the ALI to air, ozone (O3), particles, and O3 + particles (co-exposure) for 1 h (n = 4 independent repeats/exposure type). Cell injury and inflammation were quantified by extracellular lactate dehydrogenase (LDH) activity and release of proinflammatory cytokines (interleukin (IL)-8 and IL-6) respectively 0 and 24 h post-exposure. RESULTS Exposures were effective at delivering targeted O3 exposures under controlled temperature and relative humidity. In-well particle deposition and airborne concentration exiting the exposure system, quantified through parallel methods, were consistent, and increased in relation to aerosolized particle concentration. Levels of each pollutant were effectively maintained in the presence of the other. O3 alone, and co-exposure to O3 and particles, increased LDH release from A549 cells, indicating pollutant-specific cytotoxicity. In contrast, IL-8 and IL-6 release (24 h > 0 h) were not changed by exposure to the individual pollutants, but tended to increase following co-exposure. CONCLUSION The present work establishes the utility of ALI exposure systems to disentangle individual effects of pollutants from a mixture, and highlights the importance of direct experimental characterization of dosimetry and exposure conditions.
Collapse
Affiliation(s)
- Andres R Henriquez
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Marjolaine Godbout-Cheliak
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Alain Filiatreault
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Errol M Thomson
- Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Canada.
| |
Collapse
|
2
|
Shankar SN, Vass WB, Lednicky JA, Logan T, Messcher RL, Eiguren-Fernandez A, Amanatidis S, Sabo-Attwood T, Wu CY. The BioCascade-VIVAS system for collection and delivery of virus-laden size-fractionated airborne particles. JOURNAL OF AEROSOL SCIENCE 2024; 175:106263. [PMID: 38680161 PMCID: PMC11044810 DOI: 10.1016/j.jaerosci.2023.106263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The size of virus-laden particles determines whether aerosol or droplet transmission is dominant in the airborne transmission of pathogens. Determining dominant transmission pathways is critical to implementing effective exposure risk mitigation strategies. The aerobiology discipline greatly needs an air sampling system that can collect virus-laden airborne particles, separate them by particle diameter, and deliver them directly onto host cells without inactivating virus or killing cells. We report the use of a testing system that combines a BioAerosol Nebulizing Generator (BANG) to aerosolize Human coronavirus (HCoV)-OC43 (OC43) and an integrated air sampling system comprised of a BioCascade impactor (BC) and Viable Virus Aerosol Sampler (VIVAS), together referred to as BC-VIVAS, to deliver the aerosolized virus directly onto Vero E6 cells. Particles were collected into four stages according to their aerodynamic diameter (Stage 1: >9.43 μm, Stage 2: 3.81-9.43 μm, Stage 3: 1.41-3.81 μm and Stage 4: <1.41 μm). OC43 was detected by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) analyses of samples from all BC-VIVAS stages. The calculated OC43 genome equivalent counts per cm3 of air ranged from 0.34±0.09 to 70.28±12.56, with the highest concentrations in stage 3 (1.41-3.81 μm) and stage 4 (<1.41 μm). Virus-induced cytopathic effects appeared only in cells exposed to particles collected in stages 3 and 4, demonstrating the presence of viable OC43 in particles <3.81 μm. This study demonstrates the dual utility of the BC-VIVAS as particle size-fractionating air sampler and a direct exposure system for aerosolized viruses. Such utility may help minimize conventional post-collection sample processing time required to assess the viability of airborne viruses and increase the understanding about transmission pathways for airborne pathogens.
Collapse
Affiliation(s)
- Sripriya Nannu Shankar
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
| | - William B. Vass
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
| | - John A. Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Tracey Logan
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Rebeccah L. Messcher
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | | | | | - Tara Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
3
|
Miller-Holt J, Behrsing H, Crooks I, Curren R, Demir K, Gafner J, Gillman G, Hollings M, Leverette R, Oldham M, Simms L, Stankowski LF, Thorne D, Wieczorek R, Moore MM. Key challenges for in vitro testing of tobacco products for regulatory applications: Recommendations for dosimetry. Drug Test Anal 2023; 15:1175-1188. [PMID: 35830202 PMCID: PMC9897201 DOI: 10.1002/dta.3344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023]
Abstract
The Institute for In Vitro Sciences (IIVS) is sponsoring a series of workshops to develop recommendations for optimal scientific and technical approaches for conducting in vitro assays to assess potential toxicity within and across tobacco and various next-generation products (NGPs) including heated tobacco products (HTPs) and electronic nicotine delivery systems (ENDSs). This publication was developed by a working group of the workshop members in conjunction with the sixth workshop in that series entitled "Dosimetry for conducting in vitro evaluations" and focuses on aerosol dosimetry for aerosol exposure to combustible cigarettes, HTP, and ENDS aerosolized tobacco products and summarizes the key challenges as well as documenting areas for future research.
Collapse
Affiliation(s)
| | - Holger Behrsing
- Institute for In Vitro Sciences, Gaithersburg, Maryland, USA
| | - Ian Crooks
- Consumer Product Safety, British American Tobacco, Southampton, UK
| | - Rodger Curren
- Institute for In Vitro Sciences, Gaithersburg, Maryland, USA
| | - Kubilay Demir
- Regulatory Science, JUUL Labs Inc., 1000 F Street NW, Washington D.C. 20004, USA
| | - Jeremie Gafner
- Scientific & Regulatory Affairs, JT International SA, Geneva, Switzerland
| | - Gene Gillman
- Regulatory Science, JUUL Labs Inc., 1000 F Street NW, Washington D.C. 20004, USA
| | - Michael Hollings
- Genetic Toxicology, Labcorp Early Development Laboratories Ltd., Harrogate, UK
| | - Robert Leverette
- Scientific & Regulatory Affairs, RAI Services Company, Winston-Salem, North Carolina, USA
| | - Michael Oldham
- Regulatory Science, JUUL Labs Inc., 1000 F Street NW, Washington D.C. 20004, USA
| | - Liam Simms
- Group Science and Regulatory Affairs, Imperial Brands, Bristol, UK
| | - Leon F. Stankowski
- Genetic and In Vitro Toxicology, Charles River Laboratories–Skokie, Skokie, Illinois, USA
| | - David Thorne
- Consumer Product Safety, British American Tobacco, Southampton, UK
| | - Roman Wieczorek
- Group Science and Regulatory Affairs, Reemtsma Cigarettenfabriken GmbH, an Imperial Brands PLC Company, Hamburg, Germany
| | | |
Collapse
|
4
|
Nannu Shankar S, Mital K, Le E, Lewis GS, Eiguren-Fernandez A, Sabo-Attwood T, Wu CY. Assessment of Scanning Mobility Particle Sizer (SMPS) for online monitoring of delivered dose in an in vitro aerosol exposure system. Toxicol In Vitro 2023; 92:105650. [PMID: 37463634 PMCID: PMC10714344 DOI: 10.1016/j.tiv.2023.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/02/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
Real-time monitoring of dosimetry is critical to mitigating the constraints of offline measurements. To address this need, the use of the Scanning Mobility Particle Sizer (SMPS) to estimate the dose delivered through the Dosimetric Aerosol in Vitro Inhalation Device (DAVID) was assessed. CuO nanoparticles suspended in ethanol at different concentrations (0.01-10 mg/mL) were aerosolized using a Collison nebulizer and diluted with air at a ratio of either 1:3 (setup 1) or 1:18 (setup 2). From the aerosol volume concentrations measured by the SMPS, density of CuO (6.4 g/cm3), collection time (5-30 min), flow rate (0.5 LPM) and deposition area (0.28 cm2), the mass doses (DoseSMPS) were observed to increase exponentially over time and ranged from 0.02 ± 0.001 to 84.75 ± 3.49 μg/cm2. The doses calculated from the Cu concentrations determined by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) (DoseICP) also increased exponentially over time (0.01 ± 0.01-97.25 ± 1.30 μg/cm2). Regression analysis between DoseICP and DoseSMPS showed R2 ≥ 0.90 for 0.1-10 mg/mL. As demonstrated, the SMPS can be used to monitor the delivered dose in real-time, and controlled delivery of mass doses with a 226-fold range can be attained in ≤30 min in DAVID by adjusting the nebulizer concentration, dilution air and time.
Collapse
Affiliation(s)
- Sripriya Nannu Shankar
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, USA.
| | - Kiran Mital
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, USA
| | - Eric Le
- Department of Chemical Engineering, University of Florida, Gainesville, USA
| | | | | | - Tara Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, Gainesville, USA
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, USA; Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, USA.
| |
Collapse
|
5
|
Impact of Nanocomposite Combustion Aerosols on A549 Cells and a 3D Airway Model. NANOMATERIALS 2021; 11:nano11071685. [PMID: 34199005 PMCID: PMC8304990 DOI: 10.3390/nano11071685] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
The use of nanomaterials incorporated into plastic products is increasing steadily. By using nano-scaled filling materials, thermoplastics, such as polyethylene (PE), take advantage of the unique properties of nanomaterials (NM). The life cycle of these so-called nanocomposites (NC) usually ends with energetic recovery. However, the toxicity of these aerosols, which may consist of released NM as well as combustion-generated volatile compounds, is not fully understood. Within this study, model nanocomposites consisting of a PE matrix and nano-scaled filling material (TiO2, CuO, carbon nano tubes (CNT)) were produced and subsequently incinerated using a lab-scale model burner. The combustion-generated aerosols were characterized with regard to particle release as well as compound composition. Subsequently, A549 cells and a reconstituted 3D lung cell culture model (MucilAir™, Epithelix) were exposed for 4 h to the respective aerosols. This approach enabled the parallel application of a complete aerosol, an aerosol under conditions of enhanced particle deposition using high voltage, and a filtered aerosol resulting in the sole gaseous phase. After 20 h post-incubation, cytotoxicity, inflammatory response (IL-8), transcriptional toxicity profiling, and genotoxicity were determined. Only the exposure toward combustion aerosols originated from PE-based materials induced cytotoxicity, genotoxicity, and transcriptional alterations in both cell models. In contrast, an inflammatory response in A549 cells was more evident after exposure toward aerosols of nano-scaled filler combustion, whereas the thermal decomposition of PE-based materials revealed an impaired IL-8 secretion. MucilAir™ tissue showed a pronounced inflammatory response after exposure to either combustion aerosols, except for nanocomposite combustion. In conclusion, this study supports the present knowledge on the release of nanomaterials after incineration of nano-enabled thermoplastics. Since in the case of PE-based combustion aerosols no major differences were evident between exposure to the complete aerosol and to the gaseous phase, adverse cellular effects could be deduced to the volatile organic compounds that are generated during incomplete combustion of NC.
Collapse
|