1
|
Dickson L, Teall M, Chevalier E, Cheung T, Liwicki GM, Mack S, Stephenson A, White K, Fosbeary R, Harrison DC, Brice NL, Doyle K, Ciccocioppo R, Wu C, Almond S, Patel TR, Mitchell P, Barnes M, Ayscough AP, Dawson LA, Carlton M, Bürli RW. Discovery of CVN636: A Highly Potent, Selective, and CNS Penetrant mGluR 7 Allosteric Agonist. ACS Med Chem Lett 2023; 14:442-449. [PMID: 37077399 PMCID: PMC10107911 DOI: 10.1021/acsmedchemlett.2c00529] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
The low affinity metabotropic glutamate receptor mGluR7 has been implicated in numerous CNS disorders; however, a paucity of potent and selective activators has hampered full delineation of the functional role and therapeutic potential of this receptor. In this work, we present the identification, optimization, and characterization of highly potent, novel mGluR7 agonists. Of particular interest is the chromane CVN636, a potent (EC50 7 nM) allosteric agonist which demonstrates exquisite selectivity for mGluR7 compared to not only other mGluRs, but also a broad range of targets. CVN636 demonstrated CNS penetrance and efficacy in an in vivo rodent model of alcohol use disorder. CVN636 thus has potential to progress as a drug candidate in CNS disorders involving mGluR7 and glutamatergic dysfunction.
Collapse
Affiliation(s)
- Louise Dickson
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Martin Teall
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Elodie Chevalier
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Toni Cheung
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Gemma M. Liwicki
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Stephen Mack
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Anne Stephenson
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Kathryn White
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Richard Fosbeary
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - David C. Harrison
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Nicola L. Brice
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Kevin Doyle
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino 62032, Italy
| | - Chaobo Wu
- WuXi Apptec Limited, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Sarah Almond
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Toshal R. Patel
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Philip Mitchell
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Matt Barnes
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Andrew P. Ayscough
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Lee A. Dawson
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Mark Carlton
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
- Takeda Cambridge Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| | - Roland W. Bürli
- Cerevance Limited, 418 Cambridge Science Park, Cambridge CB4 0PZ, U.K
| |
Collapse
|
2
|
Suutari T, Rahman SN, Vischer HF, van Iperen D, Merivaara A, Yliperttula M, Leurs R, Kool J, Viitala T. Label-Free Analysis with Multiple Parameters Separates G Protein-Coupled Receptor Signaling Pathways. Anal Chem 2020; 92:14509-14516. [PMID: 33054153 DOI: 10.1021/acs.analchem.0c02652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Real-time label-free techniques are used to profile G protein-coupled receptor (GPCR) signaling pathways in living cells. However, interpreting the label-free signal responses is challenging, and previously reported methods do not reliably separate pathways from each other. In this study, a continuous angular-scanning surface plasmon resonance (SPR) technique is utilized for measuring label-free GPCR signal profiles. We show how the continuous angular-scanning ability, measuring up to nine real-time label-free parameters simultaneously, results in more information-rich label-free signal profiles for different GPCR pathways, providing a more accurate pathway separation. For this, we measured real-time full-angular SPR response curves for Gs, Gq, and Gi signaling pathways in living cells. By selecting two of the most prominent label-free parameters: the full SPR curve angular and intensity shifts, we present how this analysis approach can separate each of the three signaling pathways in a straightforward single-step analysis setup, without concurrent use of signal inhibitors or other response modulating compounds.
Collapse
Affiliation(s)
- Teemu Suutari
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland.,Division of BioAnalytical Chemistry, Amsterdam Institute for Medicines, Molecules and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Sabrina N Rahman
- Division of Medicinal Chemistry, Amsterdam Institute for Medicines, Molecules and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Henry F Vischer
- Division of Medicinal Chemistry, Amsterdam Institute for Medicines, Molecules and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Dick van Iperen
- Precision Mechanics and Engineering Bèta, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Arto Merivaara
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Marjo Yliperttula
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute for Medicines, Molecules and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute for Medicines, Molecules and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Tapani Viitala
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland.,Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
3
|
Advantages and shortcomings of cell-based electrical impedance measurements as a GPCR drug discovery tool. Biosens Bioelectron 2019; 137:33-44. [PMID: 31077988 DOI: 10.1016/j.bios.2019.04.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/05/2019] [Accepted: 04/20/2019] [Indexed: 12/13/2022]
Abstract
G Protein-Coupled Receptors (GPCRs) transduce extracellular signals and activate intracellular pathways, usually through activating associated G proteins. Due to their involvement in many human diseases, they are recognized worldwide as valuable drug targets. Many experimental approaches help identify small molecules that target GPCRs, including in vitro cell-based reporter assays and binding studies. Most cell-based assays use one signaling pathway or reporter as an assay readout. Moreover, they often require cell labeling or the integration of reporter systems. Over the last decades, cell-based electrical impedance biosensors have been explored for drug discovery. This label-free method holds many advantages over other cellular assays in GPCR research. The technology requires no cell manipulation and offers real-time kinetic measurements of receptor-mediated cellular changes. Instead of measuring the activity of a single reporter, the impedance readout includes information on multiple signaling events. This is beneficial when screening for ligands targeting orphan GPCRs since the signaling cascade(s) of the majority of these receptors are unknown. Due to its sensitivity, the method also applies to cellular models more relevant to disease, including patient-derived cell cultures. Despite its advantages, remaining issues regarding data comparability and interpretability has limited implementation of cell-based electrical impedance (CEI) in drug discovery. Future optimization must include both full exploitation of CEI response data using various ways of analysis as well as further exploration of its potential to detect biased activities early on in drug discovery. Here, we review the contribution of CEI technology to GPCR research, discuss its comparative benefits, and provide recommendations.
Collapse
|
4
|
Krebs K, Pfeil EM, Simon K, Grundmann M, Häberlein F, Bautista-Aguilera OM, Gütschow M, Weaver CD, Fleischmann BK, Kostenis E. Label-Free Whole Cell Biosensing for High-Throughput Discovery of Activators and Inhibitors Targeting G Protein-Activated Inwardly Rectifying Potassium Channels. ACS OMEGA 2018; 3:14814-14823. [PMID: 30555990 PMCID: PMC6289404 DOI: 10.1021/acsomega.8b02254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/22/2018] [Indexed: 06/09/2023]
Abstract
Dynamic mass redistribution (DMR) and cellular dielectric spectroscopy (CDS) are label-free biosensor technologies that capture real-time integrated cellular responses upon exposure to extra- and intracellular stimuli. They register signaling routes that are accompanied by cell shape changes and/or molecular movement of cells proximal to the biosensor to which they are attached. Here, we report the unexpected observation that robust DMR and CDS signatures are also elicited upon direct stimulation of G protein-activated inwardly rectifying potassium (GIRK) channels, which are involved in the regulation of excitability in the heart and brain. Using ML297, a small-molecule GIRK activator, along with channel blockers and cytoskeletal network inhibitors, we found that GIRK activation exerts its effects on cell shape by a mechanism which depends on actin but not the microtubule network. Because label-free real-time biosensing (i) quantitatively determines concentration dependency of GIRK activators, (ii) accurately assesses the impact of GIRK channel blockers, (iii) is high throughput-compatible, and (iv) visualizes previously unknown cellular consequences downstream of direct GIRK activation, we do not only provide a novel experimental strategy for identification of GIRK ligands but also an entirely new angle to probe GIRK (ligand) biology. We envision that DMR and CDS may add to the repertoire of technologies for systematic exploitation of ion channel function and, in turn, to the identification of novel GIRK ligands in order to treat cardiovascular and neurological disorders.
Collapse
Affiliation(s)
- Katrin
M. Krebs
- Molecular,
Cellular and Pharmacobiology Section, Institute for Pharmaceutical
Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
- Research
Training Group 1873, University of Bonn, Bonn, Germany
| | - Eva M. Pfeil
- Molecular,
Cellular and Pharmacobiology Section, Institute for Pharmaceutical
Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
- Research
Training Group 1873, University of Bonn, Bonn, Germany
| | - Katharina Simon
- Molecular,
Cellular and Pharmacobiology Section, Institute for Pharmaceutical
Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Manuel Grundmann
- Molecular,
Cellular and Pharmacobiology Section, Institute for Pharmaceutical
Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Felix Häberlein
- Molecular,
Cellular and Pharmacobiology Section, Institute for Pharmaceutical
Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Oscar M. Bautista-Aguilera
- Pharmaceutical
Chemistry I, Institute of Pharmacy, University
of Bonn, An der Immenburg
4, 53121 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical
Chemistry I, Institute of Pharmacy, University
of Bonn, An der Immenburg
4, 53121 Bonn, Germany
| | - C. David Weaver
- Vanderbilt
Institute of Chemical Biology, Department of Pharmacology and Department
of Chemistry, Vanderbilt University, Nashville, 37232 Tennessee, United States
| | - Bernd K. Fleischmann
- Institute
of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - Evi Kostenis
- Molecular,
Cellular and Pharmacobiology Section, Institute for Pharmaceutical
Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| |
Collapse
|
5
|
Mansoorifar A, Koklu A, Ma S, Raj GV, Beskok A. Electrical Impedance Measurements of Biological Cells in Response to External Stimuli. Anal Chem 2018; 90:4320-4327. [PMID: 29402081 DOI: 10.1021/acs.analchem.7b05392] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dielectric spectroscopy (DS) is a noninvasive technique for real-time measurements of the impedance spectra of biological cells. DS enables characterization of cellular dielectric properties such as membrane capacitance and cytoplasmic conductivity. We have developed a lab-on-a-chip device that uses an electro-activated microwells array for capturing, DS measurements, and unloading of biological cells. Impedance measurements were conducted at 0.2 V in the 10 kHz to 40 MHz range with 6 s time resolution. An equivalent circuit model was developed to extract the cell membrane capacitance and cell cytoplasmic conductivity from the impedance spectra. A human prostate cancer cell line, PC-3, was used to evaluate the device performance. Suspension of PC-3 cells in low conductivity buffers (LCB) enhanced their dielectrophoretic trapping and impedance response. We report the time course of the variations in dielectric properties of PC-3 cells suspended in LCB and their response to sudden pH change from a pH of 7.3 to a pH of 5.8. Importantly, we demonstrated that our device enabled real-time measurements of dielectric properties of live cancer cells and allowed the assessment of the cellular response to variations in buffer conductivity and pH. These data support further development of this device toward single cell measurements.
Collapse
Affiliation(s)
- Amin Mansoorifar
- Department of Mechanical Engineering , Southern Methodist University , Dallas , Texas 75205 , United States
| | - Anil Koklu
- Department of Mechanical Engineering , Southern Methodist University , Dallas , Texas 75205 , United States
| | - Shihong Ma
- Departments of Urology and Pharmacology , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Ganesh V Raj
- Departments of Urology and Pharmacology , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Ali Beskok
- Department of Mechanical Engineering , Southern Methodist University , Dallas , Texas 75205 , United States
| |
Collapse
|
6
|
Hillger JM, Lieuw WL, Heitman LH, IJzerman AP. Label-free technology and patient cells: from early drug development to precision medicine. Drug Discov Today 2017; 22:1808-1815. [PMID: 28778587 DOI: 10.1016/j.drudis.2017.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Drug development requires physiologically more appropriate model systems and assays to increase understanding of drug action and pathological processes in individual humans. Specifically, patient-derived cells offer great opportunities as representative cellular model systems. Moreover, with novel label-free cellular assays, it is often possible to investigate complex biological processes in their native environment. Combining these two offers distinct opportunities for increasing physiological relevance. Here, we review impedance-based label-free technologies in the context of patient samples, focusing on commonly used cell types, including fibroblasts, blood components, and stem cells. Applications extend as far as tissue-on-a-chip models. Thus, applying label-free technologies to patient samples can produce highly biorelevant data and, with them, unique opportunities for drug development and precision medicine.
Collapse
Affiliation(s)
- Julia M Hillger
- Division of Medicinal Chemistry, LACDR, Leiden University, The Netherlands
| | - Wai-Ling Lieuw
- Division of Medicinal Chemistry, LACDR, Leiden University, The Netherlands
| | - Laura H Heitman
- Division of Medicinal Chemistry, LACDR, Leiden University, The Netherlands
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, LACDR, Leiden University, The Netherlands.
| |
Collapse
|
7
|
Grundmann M. Label-Free Dynamic Mass Redistribution and Bio-Impedance Methods for Drug Discovery. ACTA ACUST UNITED AC 2017. [PMID: 28640952 DOI: 10.1002/cpph.24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Label-free biosensors are increasingly employed in drug discovery. Cell-based biosensors provide valuable insights into the biological consequences of exposing cells and tissues to chemical agents and the underlying molecular mechanisms associated with these effects. Optical biosensors based on the detection of dynamic mass redistribution (DMR) and impedance biosensors using cellular dielectric spectroscopy (CDS) capture changes of the cytoskeleton of living cells in real time. Because signal transduction correlates with changes in cell morphology, DMR and CDS biosensors are exquisitely suited for recording integrated cell responses in an unbiased, yet pathway-specific manner without the use of labels that may interfere with cell function. Described in this unit are several experimental approaches utilizing optical label-free system capturing dynamic mass redistribution (DMR) in living cells (Epic System) and an impedance-based CDS technology (CellKey). In addition, potential pitfalls associated with these assays and alternative approaches for overcoming such technical challenges are discussed. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Manuel Grundmann
- Section Cellular, Molecular and Pharmacobiology, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Whole-cell biosensor for label-free detection of GPCR-mediated drug responses in personal cell lines. Biosens Bioelectron 2015; 74:233-42. [DOI: 10.1016/j.bios.2015.06.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/09/2015] [Accepted: 06/15/2015] [Indexed: 01/08/2023]
|
9
|
Abstract
G-protein-coupled receptors (GPCRs) mediate many important physiological functions and
are considered as one of the most successful therapeutic targets for a broad spectrum of
diseases. The design and implementation of high-throughput GPCR assays that allow the
cost-effective screening of large compound libraries to identify novel drug candidates are
critical in early drug discovery. Early functional GPCR assays depend primarily on the
measurement of G-protein-mediated 2nd messenger generation. Taking advantage of the
continuously deepening understanding of GPCR signal transduction, many
G-protein-independent pathways are utilized to detect the activity of GPCRs, and may
provide additional information on functional selectivity of candidate compounds. With the
combination of automated imaging systems and label-free detection systems, such assays are
now suitable for high-throughput screening (HTS). In this review, we summarize the most
widely used GPCR assays and recent advances in HTS technologies for GPCR drug
discovery.
Collapse
|
10
|
Hamel M, Henault M, Hyjazie H, Morin N, Bayly C, Skorey K, Therien AG, Mancini J, Brideau C, Kargman S. Discovery of Novel P2Y14 Agonist and Antagonist Using Conventional and Nonconventional Methods. ACTA ACUST UNITED AC 2011; 16:1098-105. [DOI: 10.1177/1087057111415525] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
P2Y14 is a member of the pyrimidinergic GPCR family. UDP-Glc has been previously shown to activate human P2Y14, whereas UDP was unable to activate the receptor. In this study, the authors used conventional and nonconventional methods to further characterize P2Y14 and its ligands. Conventional calcium mobilization and nonconventional cellular impedance functional assays revealed that UMP and UDP selectively activated HEK cells coexpressing P2Y14 and Gαqi5. In the impedance assays, the presence of exogenous Gαqi5 resulted in agonist-induced Gq signaling, whereas in the absence of exogenous Gαqi5, the signal was indicative of Gi. The authors established the first P2Y14 membrane filtration binding assay using a novel optimized expression vector and [3H]UDP as radioligand. UDP-Glc, UMP, and UDP dose dependently inhibited [3H]UDP binding in the binding assay, and saturation analysis revealed that UDP bound P2Y14 with a KD = 10 nM and a Bmax = 110 pmol/mg. The authors screened a phosphonate library and identified compound A, which inhibited UDP-Glc–mediated calcium signaling in the fluorometric imaging plate reader assay (IC50 = 2.3 µM) and competed for [3H]UDP binding in the novel binding assay with a Ki = 1280 nM.
Collapse
Affiliation(s)
- Martine Hamel
- Department of Biochemistry and Molecular Biology, Merck Frosst Canada, Inc., Kirkland, Quebec, Canada
| | - Martin Henault
- Department of Biochemistry and Molecular Biology, Merck Frosst Canada, Inc., Kirkland, Quebec, Canada
| | - Huda Hyjazie
- Department of Biochemistry and Molecular Biology, Merck Frosst Canada, Inc., Kirkland, Quebec, Canada
| | - Nicolas Morin
- Department of Biochemistry and Molecular Biology, Merck Frosst Canada, Inc., Kirkland, Quebec, Canada
| | - Christopher Bayly
- Department of Medicinal Chemistry, Merck Frosst Canada, Inc., Kirkland, Quebec, Canada
| | - Kathryn Skorey
- Department of Biochemistry and Molecular Biology, Merck Frosst Canada, Inc., Kirkland, Quebec, Canada
| | - Alex G. Therien
- Department of Biochemistry and Molecular Biology, Merck Frosst Canada, Inc., Kirkland, Quebec, Canada
| | - Joseph Mancini
- Department of Biochemistry and Molecular Biology, Merck Frosst Canada, Inc., Kirkland, Quebec, Canada
| | - Christine Brideau
- Department of Biochemistry and Molecular Biology, Merck Frosst Canada, Inc., Kirkland, Quebec, Canada
| | - Stacia Kargman
- Department of Biochemistry and Molecular Biology, Merck Frosst Canada, Inc., Kirkland, Quebec, Canada
| |
Collapse
|
11
|
Abstract
Label-free biosensors for studying cell biology have finally come of age. Recent developments have advanced the biosensors from low throughput and high maintenance research tools to high throughput and low maintenance screening platforms. In parallel, the biosensors have evolved from an analytical tool solely for molecular interaction analysis to powerful platforms for studying cell biology at the whole cell level. This paper presents historical development, detection principles, and applications in cell biology of label-free biosensors. Future perspectives are also discussed.
Collapse
Affiliation(s)
- Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Inc., Corning, NY 14831, USA
| |
Collapse
|
12
|
Bot C, Prodan C. Probing the membrane potential of living cells by dielectric spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:1049-59. [DOI: 10.1007/s00249-009-0507-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/02/2009] [Accepted: 06/08/2009] [Indexed: 11/29/2022]
|
13
|
Cooper MA. Non-optical screening platforms: the next wave in label-free screening? Drug Discov Today 2006; 11:1068-74. [PMID: 17129825 DOI: 10.1016/j.drudis.2006.10.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 08/17/2006] [Accepted: 10/04/2006] [Indexed: 11/15/2022]
Abstract
The use of optical biosensors for compound screening was first demonstrated in the mid-1990s, but there has been limited uptake in the market owing to issues of limited throughput and a lack of applications for key receptor classes. Recently, several start-up and established tools companies have exploited non-optical detection modalities that seek to address the shortcomings of more established optical approaches. Platforms based on acoustic resonance, electrical impedance, microcantilevers, nanowires and differential calorimetry are beginning to appear with commercially available products targeted at post-high-throughput screening hit confirmation and mode-of-action studies. This article highlights key advances in commercial label-free analysis platforms, which complement more traditional optical system and which also allow novel assay formats for the analysis of previously intractable targets.
Collapse
Affiliation(s)
- Matthew A Cooper
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
14
|
Verdonk E, Johnson K, McGuinness R, Leung G, Chen YW, Tang HR, Michelotti JM, Liu VF. Cellular Dielectric Spectroscopy: A Label-Free Comprehensive Platform for Functional Evaluation of Endogenous Receptors. Assay Drug Dev Technol 2006; 4:609-19. [PMID: 17115931 DOI: 10.1089/adt.2006.4.609] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The CellKey (MDS Sciex, South San Francisco, CA) system enables comprehensive pharmacological evaluation of cell surface receptors, including G-protein coupled receptors (GPCRs) and tyrosine kinase receptors, using adherent and suspension cell lines and primary cells. A unique application enabled by the ability of the CellKey system to reliably quantify activation of endogenous receptors is receptor panning. This application allows investigators to easily screen disease-relevant cell types for functionally active target receptors by treating cells with a panel of receptor-specific ligands. Receptor panning of multiple cell types including Chinese hamster ovary, human embryonic kidney 293, HeLa, U-937, U-2 OS, and TE671 cells resulted in the identification of many functionally active, differently coupled endogenous GPCRs, some of which have not been previously documented in the literature. Upon detecting GPCR activation in live cells, unique cellular dielectric spectroscopy (CDS) response profiles are generated within minutes that reflect the signaling pathways utilized and have been shown to be characteristic of Gs, Gq, and Gi GPCRs. The fact that the CDS response profiles are predictive of the G-protein coupling mechanism of the receptor was demonstrated by using examples of subtype-selective agonists/antagonists to identify the subtypes of the endogenous histamine and beta-adrenergic receptors expressed in U-2 OS cells. A direct correlation is shown between receptor subtype G-protein coupling and CDS response profile. In addition, complex pharmacology, including detection of partial agonism and Schild analysis for endogenous receptors, is presented. The CellKey system allows investigators to conduct studies using endogenously expressed receptors to generate data that are physiologically relevant and in disease context.
Collapse
|