1
|
Chun MY, Park YH, Kim HJ, Na DL, Kim JP, Seo SW, Jang H. Distinct Characteristics of Suspected Non-Alzheimer Pathophysiology in Relation to Cognitive Status and Cerebrovascular Burden. Clin Nucl Med 2025; 50:368-380. [PMID: 40025666 PMCID: PMC11969373 DOI: 10.1097/rlu.0000000000005793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/23/2025] [Indexed: 03/04/2025]
Abstract
PURPOSE OF THE REPORT This study investigated the prevalence and clinical characteristics of suspected non-Alzheimer disease pathophysiology (SNAP) across varying cognitive statuses and cerebral small vessel disease (CSVD) burden. PATIENTS AND METHODS We included 1992 participants with cognitive status categorized as cognitively unimpaired, mild cognitive impairment, or dementia. β-amyloid (Aβ, A) positivity was assessed by Aβ PET, and neurodegeneration (N) positivity was determined through hippocampal volume. Participants were further divided by the presence or absence of severe CSVD. The clinical and imaging characteristics of A-N+ (SNAP) group were compared with those of the A-N- and A+N+ groups. RESULTS SNAP participants were older and had more vascular risk factors compared with A-N- and A+N+ in the CSVD(-) cohort. SNAP and A+N+ showed similar cortical thinning. At the dementia stage, SNAP had a cognitive trajectory similar to A+N+ in the CSVD(-) cohort. However, SNAP exhibited less cognitive decline than A+N+ in the CSVD(+) cohort. CONCLUSIONS SNAP is characterized by distinct clinical and imaging characteristics; however, it does not necessarily indicate a benign prognosis, particularly at the dementia stage. These findings highlight the need to assess SNAP in relation to the cognitive stage and CSVD presence to better understand its progression and guide interventions.
Collapse
Affiliation(s)
- Min Young Chun
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine
- Department of Neurology, Yonsei University College of Medicine
| | - Yu Hyun Park
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine
- Neuroscience Center, Samsung Medical Center
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University
- Department of Digital Health, SAIHST, Sungkyunkwan University
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center
| | - Jun Pyo Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University
- Department of Digital Health, SAIHST, Sungkyunkwan University
- Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Gangnam-gu
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Jongno-gu, Seoul, South Korea
| |
Collapse
|
2
|
Herholz K, McMahon A, Thompson JC, Jones M, Boutin H, Gregory J, Parker CA, Hinz R. Quantitative Imaging of Regional Cerebral Protein Synthesis in Clinical Alzheimer's Disease by [ 11C]Leucine PET. Mol Imaging Biol 2024; 26:977-985. [PMID: 39567463 PMCID: PMC11634943 DOI: 10.1007/s11307-024-01965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/23/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE Protein synthesis is essential to maintain integrity and function of the human brain, and protein synthesis is associated specifically with the formation of long-term memory. Experimental and clinical observations indicate that this process is disturbed in Alzheimer's dementia and other neurodegenerative diseases. In-vivo investigation with positron emission tomography (PET) using [11C]leucine provides a unique possibility to measure regional cerebral protein synthesis (rCPS) rates in human brain and to determine whether it is altered in Alzheimer's disease (AD), and thus may provide a target for future therapeutic interventions. PROCEDURES In this first human study, we measured rCPS by [11C]leucine PET in four patients with AD (age 57-73 years) and compared the results with six healthy controls (three of whom were age matched and the other three were young controls). Quantification of rCPS also required measurement of amino acid (AA) levels and of free and protein-bound [11C]leucine in plasma during the 90 min PET scans conducted following at least six hours of fasting. RESULTS Rates of rCPS measured in absolute units of nmol/g/min ranged between 1.81 and 2.53 in AD patients, 2.10 and 2.54 in matched controls, and 2.21 to 2.35 in the young controls. Mean and median values did not show significant differences between the groups. Rates of rCPS also depended upon whether corrections for plasma AA levels were included in the calculations. When considering regional values relative to the corpus callosum as a reference region, there was a tendency towards impairment of rCPS in patients, which was most prominent in the parietal cortex, but did not reach significance. Similar findings were observed with normalisation of rCPS to global cortical mean. CONCLUSIONS In summary, this first human study assessing regional protein synthesis with [11C]leucine in AD has demonstrated where the sources of variance in measurements of cerebral protein synthesis may arise, along with the potential magnitude of this variance. This study also indicates that there is a tendency towards impairment of rCPS in patients with Alzheimer's disease, which requires further investigation including possible partial volume effects due to atrophy.
Collapse
Affiliation(s)
- Karl Herholz
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, University of Manchester, Manchester, M13 9PL, UK.
| | - Adam McMahon
- Faculty of Biology, Medicine and Health, School of Health Sciences, Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Jennifer C Thompson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Clinical Neurosciences, Salford, M6 8HD, UK
| | - Matthew Jones
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, University of Manchester, Manchester, M13 9PL, UK
- Manchester Centre for Clinical Neurosciences, Salford, M6 8HD, UK
| | - Herve Boutin
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience, University of Manchester, Manchester, M13 9PL, UK
- UMR 1253, iBrain, Université de Tours, Inserm, UFR de Médecine, 10 Bd Tonnellé, 37032, Tours Cedex 01, France
| | - Jamil Gregory
- Faculty of Biology, Medicine and Health, School of Health Sciences, Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, M13 9PL, UK
| | | | - Rainer Hinz
- Faculty of Biology, Medicine and Health, School of Health Sciences, Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
3
|
Li A, Zhao R, Zhang M, Sun P, Cai Y, Zhu L, Kung H, Han Y, Wang X, Guo T. [ 18F]-D3FSP β-amyloid PET imaging in older adults and alzheimer's disease. Eur J Nucl Med Mol Imaging 2024; 51:3990-4000. [PMID: 38976036 DOI: 10.1007/s00259-024-06835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE [18F]-D3FSP is a new β-amyloid (Aβ) PET imaging tracer designed to decrease nonspecific signals in the brain by reducing the formation of the N-demethylated product. However, its optimal reference region for calculating the standardized uptake value ratio (SUVR) and its relation to the well-established biomarkers of Alzheimer's disease (AD) are still unclear. METHODS We recruited 203 participants from the Greater Bay Area Healthy Aging Brain Study (GHABS) to undergo [18F]-D3FSP Aβ PET imaging. We analyzed plasma Aβ42/Aβ40, p-Tau181, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) using the Simoa platform. We compared the standardized uptake value (SUV) of five reference regions (cerebellum, cerebellum cortex, brainstem/PONs, white matter, composite of the four regions above) and AD typical cortical region (COMPOSITE) SUVR among different clinical groups. The association of D3FSP SUVR with plasma biomarkers, imaging biomarkers, and cognition was also investigated. RESULTS Brainstem/PONs SUV showed the lowest fluctuation across diagnostic groups, and COMPOSITE D3FSP SUVR had an enormous effect distinguishing cognitively impaired (CI) individuals from cognitively unimpaired (CU) individuals. COMPOSITE SUVR (Referred to brainstem/PONs) was positively correlated with p-Tau181 (p < 0.001), GFAP (p < 0.001), NfL (p = 0.014) in plasma and temporal-metaROI tau deposition (p < 0.001), and negatively related to plasma Aβ42/Aβ40 (p < 0.001), temporal-metaROI cortical thickness (p < 0.01), residual hippocampal volume (p < 0.001) and cognition (p < 0.001). The voxel-wise analysis replicated these findings. CONCLUSION This study suggests brainstem/PONs as an optimal reference region for calculating D3FSP SUVR to quantify cortical Aβ plaques in the brain. [18F]-D3FSP could distinguish CI from CU and strongly correlates with well-established plasma biomarkers, tau PET, neurodegeneration, and cognitive decline. However, future head-to-head comparisons of [18F]-D3FSP PET images with other validated Aβ PET tracers or postmortem results are crucial.
Collapse
Affiliation(s)
- Anqi Li
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Ruiyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
| | - Mingkai Zhang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Pan Sun
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Yue Cai
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Lin Zhu
- Beijing Normal University, Beijing, 100875, China
| | - Hank Kung
- University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ying Han
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
- National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Xinlu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China.
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China.
| | - Tengfei Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China.
- Institute of Biomedical Engineering, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Zhang S, Dong H, Bian J, Li D, Liu C. Targeting amyloid proteins for clinical diagnosis of neurodegenerative diseases. FUNDAMENTAL RESEARCH 2023; 3:505-519. [PMID: 38933553 PMCID: PMC11197785 DOI: 10.1016/j.fmre.2022.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Abnormal aggregation and accumulation of pathological amyloid proteins such as amyloid-β, Tau, and α-synuclein play key pathological roles and serve as histological hallmarks in different neurodegenerative diseases (NDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, various post-translational modifications (PTMs) have been identified on pathological amyloid proteins and are subjected to change during disease progression. Given the central role of amyloid proteins in NDs, tremendous efforts have been made to develop amyloid-targeting strategies for clinical diagnosis and molecular classification of NDs. In this review, we summarize two major strategies for targeting amyloid aggregates, with a focus on the trials in AD diagnosis. The first strategy is a positron emission tomography (PET) scan of protein aggregation in the brain. We mainly focus on introducing the development of small-molecule PET tracers for specifically recognizing pathological amyloid fibrils. The second strategy is the detection of PTM biomarkers on amyloid proteins in cerebrospinal fluid and plasma. We discuss the pathological roles of different PTMs in diseases and how we can use the PTM profile of amyloid proteins for clinical diagnosis. Finally, we point out the potential technical challenges of these two strategies, and outline other potential strategies, as well as a combination of multiple strategies, for molecular diagnosis of NDs.
Collapse
Affiliation(s)
- Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hui Dong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Bian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
5
|
López-Cuevas R, Baquero-Toledo M, Cuevas-Jiménez A, Martín-Ibáñez N, Pascual-Costa R, Moreno-Monedero MJ, Cañada-Martínez A, Peña-Bautista C, Ferrer-Cairols I, Álvarez-Sánchez L, Cháfer-Pericás C. Prognostic value of cerebrospinal fluid biomarkers in mild cognitive impairment due to Alzheimer disease. Neurologia 2023; 38:262-269. [PMID: 37031800 DOI: 10.1016/j.nrleng.2020.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/29/2020] [Indexed: 04/11/2023] Open
Abstract
We performed a retrospective analysis of the patients assessed at our memory unit for whom Alzheimer disease (AD) cerebrospinal fluid biomarker results were available. We selected patients diagnosed with mild cognitive impairment due to AD (National Institute on Aging-Alzheimer's Association clinical criteria), confirmed neuropsychological deficit, a Global Deterioration Scale score of 3, and an abnormal profile of cerebrospinal fluid biomarkers. Of the 588 cases reviewed, 110 met the inclusion criteria. During follow-up, 50 cases (45.45%) progressed to dementia due to AD. Baseline levels of total and phosphorylated tau were higher in the group of patients that progressed to dementia than in those remaining with mild cognitive impairment. After adjusting for age, sex, history of hypertension, diabetes, and educational level, a 10% increase in total tau protein values was associated with a 7.60% increase in the risk of progression to dementia (hazard ratio: 2.22; 95% confidence interval, 1.28-3.84]; P = .004). Among patients with mild cognitive impairment due to AD and abnormal cerebrospinal fluid biomarker profiles, progressively higher concentrations of total or phosphorylated tau were associated with increased risk of progression to dementia.
Collapse
Affiliation(s)
- R López-Cuevas
- Grupo de Investigación en Neurodegeneración y Biomarcadores de Daño Neurológico, Instituto de investigación sanitaria La Fe, Valencia, Spain; Unidad de trastornos cognitivos. Servicio de Neurología. Hospital Universitario y Politécnico La Fe, Valencia, Spain.
| | - M Baquero-Toledo
- Grupo de Investigación en Neurodegeneración y Biomarcadores de Daño Neurológico, Instituto de investigación sanitaria La Fe, Valencia, Spain; Unidad de trastornos cognitivos. Servicio de Neurología. Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - A Cuevas-Jiménez
- Grupo de Investigación en Neurodegeneración y Biomarcadores de Daño Neurológico, Instituto de investigación sanitaria La Fe, Valencia, Spain; Unidad de trastornos cognitivos. Servicio de Neurología. Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - N Martín-Ibáñez
- Grupo de Investigación en Neurodegeneración y Biomarcadores de Daño Neurológico, Instituto de investigación sanitaria La Fe, Valencia, Spain; Unidad de trastornos cognitivos. Servicio de Neurología. Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - R Pascual-Costa
- Servicio de análisis clínicos. Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - M J Moreno-Monedero
- Servicio de análisis clínicos. Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - A Cañada-Martínez
- Departamento de bioestadística. Instituto de investigación sanitaria La Fe, Valencia, Spain
| | - C Peña-Bautista
- Grupo de Investigación en Neurodegeneración y Biomarcadores de Daño Neurológico, Instituto de investigación sanitaria La Fe, Valencia, Spain; Grupo de investigación en perinatología. Instituto de investigación sanitaria La Fe, Valencia, Spain
| | - I Ferrer-Cairols
- Grupo de Investigación en Neurodegeneración y Biomarcadores de Daño Neurológico, Instituto de investigación sanitaria La Fe, Valencia, Spain; Unidad de trastornos cognitivos. Servicio de Neurología. Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - L Álvarez-Sánchez
- Grupo de Investigación en Neurodegeneración y Biomarcadores de Daño Neurológico, Instituto de investigación sanitaria La Fe, Valencia, Spain; Unidad de trastornos cognitivos. Servicio de Neurología. Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - C Cháfer-Pericás
- Grupo de Investigación en Neurodegeneración y Biomarcadores de Daño Neurológico, Instituto de investigación sanitaria La Fe, Valencia, Spain; Grupo de investigación en perinatología. Instituto de investigación sanitaria La Fe, Valencia, Spain
| |
Collapse
|
6
|
Rauhala E, Johansson J, Karrasch M, Eskola O, Tolvanen T, Parkkola R, Virtanen KA, Rinne JO. Change in brain amyloid load and cognition in patients with amnestic mild cognitive impairment: a 3-year follow-up study. EJNMMI Res 2022; 12:55. [PMID: 36065070 PMCID: PMC9445147 DOI: 10.1186/s13550-022-00928-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background Our aim was to investigate the discriminative value of 18F-Flutemetamol PET in longitudinal assessment of amyloid beta accumulation in amnestic mild cognitive impairment (aMCI) patients, in relation to longitudinal cognitive changes.
Methods We investigated the change in 18F-Flutemetamol uptake and cognitive impairment in aMCI patients over time up to 3 years which enabled us to investigate possible association between changes in brain amyloid load and cognition over time. Thirty-four patients with aMCI (mean age 73.4 years, SD 6.6) were examined with 18F-Flutemetamol PET scan, brain MRI and cognitive tests at baseline and after 3-year follow-up or earlier if the patient had converted to Alzheimer´s disease (AD). 18F-Flutemetamol data were analyzed both with automated region-of-interest analysis and voxel-based statistical parametric mapping. Results 18F-flutemetamol uptake increased during the follow-up, and the increase was significantly higher in patients who were amyloid positive at baseline as compared to the amyloid-negative ones. At follow-up, there was a significant association between 18F-Flutemetamol uptake and MMSE, logical memory I (immediate recall), logical memory II (delayed recall) and verbal fluency. An association was seen between the increase in 18F-Flutemetamol uptake and decline in MMSE and logical memory I scores. Conclusions In the early phase of aMCI, presence of amyloid pathology at baseline strongly predicted amyloid accumulation during follow-up, which was further paralleled by cognitive declines. Inversely, some of our patients remained amyloid negative also at the end of the study without significant change in 18F-Flutemetamol uptake or cognition. Future studies with longer follow-up are needed to distinguish whether the underlying pathophysiology of aMCI in such patients is other than AD.
Collapse
Affiliation(s)
- Elina Rauhala
- Clinical Neurosciences, Faculty of Medicine, Turku University Hospital, University of Turku and Neurocenter, Turku, Finland
| | - Jarkko Johansson
- Turku PET Centre, Turku University Hospital, Turku, Finland.,Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Mira Karrasch
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Olli Eskola
- Turku PET Centre, University of Turku, Turku, Finland
| | - Tuula Tolvanen
- Turku PET Centre, University of Turku, Turku, Finland.,Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | | | - Juha O Rinne
- Turku PET Centre, Turku University Hospital, Turku, Finland. .,InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| |
Collapse
|
7
|
Tondelli M, Salemme S, Vinceti G, Bedin R, Trenti T, Molinari MA, Chiari A, Zamboni G. Predictive value of phospho-tau/total-tau ratio in amyloid-negative Mild Cognitive Impairment. Neurosci Lett 2022; 787:136811. [PMID: 35870715 DOI: 10.1016/j.neulet.2022.136811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND In patients with Mild Cognitive Impairment and normal biomarkers of amyloid-β deposition, prognostication remains challenging. METHODS We aimed at identifying clinical features, patterns of brain atrophy, and risk of subsequent conversion to dementia in a clinical cohort of consecutive patients with Mild Cognitive Impairment and normal CSF amyloid-β1-42 presenting to our Cognitive Neurology Clinic who were followed prospectively over an average of 25 months. We stratified them as Converters/Non-Converters to dementia based on clinical follow-up and compared baseline clinical features, CSF biomarkers, and pattern of atrophy on MRI data between groups. RESULTS Among 111 eligible patients (mean age 65,61 years; 56,8% were male), 41 patients developed a clinical diagnosis of dementia. Subjects with low baseline p/t-tau had twofold risk of future conversion compared to high p/t-tau ratio subjects (HR = 2.0, p = 0.026). When stratifying converters according to CSF p/t-tau ratio cut off value (0,17), those with values lower than the cut-off had significantly more MRI atrophy at baseline relative to Non-Converters in limbic structures. CONCLUSION In Mild Cognitive Impairment patients with negative CSF amyloid biomarker, CSF p/t-tau ratio may be useful to identify those at greater risk of subsequent conversion, possibly because of TDP43-related underlying pathology.
Collapse
Affiliation(s)
- Manuela Tondelli
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena, Italy; Center for Neurosciences and Neurotechnology, Università di Modena e Reggio Emilia, Italy
| | - Simone Salemme
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena, Italy; Center for Neurosciences and Neurotechnology, Università di Modena e Reggio Emilia, Italy
| | - Giulia Vinceti
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena, Italy; Center for Neurosciences and Neurotechnology, Università di Modena e Reggio Emilia, Italy; Neurology Unit, Baggiovara Hospital, AOU Modena, Italy
| | - Roberta Bedin
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena, Italy; Center for Neurosciences and Neurotechnology, Università di Modena e Reggio Emilia, Italy
| | - Tommaso Trenti
- Laboratory Medicine Department, Baggiovara Hospital, AOU Modena, Italy
| | | | | | - Giovanna Zamboni
- Department of Biomedical, Metabolic, and Neural Science, University of Modena and Reggio Emilia, Modena, Italy; Center for Neurosciences and Neurotechnology, Università di Modena e Reggio Emilia, Italy; Neurology Unit, Baggiovara Hospital, AOU Modena, Italy; Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| |
Collapse
|
8
|
Stocks J, Popuri K, Heywood A, Tosun D, Alpert K, Beg MF, Rosen H, Wang L, for the Alzheimer's Disease Neuroimaging Initiative. Network-wise concordance of multimodal neuroimaging features across the Alzheimer's disease continuum. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12304. [PMID: 35496375 PMCID: PMC9043119 DOI: 10.1002/dad2.12304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 01/18/2023]
Abstract
Background Concordance between cortical atrophy and cortical glucose hypometabolism within distributed brain networks was evaluated among cerebrospinal fluid (CSF) biomarker-defined amyloid/tau/neurodegeneration (A/T/N) groups. Method We computed correlations between cortical thickness and fluorodeoxyglucose metabolism within 12 functional brain networks. Differences among A/T/N groups (biomarker normal [BN], Alzheimer's disease [AD] continuum, suspected non-AD pathologic change [SNAP]) in network concordance and relationships to longitudinal change in cognition were assessed. Results Network-wise markers of concordance distinguish SNAP subjects from BN subjects within the posterior multimodal and language networks. AD-continuum subjects showed increased concordance in 9/12 networks assessed compared to BN subjects, as well as widespread atrophy and hypometabolism. Baseline network concordance was associated with longitudinal change in a composite memory variable in both SNAP and AD-continuum subjects. Conclusions Our novel study investigates the interrelationships between atrophy and hypometabolism across brain networks in A/T/N groups, helping disentangle the structure-function relationships that contribute to both clinical outcomes and diagnostic uncertainty in AD.
Collapse
Affiliation(s)
- Jane Stocks
- Department of Psychiatry and Behavioral SciencesFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Karteek Popuri
- School of Engineering ScienceSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Ashley Heywood
- Department of Psychiatry and Behavioral SciencesFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Duygu Tosun
- School of MedicineUniversity of CaliforniaSan Francisco, CaliforniaUSA
| | - Kate Alpert
- Department of Psychiatry and Behavioral SciencesFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Mirza Faisal Beg
- School of Engineering ScienceSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Howard Rosen
- School of MedicineUniversity of CaliforniaSan Francisco, CaliforniaUSA
| | - Lei Wang
- Department of Psychiatry and Behavioral SciencesFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of Psychiatry and Behavioral HealthOhio State University Wexner Medical CenterColumbusOhioUSA
| | | |
Collapse
|
9
|
Saridin FN, Chew KA, Reilhac A, Giyanwali B, Villaraza SG, Tanaka T, Scheltens P, van der Flier WM, Chen CLH, Hilal S. Cerebrovascular disease in Suspected Non-Alzheimer's Pathophysiology and cognitive decline over time. Eur J Neurol 2022; 29:1922-1929. [PMID: 35340085 DOI: 10.1111/ene.15337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The underlying cause of cognitive decline in individuals who are positive for biomarkers of neurodegeneration (N) but negative for biomarkers of amyloid-beta (A), designated as Suspected Non-Alzheimer's Pathophysiology (SNAP), remains unclear. We evaluate whether cerebrovascular disease (CeVD) is more prevalent in those with SNAP compared to A-N- and A+N+ individuals and whether CeVD is associated with cognitive decline over time in SNAP patients. METHODS A total of 216 individuals from a prospective memory clinic cohort [mean (SD) age, 72.7(7.3) years, 100 women (56.5%)] were included and were diagnosed as no cognitive impairment (NCI), cognitive impairment no dementia (CIND), Alzheimer's dementia (AD) or Vascular dementia (VaD). All individuals underwent clinical evaluation and neuropsychological assessment annually for up to 5 years. [11 C]-PiB or [18 F]-Flutafuranol-PET imaging was performed to ascertain amyloid-beta status. MRI was performed to assess neurodegeneration as measured by medial temporal atrophy≥2, as well as significant CeVD (sCeVD) burden, defined by cortical infarct count≥1, Fazekas-score≥2, lacune count≥2 or cerebral microbleed count≥2. RESULTS Of the 216 individuals, 50(23.1%) A-N+ were (SNAP), 93(43.1%) A-N-, 36(16.7%) A+N- and 37(17.1%) A+N+. A+N+ individuals were significantly older, while A+N+ and SNAP individuals were more likely to have dementia. The SNAP group had a higher prevalence of sCeVD (90.0%) compared to A-N-. Moreover, SNAP individuals with sCeVD had significantly steeper decline in global cognition compared to A-N- over 5 years (P=0.042). CONCLUSIONS These findings suggest that CeVD is a contributing factor to cognitive decline in SNAP. Therefore, SNAP-individuals should be carefully assessed and treated for CeVD.
Collapse
Affiliation(s)
- Francis Nicole Saridin
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Memory Aging & Cognition Centre, National University Health System, Singapore
| | - Kimberly Ann Chew
- Memory Aging & Cognition Centre, National University Health System, Singapore
| | - Anthonin Reilhac
- Clinical Imaging Research Centre, National University of Singapore, Singapore
| | - Bibek Giyanwali
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Tomotaka Tanaka
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Phillip Scheltens
- Department of Neurology & Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, Netherlands
| | - Christopher Li Hsian Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Memory Aging & Cognition Centre, National University Health System, Singapore.,Department of Psychological Medicine, National University Hospital, Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Memory Aging & Cognition Centre, National University Health System, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| |
Collapse
|
10
|
Rundek T, Del Brutto V, Goryawala M, Dong C, Agudelo C, Saporta AS, Merritt S, Camargo C, Ariko T, Loewenstein DA, Duara R, Haq I. Associations Between Vascular Risk Factors and Perivascular Spaces in Adults with Intact Cognition, Mild Cognitive Impairment, and Dementia. J Alzheimers Dis 2022; 89:437-448. [PMID: 35871327 PMCID: PMC10410400 DOI: 10.3233/jad-215585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Perivascular spaces (PVS) are fluid-filled compartments surrounding small intracerebral vessels that transport fluid and clear waste. OBJECTIVE We examined associations between PVS count, vascular and neurodegenerative risk factors, and cognitive status among the predominantly Hispanic participants of the FL-VIP Study of Alzheimer's Disease Risk. METHODS Using brain MRI (n = 228), we counted PVS in single axial image through the basal ganglia (BG) and centrum semiovale (CSO). PVS per region were scored as 0 (none), 1 (<10), 2 (11-20), 3 (21-40), and 4 (>40). Generalized linear models examined PVS associations with vascular risk factors and a composite vascular comorbidity risk (VASCom) score. RESULTS Our sample (mean age 72±8 years, 61% women, 60% Hispanic, mean education 15±4 years, 33% APOE4 carriers) was 59% hypertensive, 21% diabetic, 66% hypercholesteremic, and 30% obese. Mean VASCom score was 2.3±1.6. PVS scores ranged from 0-4 in the BG (mean 1.3±0.7) and CSO (mean 1.2±0.9), and 0-7 combined (mean 2.5±1.4). In multivariable regression models, BG PVS was associated with age (β= 0.03/year, p < 0.0001), Hispanic ethnicity (β= 0.29, p = 0.01), education (β= 0.04/year, p = 0.04), and coronary bypass surgery (β= 0.93, p = 0.02). CSO PVS only associated with age (β= 0.03/year, p < 0.01). APOE4 and amyloid-β were not associated with PVS. CONCLUSION BG PVS may be a marker of subclinical cerebrovascular disease. Further research is needed to validate associations and identify mechanisms linking BG PVS and cerebrovascular disease markers. PVS may be a marker of neurodegeneration despite our negative preliminary findings and more research is warranted. The association between BG PVS and Hispanic ethnicity also requires further investigation.
Collapse
Affiliation(s)
- Tatjana Rundek
- The Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Victor Del Brutto
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mohammed Goryawala
- The Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Chuanhui Dong
- The Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Christian Agudelo
- The Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Anita Seixas Saporta
- The Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stacy Merritt
- The Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Christian Camargo
- The Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Taylor Ariko
- The Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - David A. Loewenstein
- The Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- The Center for Neurocognitive Sciences and Aging, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ranjan Duara
- Wien Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Ihtsham Haq
- The Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
11
|
Random walks on B distributed resting-state functional connectivity to identify Alzheimer's disease and Mild Cognitive Impairment. Clin Neurophysiol 2021; 132:2540-2550. [PMID: 34455312 DOI: 10.1016/j.clinph.2021.06.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 05/29/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Resting-state functional connectivity reveals a promising way for the early detection of dementia. This study proposes a novel method to accurately classify Healthy Controls, Early Mild Cognitive Impairment, Late Mild Cognitive Impairment, and Alzheimer's Disease individuals. METHODS A novel mapping function based on the B distribution has been developed to map correlation matrices to robust functional connectivity. The node2vec algorithm is applied to the functional connectivity to produce node embeddings. The concatenation of these embedding has been used to derive the patients' feature vectors for further feeding into the Support Vector Machine and Logistic Regression classifiers. RESULTS The experimental results indicate promising results in the complex four-class classification problem with an accuracy rate of 97.73% and a quadratic kappa score of 96.86% for the Support Vector Machine. These values are 97.32% and 96.74% for Logistic Regression. CONCLUSION This study presents an accurate automated method for dementia classification. Default Mode Network and Dorsal Attention Network have been found to demonstrate a significant role in the classification method. SIGNIFICANCE A new mapping function is proposed in this study, the mapping function improves accuracy by 10-11% in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.
Collapse
|
12
|
López-Cuevas R, Baquero-Toledo M, Cuevas-Jiménez A, Martín-Ibáñez N, Pascual-Costa R, Moreno-Monedero MJ, Cañada-Martínez A, Peña-Bautista C, Ferrer-Cairols I, Álvarez-Sánchez L, Cháfer-Pericás C. Prognostic value of cerebrospinal fluid biomarkers in mild cognitive impairment due to Alzheimer disease. Neurologia 2020; 38:S0213-4853(20)30292-9. [PMID: 33143865 DOI: 10.1016/j.nrl.2020.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022] Open
Abstract
We performed a retrospective analysis of the patients assessed at our memory unit for whom Alzheimer disease (AD) cerebrospinal fluid biomarker results were available. We selected patients diagnosed with mild cognitive impairment due to AD (National Institute on Aging-Alzheimer's Association clinical criteria), confirmed neuropsychological deficit, a Global Deterioration Scale score of 3, and an abnormal profile of cerebrospinal fluid biomarkers. Of the 588 cases reviewed, 110 met the inclusion criteria. During follow-up, 50 cases (45.45%) progressed to dementia due to AD. Baseline levels of total and phosphorylated tau were higher in the group of patients that progressed to dementia than in those remaining with mild cognitive impairment. After adjusting for age, sex, history of hypertension, diabetes, and educational level, a 10% increase in total tau protein values was associated with a 7.60% increase in the risk of progression to dementia (hazard ratio: 2.22; 95% confidence interval, 1.28-3.84]; P = .004). Among patients with mild cognitive impairment due to AD and abnormal cerebrospinal fluid biomarker profiles, progressively higher concentrations of total or phosphorylated tau were associated with increased risk of progression to dementia.
Collapse
Affiliation(s)
- R López-Cuevas
- Grupo de Investigación en Neurodegeneración y Biomarcadores de Daño Neurológico, Instituto de investigación sanitaria La Fe, Valencia, España; Unidad de trastornos cognitivos. Servicio de Neurología. Hospital Universitario y Politécnico La Fe, Valencia, España.
| | - M Baquero-Toledo
- Grupo de Investigación en Neurodegeneración y Biomarcadores de Daño Neurológico, Instituto de investigación sanitaria La Fe, Valencia, España; Unidad de trastornos cognitivos. Servicio de Neurología. Hospital Universitario y Politécnico La Fe, Valencia, España
| | - A Cuevas-Jiménez
- Grupo de Investigación en Neurodegeneración y Biomarcadores de Daño Neurológico, Instituto de investigación sanitaria La Fe, Valencia, España; Unidad de trastornos cognitivos. Servicio de Neurología. Hospital Universitario y Politécnico La Fe, Valencia, España
| | - N Martín-Ibáñez
- Grupo de Investigación en Neurodegeneración y Biomarcadores de Daño Neurológico, Instituto de investigación sanitaria La Fe, Valencia, España; Unidad de trastornos cognitivos. Servicio de Neurología. Hospital Universitario y Politécnico La Fe, Valencia, España
| | - R Pascual-Costa
- Servicio de análisis clínicos. Hospital Universitario y Politécnico La Fe, Valencia, España
| | - M J Moreno-Monedero
- Servicio de análisis clínicos. Hospital Universitario y Politécnico La Fe, Valencia, España
| | - A Cañada-Martínez
- Departamento de bioestadística. Instituto de investigación sanitaria La Fe, Valencia, España
| | - C Peña-Bautista
- Grupo de Investigación en Neurodegeneración y Biomarcadores de Daño Neurológico, Instituto de investigación sanitaria La Fe, Valencia, España; Grupo de investigación en perinatología. Instituto de investigación sanitaria La Fe, Valencia, España
| | - I Ferrer-Cairols
- Grupo de Investigación en Neurodegeneración y Biomarcadores de Daño Neurológico, Instituto de investigación sanitaria La Fe, Valencia, España; Unidad de trastornos cognitivos. Servicio de Neurología. Hospital Universitario y Politécnico La Fe, Valencia, España
| | - L Álvarez-Sánchez
- Grupo de Investigación en Neurodegeneración y Biomarcadores de Daño Neurológico, Instituto de investigación sanitaria La Fe, Valencia, España; Unidad de trastornos cognitivos. Servicio de Neurología. Hospital Universitario y Politécnico La Fe, Valencia, España
| | - C Cháfer-Pericás
- Grupo de Investigación en Neurodegeneración y Biomarcadores de Daño Neurológico, Instituto de investigación sanitaria La Fe, Valencia, España; Grupo de investigación en perinatología. Instituto de investigación sanitaria La Fe, Valencia, España
| |
Collapse
|
13
|
Forouzannezhad P, Abbaspour A, Li C, Fang C, Williams U, Cabrerizo M, Barreto A, Andrian J, Rishe N, Curiel RE, Loewenstein D, Duara R, Adjouadi M. A Gaussian-based model for early detection of mild cognitive impairment using multimodal neuroimaging. J Neurosci Methods 2020; 333:108544. [PMID: 31838182 PMCID: PMC11163390 DOI: 10.1016/j.jneumeth.2019.108544] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Diagnosis of early mild cognitive impairment (EMCI) as a prodromal stage of Alzheimer's disease (AD) with its delineation from the cognitively normal (CN) group remains a challenging but essential step for the planning of early treatment. Although several studies have focused on the MCI diagnosis, this study introduces the early stage of MCI to assess more thoroughly the earliest signs of disease manifestation and progression. NEW METHOD We used random forest feature selection model with a Gaussian-based algorithm to perform method evaluation. This integrated method serves to define multivariate normal distributions in order to classify different stages of AD, with the focus placed on detecting EMCI subjects in the most challenging classification of CN vs. EMCI. RESULTS Using 896 participants classified into the four categories of CN, EMCI, late mild cognitive impairment (LMCI) and AD, the results show that the EMCI group can be delineated from the CN group with a relatively high accuracy of 78.8% and sensitivity of 81.3%. COMPARISON WITH EXISTING METHOD(S) The feature selection model and classifier are compared with some other prominent algorithms. Although higher accuracy has been achieved using the Gaussian process (GP) model (78.8%) over the SVM classifier (75.6%) for CN vs. EMCI classification, with 0.05 being the cutoff for significance, and based on student's t-test, it was determined that the differences for accuracy, sensitivity, specificity between the GP method and support vector machine (SVM) are not statistically significant. CONCLUSION Addressing the challenging classification of CN vs. EMCI provides useful information to help clinicians and researchers determine essential measures that can help in the early detection of AD.
Collapse
Affiliation(s)
- Parisa Forouzannezhad
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Alireza Abbaspour
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Chunfei Li
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Chen Fang
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Ulyana Williams
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Mercedes Cabrerizo
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Armando Barreto
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Jean Andrian
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Naphtali Rishe
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Rosie E Curiel
- Center for Cognitive Neuroscience and Aging, Department of Psychiatry and Behavioral Sciences, University of Miami School of Medicine, Miami, FL, USA; 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA
| | - David Loewenstein
- Center for Cognitive Neuroscience and Aging, Department of Psychiatry and Behavioral Sciences, University of Miami School of Medicine, Miami, FL, USA; 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Ranjan Duara
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Malek Adjouadi
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA; 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Beaurain M, Salabert AS, Ribeiro MJ, Arlicot N, Damier P, Le Jeune F, Demonet JF, Payoux P. Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience. Front Med (Lausanne) 2019; 6:268. [PMID: 31828073 PMCID: PMC6890558 DOI: 10.3389/fmed.2019.00268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/01/2019] [Indexed: 01/06/2023] Open
Abstract
Over the past few decades, several radiotracers have been developed for neuroimaging applications, especially in PET. Because of their low steric hindrance, PET radionuclides can be used to label molecules that are small enough to cross the blood brain barrier, without modifying their biological properties. As the use of 11C is limited by its short physical half-life (20 min), there has been an increasing focus on developing tracers labeled with 18F for clinical use. The first such tracers allowed cerebral blood flow and glucose metabolism to be measured, and the development of molecular imaging has since enabled to focus more closely on specific targets such as receptors, neurotransmitter transporters, and other proteins. Hence, PET and SPECT biomarkers have become indispensable for innovative clinical research. Currently, the treatment options for a number of pathologies, notably neurodegenerative diseases, remain only supportive and symptomatic. Treatments that slow down or reverse disease progression are therefore the subject of numerous studies, in which molecular imaging is proving to be a powerful tool. PET and SPECT biomarkers already make it possible to diagnose several neurological diseases in vivo and at preclinical stages, yielding topographic, and quantitative data about the target. As a result, they can be used for assessing patients' eligibility for new treatments, or for treatment follow-up. The aim of the present review was to map major innovative radiotracers used in neuroscience, and explain their contribution to clinical research. We categorized them according to their target: dopaminergic, cholinergic or serotoninergic systems, β-amyloid plaques, tau protein, neuroinflammation, glutamate or GABA receptors, or α-synuclein. Most neurological disorders, and indeed mental disorders, involve the dysfunction of one or more of these targets. Combinations of molecular imaging biomarkers can afford us a better understanding of the mechanisms underlying disease development over time, and contribute to early detection/screening, diagnosis, therapy delivery/monitoring, and treatment follow-up in both research and clinical settings.
Collapse
Affiliation(s)
- Marie Beaurain
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| | - Anne-Sophie Salabert
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| | - Maria Joao Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Philippe Damier
- Inserm U913, Neurology Department, University Hospital, Nantes, France
| | | | - Jean-François Demonet
- Leenards Memory Centre, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pierre Payoux
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| |
Collapse
|
15
|
Gaynor LS, Curiel RE, Penate A, Rosselli M, Burke SN, Wicklund M, Loewenstein DA, Bauer RM. Visual Object Discrimination Impairment as an Early Predictor of Mild Cognitive Impairment and Alzheimer's Disease. J Int Neuropsychol Soc 2019; 25:688-698. [PMID: 31111810 PMCID: PMC6688903 DOI: 10.1017/s1355617719000316] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Detection of cognitive impairment suggestive of risk for Alzheimer's disease (AD) progression is crucial to the prevention of incipient dementia. This study was performed to determine if performance on a novel object discrimination task improved identification of earlier deficits in older adults at risk for AD. METHOD In total, 135 participants from the 1Florida Alzheimer's Disease Research Center [cognitively normal (CN), Pre-mild cognitive impairment (PreMCI), amnestic mild cognitive impairment (aMCI), and dementia] completed a test of object discrimination and traditional memory measures in the context of a larger neuropsychological and clinical evaluation. RESULTS The Object Recognition and Discrimination Task (ORDT) revealed significant differences between the PreMCI, aMCI, and dementia groups versus CN individuals. Moreover, relative risk of being classified as PreMCI rather than CN increased as an inverse function of ORDT score. DISCUSSION Overall, the obtained results suggest that a novel object discrimination task improves the detection of very early AD-related cognitive impairment, increasing the window for therapeutic intervention. (JINS, 2019, 25, 688-698).
Collapse
Affiliation(s)
- Leslie S. Gaynor
- Clinical and Health Psychology Department, University of
Florida, Gainesville, Florida
| | - Rosie E. Curiel
- Department of Psychiatry and Center for Cognitive
Neuroscience and Aging, University of Miami Miller School of Medicine, Miami,
Florida
- 1Florida Alzheimer’s Disease Research Center
| | - Ailyn Penate
- Wien Center for Alzheimer’s Disease and Memory
Disorders, Miami Beach, Florida
| | - Mónica Rosselli
- Department of Psychology, Florida Atlantic University, Boca
Raton, Florida
- 1Florida Alzheimer’s Disease Research Center
| | - Sara N. Burke
- McKnight Brain Institute and Department of Neuroscience,
University of Florida, Gainesville, Florida
- 1Florida Alzheimer’s Disease Research Center
| | - Meredith Wicklund
- Department of Neurology, University of Florida College of
Medicine, University of Florida
- 1Florida Alzheimer’s Disease Research Center
| | - David A. Loewenstein
- Department of Psychiatry and Center for Cognitive
Neuroscience and Aging, University of Miami Miller School of Medicine, Miami,
Florida
- 1Florida Alzheimer’s Disease Research Center
| | - Russell M. Bauer
- Clinical and Health Psychology Department, University of
Florida, Gainesville, Florida
- 1Florida Alzheimer’s Disease Research Center
| |
Collapse
|
16
|
Chiaravalloti A, Barbagallo G, Martorana A, Castellano AE, Ursini F, Schillaci O. Brain metabolic patterns in patients with suspected non-Alzheimer's pathophysiology (SNAP) and Alzheimer's disease (AD): is [ 18F] FDG a specific biomarker in these patients? Eur J Nucl Med Mol Imaging 2019; 46:1796-1805. [PMID: 31201430 DOI: 10.1007/s00259-019-04379-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/28/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE The present study was conducted to compare the pattern of brain [18F] FDG uptake in suspected non-Alzheimer's pathophysiology (SNAP), AD, and healthy controls using 2-deoxy-2-[18F]fluoroglucose ([18F] FDG) positron emission tomography imaging. Cerebrospinal fluid (CSF) biomarkers amyloid-β1-42 peptide (Aβ1-42) and tau were used in order to differentiate AD from SNAP. METHODS The study included 43 newly diagnosed AD patients (female = 23; male = 20) according to the NINCDS-ADRDA criteria, 15 SNAP patients (female = 12; male =3), and a group of 34 healthy subjects that served as the control group (CG), who were found to be normal at neurological evaluation (male = 20; female = 14). A battery of neuropsychological tests was administrated in AD and SNAP subjects; cerebrospinal fluid assay was conducted in both AD and SNAP as well. Brain PET/CT acquisition was started 30 ± 5 min after [18F] FDG injection in all subjects. SPM12 [statistical parametric mapping] implemented in MATLAB 2018a was used for the analysis of PET scans in this study. RESULTS As compared to SNAP, AD subjects showed significant hypometabolism in a wide cortical area involving the right frontal, parietal, and temporal lobes. As compared to CG, AD subjects showed a significant reduction in [18F] FDG uptake in the parietal, limbic, and frontal cortex, while a more limited reduction in [18F] FDG uptake in the same areas was found when comparing SNAP to CG. CONCLUSIONS SNAP subjects show milder impairment of brain [18F] FDG uptake as compared to AD. The partial overlap of the metabolic pattern between SNAP and AD limits the use of [18F] FDG PET/CT in effectively discriminating these clinical entities.
Collapse
Affiliation(s)
- Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University Tor Vergata, Viale Oxford 81, 00133, Rome, Italy. .,IRCCS Neuromed, Pozzilli, Italy.
| | - Gaetano Barbagallo
- Institute of Neurology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Alessandro Martorana
- UOSD Centro Demenze, Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | | | - Francesco Ursini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Viale Oxford 81, 00133, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
17
|
Abstract
PURPOSE Longitudinal studies into the variability of F-Flutemetamol uptake are lacking. METHODS/PATIENTS Therefore, the current study examined change in F-Flutemetamol uptake in 19 nondemented older adults (65 to 82 y old) who were either cognitively intact or had Mild Cognitive Impairment (MCI) who were scanned twice across 3.6 years. RESULTS Baseline and follow-up composite SUVRs were significantly correlated (0.96, P<0.001). Significant increases in the composite SUVR from baseline to follow-up were observed (P=0.002). For the total sample, the average difference over this time period when using the composite SUVR was 6.8%. Similar results were seen in subsets of the total sample (MCI vs. cognitively intact, amyloid positive vs. negative). Finally, a Reliable Change Index that exceeded ±0.046 SUVR units would indicate a significant change of F-Flutemetamol. CONCLUSIONS The current results extend the limited literature on longitudinal variability of F-Flutemetamol uptake across 3.6 years, which should give clinicians and researchers more confidence in the stability of this amyloid imaging agent in longer therapeutic and prevention trials in cognitive decline in MCI and Alzheimer disease.
Collapse
|
18
|
Kirsebom BE, Nordengen K, Selnes P, Waterloo K, Torsetnes SB, Gísladóttir B, Brix B, Vanmechelen E, Bråthen G, Hessen E, Aarsland D, Fladby T. Cerebrospinal fluid neurogranin/β-site APP-cleaving enzyme 1 predicts cognitive decline in preclinical Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2018; 4:617-627. [PMID: 30519627 PMCID: PMC6260221 DOI: 10.1016/j.trci.2018.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Introduction The cerebrospinal fluid neurogranin (Ng)/β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) ratio may reflect synaptic affection resulting from reduced beta-amyloid (Aβ) clearance. We hypothesize that increased Ng/BACE1 ratio predicts the earliest cognitive decline in Alzheimer's disease. Methods We compared Ng/BACE1 levels between cases with subjective cognitive decline (n = 18) and mild cognitive impairment (n = 20) both with amyloid plaques and healthy controls (APOE-ε4+, n = 16; APOE-ε4-, n = 20). We performed regression analyses between cerebrospinal fluid levels, baseline hippocampal and amygdala volumes, and pertinent cognitive measures (memory, attention, Mini Mental State Examination [MMSE]) at baseline and after 2 years. Results Ng/BACE1 levels were elevated in both subjective cognitive decline and mild cognitive impairment compared to healthy controls. Higher Ng/BACE1 ratio was associated with lower hippocampal and amygdala volumes; lower baseline memory functions, attention, and MMSE; and significant decline in MMSE and memory function at 2-year follow-up. Discussion High Ng/BACE1 ratio predicts cognitive decline also in preclinical cases with amyloid plaques. CSF Ng/BACE1 may confer synapse loss tied to β-amyloid disease mechanism. CSF Ng/BACE1 is increased already in preclinical cases with amyloid plaques High CSF Ng/BACE1 is the only biomarker related to lower baseline memory function. High CSF Ng is the only biomarker related to reduced baseline hippocampal volume. High CSF Ng predicts decline in verbal memory function at 2-year follow-up.
Collapse
Affiliation(s)
- Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway.,Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kaja Nordengen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Knut Waterloo
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway.,Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Berglind Gísladóttir
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Molecular Biology (EpiGen), Institute of Clinical Medicine, University of Oslo, Akershus University Hospital, Lørenskog, Norway
| | | | | | - Geir Bråthen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
| | - Erik Hessen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Dag Aarsland
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Filippi L, Chiaravalloti A, Bagni O, Schillaci O. 18F-labeled radiopharmaceuticals for the molecular neuroimaging of amyloid plaques in Alzheimer's disease. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2018; 8:268-281. [PMID: 30245918 PMCID: PMC6146162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly, with tremendous impact on the affected individuals and the society. Definitive diagnosis can be achieved only by post mortem examination. Clinical diagnosis criteria currently applied in clinical practice for AD often fail to accurately discriminate between AD and non-AD dementia with up to 40% of misdiagnosed patients. Several published papers demonstrated that the pre-clinical phase of AD is characterized by an early rise in beta-amyloid accumulation into inter-neuronal space, followed by a severe synaptic dysfunction. Thus, beta-amyloid protein, detected in the cerebrospinal fluid, has been considered a specific AD biomarker. Molecular imaging of beta-amyloid deposits, with positron emission tomography (PET) and 18F-labeled radiopharmaceuticals such as 18F-florbetapir, 18F-florbetaben, and 18F-flutemetamol, has emerged as potential powerful tool for aiding AD diagnosis. The aim of the present paper is to review the existing literature on the clinical use of these new amyloid tracers in order to delineate their diagnostic value and limitations.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti HospitalVia Canova 3, Latina 04100, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University Tor VergataRome, Italy
- IRCCS NeuromedPozzilli, Italy
| | - Oreste Bagni
- Department of Nuclear Medicine, Santa Maria Goretti HospitalVia Canova 3, Latina 04100, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor VergataRome, Italy
- IRCCS NeuromedPozzilli, Italy
| |
Collapse
|
20
|
Cerami C, Dodich A, Iannaccone S, Magnani G, Santangelo R, Presotto L, Marcone A, Gianolli L, Cappa SF, Perani D. A biomarker study in long-lasting amnestic mild cognitive impairment. ALZHEIMERS RESEARCH & THERAPY 2018; 10:42. [PMID: 29695292 PMCID: PMC5918759 DOI: 10.1186/s13195-018-0369-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 03/19/2018] [Indexed: 01/09/2023]
Abstract
Background Mild cognitive impairment (MCI) is a heterogeneous syndrome resulting from Alzheimer’s disease (AD) as well as to non-AD and non-neurodegenerative conditions. A subset of patients with amnestic MCI (aMCI) present with an unusually long-lasting course, a slow rate of clinical neuropsychological progression, and evidence of focal involvement of medial temporal lobe structures. In the present study, we explored positron emission tomography (PET) and cerebrospinal fluid (CSF) biomarkers in a sample of subjects with aMCI with such clinical features in order to provide in vivo evidence to improve disease characterisation in this subgroup. Methods Thirty consecutive subjects with aMCI who had long-lasting memory impairment (more than 4 years from symptom onset) and a very slow rate of cognitive progression were included. All subjects underwent fluorodeoxyglucose-positron emission tomography (FDG-PET) metabolic imaging. A measure of cerebral amyloid load, by PET and/or CSF, was obtained in 26 of 30 subjects. The mean clinical follow-up was 58.3 ± 10.1 months. Results No patient progressed to dementia during the follow-up. The typical AD FDG-PET pattern of temporoparietal hypometabolism was not present in any of the subjects. In contrast, a selective medial temporal lobe hypometabolism was present in all subjects, with an extension to frontolimbic regions in some subjects. PET imaging showed absent or low amyloid load in the majority of samples. The values were well below those reported in prodromal AD, and they were slightly elevated in only two subjects, consistent with the CSF β-amyloid (1–42) protein values. Notably, no amyloid load was present in the hippocampal structures. Conclusions FDG-PET and amyloid-PET together with CSF findings questioned AD pathology as a unique neuropathological substrate in this aMCI subgroup with long-lasting disease course. The possibility of alternative pathological conditions, such as argyrophilic grain disease, primary age-related tauopathy or age-related TDP-43 proteinopathy, known to spread throughout the medial temporal lobe and limbic system structures should be considered in these patients with MCI.
Collapse
Affiliation(s)
- Chiara Cerami
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy. .,Clinical Neuroscience Department, San Raffaele Turro Hospital, Milan, Italy.
| | - Alessandra Dodich
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,Clinical Neuroscience Department, San Raffaele Turro Hospital, Milan, Italy
| | - Sandro Iannaccone
- Clinical Neuroscience Department, San Raffaele Turro Hospital, Milan, Italy
| | | | | | - Luca Presotto
- Nuclear Medicine Department, San Raffaele Hospital, Milan, Italy
| | - Alessandra Marcone
- Clinical Neuroscience Department, San Raffaele Turro Hospital, Milan, Italy
| | - Luigi Gianolli
- Nuclear Medicine Department, San Raffaele Hospital, Milan, Italy
| | - Stefano F Cappa
- NeTS Center, Istituto Universitario di Studi Superiori, Pavia, Italy.,IRCCS S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Daniela Perani
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Department, San Raffaele Hospital, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
21
|
Longitudinal outcomes of amyloid positive versus negative amnestic mild cognitive impairments: a three-year longitudinal study. Sci Rep 2018; 8:5557. [PMID: 29615677 PMCID: PMC5883059 DOI: 10.1038/s41598-018-23676-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 03/12/2018] [Indexed: 12/28/2022] Open
Abstract
We aimed to compare the longitudinal outcome of amnestic mild cognitive impairment (aMCI) patients with significant Pittsburgh Compound B uptake [PiB(+) aMCI] and those without [PiB(−) aMCI]. Cerebral β-amyloid was measured in 47 patients with aMCI using PiB-positron emission tomography (PET) (31 PiB(+) aMCI and 16 PiB(−) aMCI). Clinical (N = 47) and neuropsychological follow-up (N = 37), and follow-up with brain magnetic resonance imaging (N = 38) and PiB-PET (N = 30) were performed for three years. PiB(+) aMCI had a higher risk of progression to dementia (hazard ratio = 3.74, 95% CI = 1.21–11.58) and faster rate of cortical thinning in the bilateral precuneus and right medial and lateral temporal cortices compared to PiB(−) aMCI. Among six PiB(−) aMCI patients who had regional PiB uptake ratio >1.5 in the posterior cingulate cortex (PCC), three (50.0%) progressed to dementia, and two of them had global PiB uptake ratio >1.5 at the follow-up PiB-PET. Our findings suggest that amyloid imaging is important for predicting the prognosis of aMCI patients, and that it is necessary to pay more attention to PiB(−) aMCI with increased regional PiB uptake in the PCC.
Collapse
|
22
|
Chung JK, Plitman E, Nakajima S, Caravaggio F, Iwata Y, Gerretsen P, Kim J, Takeuchi H, Shinagawa S, Patel R, Chakravarty MM, Graff-Guerrero A. Hippocampal and Clinical Trajectories of Mild Cognitive Impairment with Suspected Non-Alzheimer's Disease Pathology. J Alzheimers Dis 2018; 58:747-762. [PMID: 28505977 DOI: 10.3233/jad-170201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Suspected non-Alzheimer's disease pathology (SNAP) characterizes individuals showing neurodegeneration (e.g., hypometabolism) without amyloid-β (Aβ). Findings from previous studies regarding clinical and structural trajectories of SNAP are inconsistent. Using data from the Alzheimer's Disease Neuroimaging Initiative, patients with amnestic mild cognitive impairment (MCI) were categorized into four groups: amyloid positive with hypometabolism (Aβ+ND+), amyloid only (Aβ+ND-), neither amyloid nor hypometabolism (Aβ-ND-), and SNAP (Aβ-ND+). Aβ+ND+(n = 33), Aβ+ND-(n = 32), and Aβ-ND-(n = 36) were matched to SNAP for age, gender, apolipoprotein E4 (apoE4) genotype, and scores on the Montreal Cognitive Assessment. Elderly controls (n = 40) were also matched to SNAP for age, gender, and apoE4 genotype. Longitudinal changes were compared across groups in terms of hippocampal volume, clinical symptoms, daily functioning, and cognitive functioning over a 2-year period. At baseline, no difference in cognition and functioning was observed between SNAP and Aβ+groups. SNAP showed worse clinical symptoms and impaired functioning at baseline compared to Aβ-ND-and controls. Two years of follow-up showed no differences in hippocampal volume changes between SNAP and any of the comparison groups. SNAP showed worse functional deterioration in comparison to Aβ-ND-and controls. However, Aβ+ND+ showed more severe changes in clinical symptoms in comparison to SNAP. Thus, patients with MCI and SNAP showed 1) more severe functional deterioration compared to Aβ-ND-and controls, 2) no differences with Aβ+ND-, and 3) less cognitive deterioration than Aβ+ND+. Future studies should investigate what causes SNAP, which is different from typical AD pathology and biomarker cascades.
Collapse
Affiliation(s)
- Jun Ku Chung
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada
| | - Eric Plitman
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada
| | - Shinichiro Nakajima
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada.,Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Canada
| | - Fernando Caravaggio
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Yusuke Iwata
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Philip Gerretsen
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Canada
| | - Julia Kim
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada
| | - Hiroyoshi Takeuchi
- Department of Psychiatry, University of Toronto, Toronto, Canada.,Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | | | - Raihaan Patel
- Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, QC, Canada.,Department of Psychiatry and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, QC, Canada.,Department of Psychiatry and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Ariel Graff-Guerrero
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada.,Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, Canada
| | | |
Collapse
|
23
|
Baldeiras I, Santana I, Leitão MJ, Gens H, Pascoal R, Tábuas-Pereira M, Beato-Coelho J, Duro D, Almeida MR, Oliveira CR. Addition of the Aβ42/40 ratio to the cerebrospinal fluid biomarker profile increases the predictive value for underlying Alzheimer's disease dementia in mild cognitive impairment. Alzheimers Res Ther 2018; 10:33. [PMID: 29558986 PMCID: PMC5861634 DOI: 10.1186/s13195-018-0362-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/25/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) biomarkers have been used to increase the evidence of underlying Alzheimer's disease (AD) pathology in mild cognitive impairment (MCI). However, CSF biomarker-based classification often results in conflicting profiles with controversial prognostic value. Normalization of the CSF Aβ42 concentration to the level of total amyloid beta (Aβ), using the Aβ42/40 ratio, has been shown to improve the distinction between AD and non-AD dementia. Therefore, we evaluated whether the Aβ42/40 ratio would improve MCI categorization and more accurately predict progression to AD. METHODS Our baseline population consisted of 197 MCI patients, of which 144 had a follow-up ≥ 2 years, and comprised the longitudinal study group. To establish our own CSF Aβ42/40 ratio reference value, a group of 168 AD-dementia patients and 66 neurological controls was also included. CSF biomarker-based classification was operationalized according to the framework of the National Institute of Aging-Alzheimer Association criteria for MCI. RESULTS When using the core CSF biomarkers (Aβ42, total Tau and phosphorylated Tau), 30% of the patients fell into the high-AD-likelihood (HL) group (both amyloid and neurodegeneration markers positive), 30% into the low-AD-likelihood group (all biomarkers negative), 28% into the suspected non-Alzheimer pathophysiology (SNAP) group (only neurodegeneration markers positive) and 12% into the isolated amyloid pathology group (only amyloid-positive). Replacing Aβ42 by the Aβ42/40 ratio resulted in a significant increase in the percentage of patients with amyloidosis (42-59%) and in the proportion of interpretable biological profiles (61-75%), due to a reduction by half in the number of SNAP cases and an increase in the proportion of the HL subgroup. Survival analysis showed that risk of progression to AD was highest in the HL group, and increased when the Aβ42/40 ratio, instead of Aβ42, combined with total Tau and phosphorylated Tau was used for biomarker-based categorization. CONCLUSIONS Our results confirm the usefulness of the CSF Aβ42/40 ratio in the interpretation of CSF biomarker profiles in MCI patients, by increasing the proportion of conclusive profiles and enhancing their predictive value for underlying AD.
Collapse
Affiliation(s)
- Inês Baldeiras
- Laboratory of Neurochemistry, Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Isabel Santana
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Dementia Clinic, Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Maria João Leitão
- Laboratory of Neurochemistry, Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Helena Gens
- Dementia Clinic, Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Rui Pascoal
- Laboratory of Neurochemistry, Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Miguel Tábuas-Pereira
- Dementia Clinic, Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - José Beato-Coelho
- Dementia Clinic, Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Diana Duro
- Dementia Clinic, Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Maria Rosário Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Catarina Resende Oliveira
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Research & Development Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| |
Collapse
|
24
|
Tomadesso C, de La Sayette V, de Flores R, Bourgeat P, Villemagne VL, Egret S, Eustache F, Chételat G. Neuropsychology and neuroimaging profiles of amyloid-positive versus amyloid-negative amnestic mild cognitive impairment patients. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2018; 10:269-277. [PMID: 29780872 PMCID: PMC5956939 DOI: 10.1016/j.dadm.2018.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Introduction Patients with amnestic mild cognitive impairment (aMCI) are heterogeneous as regard to their amyloid status. The present study aimed at highlighting the neuropsychological, brain atrophy, and hypometabolism profiles of amyloid-positive (Aβpos) versus amyloid-negative (Aβneg) aMCI patients. Methods Forty-four aMCI patients and 24 Aβneg healthy controls underwent neuropsychological, structural magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography scans. Data were compared between groups in specific regions of interest and voxelwise with statistical parametric mapping. Results When directly comparing Aβpos to Aβneg aMCI, the former had lower performances in episodic memory tests (P = .02 to P < .001) while the latter had worse scores in working memory (P = .01) and language (P < .005). Compared to Aβneg healthy controls, both aMCI subgroups showed similar profiles of atrophy and hypometabolism, with no difference between both aMCI subgroups. Conclusion In a sample of aMCI patients recruited and scanned in the same center, the main difference at baseline between Aβpos and Aβneg aMCI concerned the neuropsychological profile, but not the structural magnetic resonance imaging or 18F-fluorodeoxyglucose positron emission tomography profiles of brain alterations. Amyloid-positive (Aβpos) amnestic mild cognitive impairment (aMCI) had lower performances than amyloid-negative (Aβneg) aMCI in episodic memory. Aβneg aMCI had lower performances than Aβpos aMCI in working memory and language. Aβneg and Aβpos aMCI did not differ in terms of brain atrophy or metabolism. Cognition is more efficient than neuroimaging to discriminate Aβneg from Aβpos aMCI.
Collapse
Affiliation(s)
- Clémence Tomadesso
- Inserm, Inserm U1077, Université de Caen Normandie, Ecole Pratique des Hautes Etudes, Caen, France.,Inserm, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Boulevard H. Becquerel, Caen, France
| | - Vincent de La Sayette
- Inserm, Inserm U1077, Université de Caen Normandie, Ecole Pratique des Hautes Etudes, Caen, France.,CHU de Caen, Service de Neurologie, Caen, France
| | - Robin de Flores
- Inserm, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Boulevard H. Becquerel, Caen, France
| | - Pierrick Bourgeat
- CSIRO Digital Productivity Flagship, The Australian e-Health Research Centre-BioMedIA, Herston, Queensland, Australia
| | - Victor L Villemagne
- Department of Molecular Imaging and Therapy, Centre for PET, Austin Health, Heidelberg, Victoria, Australia.,The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Stéphanie Egret
- Inserm, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Boulevard H. Becquerel, Caen, France
| | - Francis Eustache
- Inserm, Inserm U1077, Université de Caen Normandie, Ecole Pratique des Hautes Etudes, Caen, France
| | - Gaël Chételat
- Inserm, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Boulevard H. Becquerel, Caen, France
| |
Collapse
|
25
|
Kulawik A, Heise H, Zafiu C, Willbold D, Bannach O. Advancements of the
sFIDA
method for oligomer‐based diagnostics of neurodegenerative diseases. FEBS Lett 2018; 592:516-534. [DOI: 10.1002/1873-3468.12983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Andreas Kulawik
- Institute of Complex Systems (ICS‐6: Structural Biochemistry) Forschungszentrum Jülich Germany
- Institut für Physikalische Biologie Heinrich‐Heine‐Universität Düsseldorf Germany
| | - Henrike Heise
- Institute of Complex Systems (ICS‐6: Structural Biochemistry) Forschungszentrum Jülich Germany
- Institut für Physikalische Biologie Heinrich‐Heine‐Universität Düsseldorf Germany
| | - Christian Zafiu
- Institute of Complex Systems (ICS‐6: Structural Biochemistry) Forschungszentrum Jülich Germany
| | - Dieter Willbold
- Institute of Complex Systems (ICS‐6: Structural Biochemistry) Forschungszentrum Jülich Germany
- Institut für Physikalische Biologie Heinrich‐Heine‐Universität Düsseldorf Germany
| | - Oliver Bannach
- Institute of Complex Systems (ICS‐6: Structural Biochemistry) Forschungszentrum Jülich Germany
- Institut für Physikalische Biologie Heinrich‐Heine‐Universität Düsseldorf Germany
| |
Collapse
|
26
|
Rondina JM, Ferreira LK, de Souza Duran FL, Kubo R, Ono CR, Leite CC, Smid J, Nitrini R, Buchpiguel CA, Busatto GF. Selecting the most relevant brain regions to discriminate Alzheimer's disease patients from healthy controls using multiple kernel learning: A comparison across functional and structural imaging modalities and atlases. Neuroimage Clin 2017; 17:628-641. [PMID: 29234599 PMCID: PMC5716956 DOI: 10.1016/j.nicl.2017.10.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 10/12/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Machine learning techniques such as support vector machine (SVM) have been applied recently in order to accurately classify individuals with neuropsychiatric disorders such as Alzheimer's disease (AD) based on neuroimaging data. However, the multivariate nature of the SVM approach often precludes the identification of the brain regions that contribute most to classification accuracy. Multiple kernel learning (MKL) is a sparse machine learning method that allows the identification of the most relevant sources for the classification. By parcelating the brain into regions of interest (ROI) it is possible to use each ROI as a source to MKL (ROI-MKL). METHODS We applied MKL to multimodal neuroimaging data in order to: 1) compare the diagnostic performance of ROI-MKL and whole-brain SVM in discriminating patients with AD from demographically matched healthy controls and 2) identify the most relevant brain regions to the classification. We used two atlases (AAL and Brodmann's) to parcelate the brain into ROIs and applied ROI-MKL to structural (T1) MRI, 18F-FDG-PET and regional cerebral blood flow SPECT (rCBF-SPECT) data acquired from the same subjects (20 patients with early AD and 18 controls). In ROI-MKL, each ROI received a weight (ROI-weight) that indicated the region's relevance to the classification. For each ROI, we also calculated whether there was a predominance of voxels indicating decreased or increased regional activity (for 18F-FDG-PET and rCBF-SPECT) or volume (for T1-MRI) in AD patients. RESULTS Compared to whole-brain SVM, the ROI-MKL approach resulted in better accuracies (with either atlas) for classification using 18F-FDG-PET (92.5% accuracy for ROI-MKL versus 84% for whole-brain), but not when using rCBF-SPECT or T1-MRI. Although several cortical and subcortical regions contributed to discrimination, high ROI-weights and predominance of hypometabolism and atrophy were identified specially in medial parietal and temporo-limbic cortical regions. Also, the weight of discrimination due to a pattern of increased voxel-weight values in AD individuals was surprisingly high (ranging from approximately 20% to 40% depending on the imaging modality), located mainly in primary sensorimotor and visual cortices and subcortical nuclei. CONCLUSION The MKL-ROI approach highlights the high discriminative weight of a subset of brain regions of known relevance to AD, the selection of which contributes to increased classification accuracy when applied to 18F-FDG-PET data. Moreover, the MKL-ROI approach demonstrates that brain regions typically spared in mild stages of AD also contribute substantially in the individual discrimination of AD patients from controls.
Collapse
Key Words
- 18F-FDG-PET, 18F-Fluorodeoxyglucose-Positron Emission Tomography
- AAL, Automated Anatomical Labeling (atlas)
- AD, Alzheimer's Disease
- Alzheimer's Disease
- BA, Brodmann's Area
- Brain atlas
- GM, Gray Matter
- MKL, Multiple Kernel Learning
- MKL-ROI, MKL based on regions of interest
- ML, Machine Learning
- MRI
- Multiple kernel learning
- NF, number of features
- NSR, Number of Selected Regions
- PET
- PVE, Partial Volume Effects
- ROI, Region of Interest
- SPECT
- SVM, Support Vector Machine
- T1-MRI, T1-weighted Magnetic Resonance Imaging
- TN, True Negative (specificity - proportion of healthy controls correctly classified)
- TP, True Positive (sensitivity - proportion of patients correctly classified)
- rAUC, Ratio between negative and positive Area Under Curve
- rCBF-SPECT, Regional Cerebral Blood Flow
Collapse
Affiliation(s)
- Jane Maryam Rondina
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil; Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK.
| | - Luiz Kobuti Ferreira
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil; Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA), University of São Paulo, São Paulo, Brazil
| | - Fabio Luis de Souza Duran
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Kubo
- Department of Radiology and Oncology, University of São Paulo Medical School, São Paulo, Brazil
| | - Carla Rachel Ono
- Department of Radiology and Oncology, University of São Paulo Medical School, São Paulo, Brazil
| | - Claudia Costa Leite
- Department of Radiology and Oncology, University of São Paulo Medical School, São Paulo, Brazil; Department of Radiology, University of North Carolina at Chapel Hill, NC, USA
| | - Jerusa Smid
- Department of Neurology and Cognitive Disorders Reference Center (CEREDIC), University of São Paulo, São Paulo, Brazil
| | - Ricardo Nitrini
- Department of Neurology and Cognitive Disorders Reference Center (CEREDIC), University of São Paulo, São Paulo, Brazil
| | | | - Geraldo F Busatto
- Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil; Núcleo de Apoio à Pesquisa em Neurociência Aplicada (NAPNA), University of São Paulo, São Paulo, Brazil; Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Chung JK, Plitman E, Nakajima S, Caravaggio F, Shinagawa S, Iwata Y, Gerretsen P, Kim J, Takeuchi H, Patel R, Chakravarty MM, Strafella A, Graff-Guerrero A. The Effects of Cortical Hypometabolism and Hippocampal Atrophy on Clinical Trajectories in Mild Cognitive Impairment with Suspected Non-Alzheimer's Pathology: A Brief Report. J Alzheimers Dis 2017; 60:341-347. [PMID: 28826178 DOI: 10.3233/jad-170098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The clinical and structural trajectories of suspected non-Alzheimer' pathology (SNAP) remain elusive due to its heterogeneous etiology. Baseline and longitudinal clinical (global cognition, daily functioning, symptoms of dementia, and learning memory) and hippocampal volume trajectories over two years were compared between patients with amnestic mild cognitive impairment (aMCI) with SNAP with reduced hippocampal volumes (SNAP+HIPPO) and aMCI patients with SNAP without reduced hippocampal volumes. SNAP+HIPPO showed overall worse baseline cognitive functions. Longitudinally, SNAP+HIPPO showed faster deterioration of clinical symptoms of dementia. Having both hippocampal atrophy and cortical hypometabolism without amyloid pathology may exacerbate symptoms of dementia in aMCI.
Collapse
Affiliation(s)
- Jun Ku Chung
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Eric Plitman
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Shinichiro Nakajima
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Fernando Caravaggio
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | | | - Yusuke Iwata
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Philip Gerretsen
- Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Julia Kim
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Hiroyoshi Takeuchi
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Raihaan Patel
- Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, QC, Canada.,Department of Psychiatry and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, QC, Canada.,Department of Psychiatry and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Antonio Strafella
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, UHN, University of Toronto, Toronto, ON, Canada.,Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Multimodal Imaging Group - Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | |
Collapse
|
28
|
Dani M, Brooks D, Edison P. Suspected non-Alzheimer's pathology - Is it non-Alzheimer's or non-amyloid? Ageing Res Rev 2017; 36:20-31. [PMID: 28235659 DOI: 10.1016/j.arr.2017.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 01/10/2023]
Abstract
Neurodegeneration, the progressive loss of neurons, is a major process involved in dementia and age-related cognitive impairment. It can be detected clinically using currently available biomarker tests. Suspected Non-Alzheimer Pathology (SNAP) is a biomarker-based concept that encompasses a group of individuals with neurodegeneration, but no evidence of amyloid deposition (thereby distinguishing it from Alzheimer's disease (AD)). These individuals may often have a clinical diagnosis of AD, but their clinical features, genetic susceptibility and progression can differ significantly, carrying crucial implications for precise diagnostics, clinical management, and efficacy of clinical drug trials. SNAP has caused wide interest in the dementia research community, because it is still unclear whether it represents distinct pathology separate from AD, or whether in some individuals, it could represent the earliest stage of AD. This debate has raised pertinent questions about the pathways to AD, the need for biomarkers, and the sensitivity of current biomarker tests. In this review, we discuss the biomarker and imaging trials that first recognized SNAP. We describe the pathological correlates of SNAP and comment on the different causes of neurodegeneration. Finally, we discuss the debate around the concept of SNAP, and further unanswered questions that are emerging.
Collapse
|
29
|
Hammers DB, Atkinson TJ, Dalley BCA, Suhrie KR, Horn KP, Rasmussen KM, Beardmore BE, Burrell LD, Duff K, Hoffman JM. Amyloid Positivity Using [18F]Flutemetamol-PET and Cognitive Deficits in Nondemented Community-Dwelling Older Adults. Am J Alzheimers Dis Other Demen 2017; 32:320-328. [PMID: 28403622 DOI: 10.1177/1533317517698795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Little research exists examining the relationship between beta-amyloid neuritic plaque density via [18F]flutemetamol binding and cognition; consequently, the purpose of the current study was to compare cognitive performances among individuals having either increased amyloid deposition (Flute+) or minimal amyloid deposition (Flute-). Twenty-seven nondemented community-dwelling adults over the age of 65 underwent [18F]flutemetamol amyloid-positron emission tomography imaging, along with cognitive testing using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and select behavioral measures. Analysis of variance was used to identify the differences among the cognitive and behavioral measures between Flute+/Flute- groups. Flute+ participants performed significantly worse than Flute- participants on RBANS indexes of immediate memory, language, delayed memory, and total scale score, but no significant group differences in the endorsed level of depression or subjective report of cognitive difficulties were observed. Although these results are preliminary, [18F]flutemetamol accurately tracks cognition in a nondemented elderly sample, which may allow for better prediction of cognitive decline in late life.
Collapse
Affiliation(s)
- Dustin B Hammers
- 1 Department of Neurology, Center for Alzheimer's Care, Imaging and Research, University of Utah, Salt Lake City, UT, USA
| | - Taylor J Atkinson
- 1 Department of Neurology, Center for Alzheimer's Care, Imaging and Research, University of Utah, Salt Lake City, UT, USA
| | - Bonnie C A Dalley
- 1 Department of Neurology, Center for Alzheimer's Care, Imaging and Research, University of Utah, Salt Lake City, UT, USA
| | - Kayla R Suhrie
- 1 Department of Neurology, Center for Alzheimer's Care, Imaging and Research, University of Utah, Salt Lake City, UT, USA
| | - Kevin P Horn
- 2 Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Kelli M Rasmussen
- 2 Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Britney E Beardmore
- 2 Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Lance D Burrell
- 2 Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Kevin Duff
- 1 Department of Neurology, Center for Alzheimer's Care, Imaging and Research, University of Utah, Salt Lake City, UT, USA
| | - John M Hoffman
- 2 Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
30
|
Dupont AC, Santiago Ribeiro MJ, Guilloteau D, Arlicot N. β-amyloid PET neuroimaging: A review of radiopharmaceutical development. MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE 2017. [DOI: 10.1016/j.mednuc.2016.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
31
|
Li C, Loewenstein DA, Duara R, Cabrerizo M, Barker W, Adjouadi M, Alzheimer’s Disease Neuroimaging Initiative, Taheri S. The Relationship of Brain Amyloid Load and APOE Status to Regional Cortical Thinning and Cognition in the ADNI Cohort. J Alzheimers Dis 2017; 59:1269-1282. [PMID: 28731444 PMCID: PMC6310151 DOI: 10.3233/jad-170286] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Both amyloid (Aβ) load and APOE4 allele are associated with neurodegenerative changes in Alzheimer's disease (AD) prone regions and with risk for cognitive impairment. OBJECTIVE To evaluate the unique and independent contribution of APOE4 allele status (E4+∖E4-), Aβ status (Amy+∖Amy-), and combined APOE4 and Aβ status on regional cortical thickness (CoTh) and cognition among participants diagnosed as cognitively normal (CN, n = 251), early mild cognitive impairment (EMCI, n = 207), late mild cognitive impairment (LMCI, n = 196), and mild AD (n = 162) from the ADNI. METHODS A series of two-way ANCOVAs with post-hoc Tukey HSD tests, controlling independently for Aβ and APOE4 status and age were examined. RESULTS Among LMCI and AD participants, cortical thinning was widespread in association with Amy+ status, whereas in association with E4+ status only in the inferior temporal and medial orbito-frontal regions. Among CN and EMCI participants, E4+ status, but not Amy+ status, was independently associated with increased CoTh, especially in limbic regions [e.g., in the entorhinal cortex, CoTh was 0.123 mm greater (p = 0.002) among E4+ than E4-participants]. Among CN and EMCI, both E4+ and Amy+ status were independently associated with cognitive impairment, which was greatest among those with combined E4 + and Amy+ status. CONCLUSION Decreased CoTh is independently associated with Amy+ status in many brain regions, but with E4+ status in very restricted number of brain regions. Among CN and EMCI participants, E4 + status is associated with increased CoTh, in medial and inferior temporal regions, although cognitive impairment at this state is independently associated with Amy+ and E4 + status. These findings imply a unique pathophysiological mechanism for E4 + status in AD and its progression.
Collapse
Affiliation(s)
- Chunfei Li
- Department of Electrical and Computer Engineering, Center for Advanced Technology and Education, Florida International University, Miami, FL, USA
| | - David A. Loewenstein
- Wien Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
- Department of Psychiatry and Behavioral Sciences, Center on Aging and Miller School of Medicine, University of Miami, Miami, FL, USA
- Departments of Neurology, University of Florida College of Medicine, Gainesville, FL, USA and Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Ranjan Duara
- Wien Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
- Departments of Neurology, University of Florida College of Medicine, Gainesville, FL, USA and Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- 1Florida ADRC (Florida Alzheimer’s Disease Research Center) at Gainesville, Miami Beach, Miami, FL, USA and Boca Raton, FL, USA
| | - Mercedes Cabrerizo
- Department of Electrical and Computer Engineering, Center for Advanced Technology and Education, Florida International University, Miami, FL, USA
| | - Warren Barker
- Wien Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
- 1Florida ADRC (Florida Alzheimer’s Disease Research Center) at Gainesville, Miami Beach, Miami, FL, USA and Boca Raton, FL, USA
| | - Malek Adjouadi
- Department of Electrical and Computer Engineering, Center for Advanced Technology and Education, Florida International University, Miami, FL, USA
- 1Florida ADRC (Florida Alzheimer’s Disease Research Center) at Gainesville, Miami Beach, Miami, FL, USA and Boca Raton, FL, USA
| | | | | |
Collapse
|
32
|
The Potential Value of β-Amyloid Imaging for the Diagnosis and Management of Dementia. Alzheimer Dis Assoc Disord 2017; 31:27-33. [DOI: 10.1097/wad.0000000000000168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
33
|
Li Z, Zhang X, Zhang X, Cui M, Lu J, Pan X, Zhang X. 18F-Labeled Benzyldiamine Derivatives as Novel Flexible Probes for Positron Emission Tomography of Cerebral β-Amyloid Plaques. J Med Chem 2016; 59:10577-10585. [PMID: 27933958 DOI: 10.1021/acs.jmedchem.6b01063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early noninvasive visualization of cerebral β-amyloid (Aβ) plaques with positron emission tomography (PET) is the most feasible way to diagnose Alzheimer's disease (AD). In this study, a series of flexible benzyldiamine derivatives (BDA) were proposed for binding to aggregated β-amyloid 1-42 (Aβ1-42) with high adaptability, high binding affinity (6.8 ± 0.6 nM), and rapid body excretion. The methylthio (12) and ethoxyl (10) derivatives were further labeled with 18F directly on their benzene ring and examined as PET probes for Aβ plaque imaging. [18F]12 displayed 4.87 ± 0.52% ID/g initial uptake and prompt washout from normal brain in biodistribution studies. MicroPET-CT imaging indicated sufficient retention of [18F]12 but lower white matter uptake in the brain of an AD transgenic mouse model compared with that of commercial [18F]AV-45. Our experimental results provide new insights for developing targeting ligands possessing a flexible framework for use as efficient Aβ probes for PET imaging of AD brain.
Collapse
Affiliation(s)
- Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen, Fujian 361102, China
| | - Xuran Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen, Fujian 361102, China.,Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Xiaoyang Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Jie Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Xiaodong Pan
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital , Fuzhou 350001, China.,Key Laboratory of Brain Aging and Neurodegenerative Disease, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University , Fuzhou 350001, China
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University , Xiamen, Fujian 361102, China
| |
Collapse
|
34
|
A Novel Cognitive Stress Test for the Detection of Preclinical Alzheimer Disease: Discriminative Properties and Relation to Amyloid Load. Am J Geriatr Psychiatry 2016; 24:804-13. [PMID: 27160985 PMCID: PMC5026876 DOI: 10.1016/j.jagp.2016.02.056] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To examine the utility of a novel "cognitive stress test" to detect subtle cognitive impairments and amyloid load within the brains of neuropsychologically normal community-dwelling elders. METHODS Participants diagnosed as cognitively normal (CN), subjective memory impairment (SMI), mild cognitive impairment (MCI), and preclinical mild cognitive impairment (PreMCI) were administered the Loewenstein-Acevedo Scale for Semantic Interference and Learning (LASSI-L), a sensitive test of proactive semantic interference (PSI), retroactive semantic interference, and, uniquely, the ability to recover from the effects of PSI. Ninety-three subjects (31 men and 62 women) were recruited from three academic institutions in a research consortium. A subset of these individuals underwent 18F florbetapir positron emission tomography scanning. Relative percentages of impairment for each diagnostic group on the LASSI-L were calculated by χ(2) and Fisher's exact tests. Spearman's rho was used to examine associations between amyloid load and different cognitive measures. RESULTS LASSI-L deficits were identified among 89% of those with MCI, 47% with PreMCI, 33% with SMI, and 13% classified as CN. CN subjects had no difficulties with recovery from PSI, whereas SMI, preMCI, and MCI participants evidenced deficits in recovery from PSI effects. Among a subgroup of participants with normal scores on traditional neuropsychological tests, the strong associations were between the failure to recover from the effects of PSI and amyloid load in the brain. CONCLUSION Failure to recover or compensate for the effects of PSI on the LASSI-L distinguishes the LASSI-L from other widely used neuropsychological tests and appears to be sensitive to subtle cognitive impairments and increasing amyloid load.
Collapse
|
35
|
Trzepacz PT, Hochstetler H, Yu P, Castelluccio P, Witte MM, Dell'Agnello G, Degenhardt EK. Relationship of Hippocampal Volume to Amyloid Burden across Diagnostic Stages of Alzheimer's Disease. Dement Geriatr Cogn Disord 2016; 41:68-79. [PMID: 26625159 DOI: 10.1159/000441351] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 11/19/2022] Open
Abstract
AIMS To assess how hippocampal volume (HV) from volumetric magnetic resonance imaging (vMRI) is related to the amyloid status at different stages of Alzheimer's disease (AD) and its relevance to patient care. METHODS We evaluated the ability of HV to predict the florbetapir positron emission tomography (PET) amyloid positive/negative status by group in healthy controls (HC, n = 170) and early/late mild cognitive impairment (EMCI, n = 252; LMCI, n = 136), and AD dementia (n = 75) subjects from the Alzheimer's Disease Neuroimaging Initiative Grand Opportunity (ADNI-GO) and ADNI2. Logistic regression analyses, including elastic net classification modeling with 10-fold cross-validation, were used with age and education as covariates. RESULTS HV predicted amyloid status only in LMCI using either logistic regression [area under the curve (AUC) = 0.71, p < 0.001] or elastic net classification modeling [positive predictive value (PPV) = 72.7%]. In EMCI, age (AUC = 0.70, p < 0.0001) and age and/or education (PPV = 63.1%), but not HV, predicted amyloid status. CONCLUSION Using clinical neuroimaging, HV predicted amyloid status only in LMCI, suggesting that HV is not a biomarker surrogate for amyloid PET in clinical applications across the full diagnostic spectrum.
Collapse
|
36
|
Jack CR, Knopman DS, Chételat G, Dickson D, Fagan AM, Frisoni GB, Jagust W, Mormino EC, Petersen RC, Sperling RA, van der Flier WM, Villemagne VL, Visser PJ, Vos SJB. Suspected non-Alzheimer disease pathophysiology--concept and controversy. Nat Rev Neurol 2016; 12:117-24. [PMID: 26782335 PMCID: PMC4784257 DOI: 10.1038/nrneurol.2015.251] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Suspected non-Alzheimer disease pathophysiology (SNAP) is a biomarker-based concept that applies to individuals with normal levels of amyloid-β biomarkers in the brain, but in whom biomarkers of neurodegeneration are abnormal. The term SNAP has been applied to clinically normal individuals (who do not meet criteria for either mild cognitive impairment or dementia) and to individuals with mild cognitive impairment, but is applicable to any amyloid-negative, neurodegeneration-positive individual regardless of clinical status, except when the pathology underlying neurodegeneration can be reliably inferred from the clinical presentation. SNAP is present in ∼23% of clinically normal individuals aged >65 years and in ∼25% of mildly cognitively impaired individuals. APOE*ε4 is underrepresented in individuals with SNAP compared with amyloid-positive individuals. Clinically normal and mildly impaired individuals with SNAP have worse clinical and/or cognitive outcomes than individuals with normal levels of neurodegeneration and amyloid-β biomarkers. In this Perspectives article, we describe the available data on SNAP and address topical controversies in the field.
Collapse
Affiliation(s)
- Clifford R Jack
- Department of Radiology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Gaël Chételat
- INSERM, Université de Caen, EPHE, CHU de Caen, U1077, Caen, France
| | - Dennis Dickson
- Department of Pathology, Mayo Clinic and Foundation, 4500 San Pablo Road South, Jacksonville, Florida 32224, USA
| | - Anne M Fagan
- Department of Neurology, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, 4488 Forest Park Avenue, Suite 101, St Louis, Missouri 63108, USA
| | - Giovanni B Frisoni
- University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Genève, Switzerland
| | - William Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, 175 Li Ka Shing Center, Berkeley, California 94720, USA
| | - Elizabeth C Mormino
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Wiesje M van der Flier
- Alzheimer Center, Department of Neurology, VU University Medical Center, Neuroscience Campus Amsterdam, PO Box 7057, 1007 MB Amsterdam, Netherlands
| | - Victor L Villemagne
- Department of Molecular Imaging &Therapy, Centre for PET, Austin Health, 145 Studley Road, PO Box 5555 Melbourne, Victoria, Australia 3084
| | - Pieter J Visser
- Department of Psychiatry and Neuropsychology, Institute of Mental Health and Neuroscience, Maastricht University, PO Box 616 MD Maastricht, Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, Institute of Mental Health and Neuroscience, Maastricht University, PO Box 616 MD Maastricht, Netherlands
| |
Collapse
|
37
|
Wisse LEM, Butala N, Das SR, Davatzikos C, Dickerson BC, Vaishnavi SN, Yushkevich PA, Wolk DA. Suspected non-AD pathology in mild cognitive impairment. Neurobiol Aging 2015; 36:3152-3162. [PMID: 26422359 PMCID: PMC4641774 DOI: 10.1016/j.neurobiolaging.2015.08.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/29/2015] [Accepted: 08/31/2015] [Indexed: 01/18/2023]
Abstract
We aim to better characterize mild cognitive impairment (MCI) patients with suspected non-Alzheimer's disease (AD) pathology (SNAP) based on their longitudinal outcome, cognition, biofluid, and neuroimaging profile. MCI participants (n = 361) from ADNI-GO/2 were designated "amyloid positive" with abnormal amyloid-beta 42 levels (AMY+) and "neurodegeneration positive" (NEU+) with abnormal hippocampal volume or hypometabolism using fluorodeoxyglucose-positron emission tomography. SNAP was compared with the other MCI groups and with AMY- controls. AMY-NEU+/SNAP, 16.6%, were older than the NEU- groups but not AMY- controls. They had a lower conversion rate to AD after 24 months than AMY+NEU+ MCI participants. SNAP-MCI participants had similar amyloid-beta 42 levels, florbetapir and tau levels, but larger white matter hyperintensity volumes than AMY- controls and AMY-NEU- MCI participants. SNAP participants performed worse on all memory domains and on other cognitive domains, than AMY-NEU- participants but less so than AMY+NEU+ participants. Subthreshold levels of cerebral amyloidosis are unlikely to play a role in SNAP-MCI, but pathologies involving the hippocampus and cerebrovascular disease may underlie the neurodegeneration and cognitive impairment in this group.
Collapse
Affiliation(s)
- Laura E M Wisse
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Nirali Butala
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sandhitsu R Das
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Section of Biomedical Image Analysis, University of Pennsylvania, Philadelphia, PA, USA
| | - Bradford C Dickerson
- Psychiatric Neuroimaging Division, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | | | - Paul A Yushkevich
- Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
38
|
Harper L, Barkhof F, Fox NC, Schott JM. Using visual rating to diagnose dementia: a critical evaluation of MRI atrophy scales. J Neurol Neurosurg Psychiatry 2015; 86:1225-33. [PMID: 25872513 DOI: 10.1136/jnnp-2014-310090] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/16/2015] [Indexed: 12/14/2022]
Abstract
Visual rating scales, developed to assess atrophy in patients with cognitive impairment, offer a cost-effective diagnostic tool that is ideally suited for implementation in clinical practice. By focusing attention on brain regions susceptible to change in dementia and enforcing structured reporting of these findings, visual rating can improve the sensitivity, reliability and diagnostic value of radiological image interpretation. Brain imaging is recommended in all current diagnostic guidelines relating to dementia, and recent guidelines have also recommended the application of medial temporal lobe atrophy rating. Despite these recommendations, and the ease with which rating scales can be applied, there is still relatively low uptake in routine clinical assessments. Careful consideration of atrophy rating scales is needed to verify their diagnostic potential and encourage uptake among clinicians. Determining the added value of combining scores from visual rating in different brain regions may also increase the diagnostic value of these tools.
Collapse
Affiliation(s)
- Lorna Harper
- Dementia Research Centre, University College London Institute of Neurology, London, UK
| | - Frederik Barkhof
- Department of Radiology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Nick C Fox
- Dementia Research Centre, University College London Institute of Neurology, London, UK
| | - Jonathan M Schott
- Dementia Research Centre, University College London Institute of Neurology, London, UK
| |
Collapse
|
39
|
Heurling K, Leuzy A, Zimmer ER, Lubberink M, Nordberg A. Imaging β-amyloid using [18F]flutemetamol positron emission tomography: from dosimetry to clinical diagnosis. Eur J Nucl Med Mol Imaging 2015; 43:362-373. [DOI: 10.1007/s00259-015-3208-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
|
40
|
Promteangtrong C, Kolber M, Ramchandra P, Moghbel M, Houshmand S, Schöll M, Werner TJ, Alavi A, Buchpiguel C. Multimodality Imaging Approaches in Alzheimer's disease. Part II: 1H MR spectroscopy, FDG PET and Amyloid PET. Dement Neuropsychol 2015; 9:330-342. [PMID: 29213982 PMCID: PMC5619315 DOI: 10.1590/1980-57642015dn94000330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/17/2015] [Indexed: 01/01/2023] Open
Abstract
In this Part II review, as a complement to the Part I published in this supplement, the authors cover the imaging techniques that evaluates the Alzheimer's disease according to the different metabolic and molecular profiles. In this section MR spectroscopy, FDG-PET and amyloid PET are deeply discussed.
Collapse
Affiliation(s)
| | - Marcus Kolber
- Department of Radiology, University of Pennsylvania
School of Medicine, Philadelphia, Pennsylvania, USA
| | - Priya Ramchandra
- Department of Radiology, University of Pennsylvania
School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mateen Moghbel
- Stanford University School of Medicine, Stanford,
California
| | - Sina Houshmand
- Department of Radiology, University of Pennsylvania
School of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael Schöll
- Karolinska Institutet, Alzheimer Neurobiology Center,
Stockholm, Sweden
| | - Thomas J. Werner
- Department of Radiology, University of Pennsylvania
School of Medicine, Philadelphia, Pennsylvania, USA
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania
School of Medicine, Philadelphia, Pennsylvania, USA
| | - Carlos Buchpiguel
- Nuclear Medicine Service, Instituto do Cancer do Estado
de São Paulo, University of São Paulo, São Paulo, Brazil
- Nuclear Medicine Center, Radiology Institute, University
of São Paulo General Hospital , São Paulo, Brazil
| |
Collapse
|
41
|
Jack CR, Wiste HJ, Weigand SD, Knopman DS, Mielke MM, Vemuri P, Lowe V, Senjem ML, Gunter JL, Reyes D, Machulda MM, Roberts R, Petersen RC. Different definitions of neurodegeneration produce similar amyloid/neurodegeneration biomarker group findings. Brain 2015; 138:3747-59. [PMID: 26428666 PMCID: PMC4655341 DOI: 10.1093/brain/awv283] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 08/03/2015] [Indexed: 11/30/2022] Open
Abstract
In a cross-sectional imaging study of 1331 cognitively non-impaired subjects aged 50–89, Jack et al. assess the consequences of defining neurodegeneration in five different ways on demographic associations with neurodegeneration, and on amyloidosis and neurodegeneration biomarker status by age. Different neurodegeneration measures provide similar but not completely redundant information. We recently demonstrated that the frequencies of biomarker groups defined by the presence or absence of both amyloidosis (A+) and neurodegeneration (N+) changed dramatically by age in cognitively non-impaired subjects. Our present objectives were to assess the consequences of defining neurodegeneration in five different ways on the frequency of subjects classified as N+, on the demographic associations with N+, and on amyloidosis and neurodegeneration (A/N) biomarker group frequencies by age. This was a largely cross-sectional observational study of 1331 cognitively non-impaired subjects aged 50–89 drawn from a population-based study of cognitive ageing. We assessed demographic associations with N+, and A/N biomarker group frequencies by age where A+ was defined by amyloid PET and N+ was defined in five different ways: (i) abnormal adjusted hippocampal volume alone; (ii) abnormal Alzheimer’s disease signature cortical thickness alone; (iii) abnormal fluorodeoxyglucose positron emission tomography alone; (iv) abnormal adjusted hippocampal volume or abnormal fluorodeoxyglucose positron emission tomography; and (v) abnormal Alzheimer’s disease signature cortical thickness or abnormal fluorodeoxyglucose positron emission tomography. For each N+ definition, participants were assigned to one of four biomarker groups; A−N−, A+N−, A−N+, or A+N+. The three continuous individual neurodegeneration measures were moderately correlated (rs = 0.42 to 0.54) but when classified as normal or abnormal had only weak agreement (κ = 0.20 to 0.29). The adjusted hippocampal volume alone definition classified the fewest subjects as N+ while the Alzheimer’s disease signature cortical thickness or abnormal fluorodeoxyglucose positron emission tomography definition classified the most as N+. Across all N+ definitions, N+ subjects tended to be older, more often male and APOE4 carriers, and performed less well on functional status and learning and memory than N− subjects. For all definitions of neurodegeneration, (i) the frequency of A−N− was 100% at age 50 and declined monotonically thereafter; (ii) the frequency of A+N− increased from age 50 to a maximum in the mid-70s and declined thereafter; and3 (iii) the frequency of A−N+ (suspected non-Alzheimer’s pathophysiology) and of A+N+ increased monotonically beginning in the mid-50s and mid-60s, respectively. Overall, different neurodegeneration measures provide similar but not completely redundant information. Despite quantitative differences, the overall qualitative pattern of the A−N−, A+N−, A−N+, and A+N+ biomarker group frequency curves by age were similar across the five different definitions of neurodegeneration. We conclude that grouping subjects by amyloidosis and neurodegeneration status (normal/abnormal) is robust to different imaging definitions of neurodegeneration and thus is a useful way for investigators throughout the field to communicate in a common classification framework.
Collapse
Affiliation(s)
- Clifford R Jack
- 1 Department of Radiology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | - Heather J Wiste
- 2 Department of Health Sciences Research, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | - Stephen D Weigand
- 2 Department of Health Sciences Research, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | - David S Knopman
- 3 Department of Neurology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | - Michelle M Mielke
- 2 Department of Health Sciences Research, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | - Prashanthi Vemuri
- 1 Department of Radiology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | - Val Lowe
- 1 Department of Radiology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | - Matthew L Senjem
- 1 Department of Radiology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | - Jeffrey L Gunter
- 1 Department of Radiology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | - Denise Reyes
- 1 Department of Radiology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | - Mary M Machulda
- 4 Department of Psychiatry and Psychology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | - Rosebud Roberts
- 2 Department of Health Sciences Research, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | - Ronald C Petersen
- 3 Department of Neurology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
42
|
Vandenberghe R. The relationship between amyloid deposition, neurodegeneration, and cognitive decline in dementia. Curr Neurol Neurosci Rep 2015; 14:498. [PMID: 25224538 DOI: 10.1007/s11910-014-0498-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amyloid imaging has been clinically approved for measuring β amyloid plaque load in patients being evaluated for Alzheimer's disease or other causes of cognitive decline. Here we explore a multidimensional approach to cognitive decline, where we situate amyloid plaque burden among a number of other relevant dimensions, such as aging, volume loss, other proteinopathies such as TDP43 and Lewy bodies, and functional reorganisation of cognitive brain systems. The multidimensional model incorporates a 'pure AD' trajectory, corresponding to e.g. monogenic Alzheimer's disease, but leaves room for other combinations of biomarker abnormalities (e.g. volume loss without amyloid positivity) and other trajectories. More tools will become available in the future that allow one to carve out a causal-mechanistic space for explaing cognitive decline in a personalized manner, enhancing progress towards more efficacious interventions.
Collapse
Affiliation(s)
- Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, University of Leuven, Leuven, Belgium,
| |
Collapse
|
43
|
Yeo JM, Waddell B, Khan Z, Pal S. A systematic review and meta-analysis of (18)F-labeled amyloid imaging in Alzheimer's disease. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2015; 1:5-13. [PMID: 27239488 PMCID: PMC4876886 DOI: 10.1016/j.dadm.2014.11.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background Amyloid imaging using fluorine 18–labeled tracers florbetapir, florbetaben, and flutemetamol has recently been reported in Alzheimer's disease (AD). Methods We systematically searched MEDLINE and EMBASE for relevant studies published from January 1980 to March 2014. Studies comparing imaging findings in AD and normal controls (NCs) were pooled in a meta-analysis, calculating pooled weighted sensitivity, specificity, and diagnostic odds ratio (OR) using the DerSimonian-Laird random-effects model. Results Nineteen studies, investigating 682 patients with AD, met inclusion criteria. Meta-analysis demonstrated a sensitivity of 89.6%, a specificity of 87.2%, and an OR of 91.7 for florbetapir in differentiating AD patients from NCs, and a sensitivity of 89.3%, a specificity of 87.6%, and a diagnostic OR of 69.9 for florbetaben. There were insufficient data to complete analyses for flutemetamol. Conclusions Results suggest favorable sensitivity and specificity of amyloid imaging with fluorine 18–labeled tracers in AD. Prospective studies are required to determine optimal imaging analysis methods and resolve outstanding clinical uncertainties.
Collapse
Affiliation(s)
- Jing Ming Yeo
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Briony Waddell
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK; Division of Clinical Neurosciences, Western General Hospital, Edinburgh, UK
| | - Zubair Khan
- Department of Nuclear Medicine, NHS Lothian, Edinburgh, UK
| | - Suvankar Pal
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK; Division of Clinical Neurosciences, Western General Hospital, Edinburgh, UK; Department of Neurology, Forth Valley Royal Hospital, NHS Forth Valley, Larbert, UK
| |
Collapse
|
44
|
Insights into cognitive aging and Alzheimer’s disease using amyloid PET and structural MRI scans. Clin Transl Imaging 2015. [DOI: 10.1007/s40336-015-0110-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
|
46
|
Affiliation(s)
- Clifford R Jack
- Department of Radiology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN, 55905, USA,
| |
Collapse
|
47
|
Saidlitz P, Voisin T, Vellas B, Payoux P, Gabelle A, Formaglio M, Delrieu J. Amyloid imaging in alzheimer’s disease: A literature review. J Nutr Health Aging 2014. [DOI: 10.1007/s12603-014-0485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
|
48
|
Snellman A, Rokka J, López-Picón FR, Eskola O, Salmona M, Forloni G, Scheinin M, Solin O, Rinne JO, Haaparanta-Solin M. In vivo PET imaging of beta-amyloid deposition in mouse models of Alzheimer's disease with a high specific activity PET imaging agent [(18)F]flutemetamol. EJNMMI Res 2014; 4:37. [PMID: 25977876 PMCID: PMC4412375 DOI: 10.1186/s13550-014-0037-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/02/2014] [Indexed: 01/07/2023] Open
Abstract
Background The purpose of the study was to evaluate the applicability of 18F-labelled amyloid imaging positron emission tomography (PET) agent [18F]flutemetamol to detect changes in brain beta-amyloid (Aβ) deposition in vivo in APP23, Tg2576 and APPswe-PS1dE9 mouse models of Alzheimer's disease. We expected that the high specific activity of [18F]flutemetamol would make it an attractive small animal Aβ imaging agent. Methods [18F]flutemetamol uptake in the mouse brain was evaluated in vivo at 9 to 22 months of age with an Inveon Multimodality PET/CT camera (Siemens Medical Solutions USA, Knoxville, TN, USA). Retention in the frontal cortex (FC) was evaluated by Logan distribution volume ratios (DVR) and FC/cerebellum (CB) ratios during the late washout phase (50 to 60 min). [18F]flutemetamol binding to Aβ was also evaluated in brain slices by in vitro and ex vivo autoradiography. The amount of Aβ in the brain slices was determined with Thioflavin S and anti-Aβ1−40 immunohistochemistry. Results In APP23 mice, [18F]flutemetamol retention in the FC increased from 9 to 18 months. In younger mice, DVR and FC/CB50-60 were 0.88 (0.81) and 0.88 (0.89) at 9 months (N = 2), and 0.98 (0.93) at 12 months (N = 1), respectively. In older mice, DVR and FC/CB50-60 were 1.16 (1.15) at 15 months (N = 1), 1.13 (1.16) and 1.35 (1.35) at 18 months (N = 2), and 1.05 (1.31) at 21 months (N = 1). In Tg2576 mice, DVR and FC/CB50-60 showed modest increasing trends but also high variability. In APPswe-PS1dE9 mice, DVR and FC/CB50-60 did not increase with age. Thioflavin S and anti-Aβ1−40 positive Aβ deposits were present in all transgenic mice at 19 to 22 months, and they co-localized with [18F]flutemetamol binding in the brain slices examined with in vitro and ex vivo autoradiography. Conclusions Increased [18F]flutemetamol retention in the brain was detected in old APP23 mice in vivo. However, the high specific activity of [18F]flutemetamol did not provide a notable advantage in Tg2576 and APPswe-PS1dE9 mice compared to the previously evaluated structural analogue [11C]PIB. For its practical benefits, [18F]flutemetamol imaging with a suitable mouse model like APP23 is an attractive alternative.
Collapse
Affiliation(s)
- Anniina Snellman
- Medicity/PET Preclinical Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, Turku 20520, Finland
| | - Johanna Rokka
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Porthaninkatu 3, Turku 20500, Finland
| | - Francisco R López-Picón
- Medicity/PET Preclinical Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, Turku 20520, Finland
| | - Olli Eskola
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Porthaninkatu 3, Turku 20500, Finland
| | - Mario Salmona
- Mario Negri Institute for Pharmacological Research, Milan 20156, Italy
| | - Gianluigi Forloni
- Mario Negri Institute for Pharmacological Research, Milan 20156, Italy
| | - Mika Scheinin
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Kiinamyllynkatu 10, Turku 20520, Finland ; Unit of Clinical Pharmacology, TYKSLAB, Turku University Hospital, Kiinamyllynkatu 10, Turku 20520, Finland
| | - Olof Solin
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Porthaninkatu 3, Turku 20500, Finland
| | - Juha O Rinne
- Turku PET Centre, University of Turku, Turku 20521, Finland
| | - Merja Haaparanta-Solin
- Medicity/PET Preclinical Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, Turku 20520, Finland
| |
Collapse
|
49
|
The effect of 18F-florbetapir dose reduction on region-based classification of cortical amyloid deposition. Eur J Nucl Med Mol Imaging 2014; 41:2144-9. [DOI: 10.1007/s00259-014-2842-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/19/2014] [Indexed: 12/27/2022]
|
50
|
Abstract
PURPOSE OF REVIEW This review evaluates the potential clinical utility of amyloid imaging. RECENT FINDINGS Amyloid PET is a valid in-vivo marker of neuritic plaque load and correlates with amyloid plaque surface area. Abundant diffuse plaques, however, with scant neuritic plaques can also give rise to a positive scan, most often reported in association with Lewy body disease. Specificity of amyloid PET for discriminating Alzheimer's disease from healthy controls is higher than that of structural MRI. Sensitivity for discriminating Alzheimer's disease from healthy controls or from frontotemporal lobar degeneration is also higher than that of fluorodeoxyglucose-PET, with higher interreader reliability. Within a same center there is high concordance between dichotomization of cases based on amyloid PET versus cerebrospinal fluid Aβ42. In a tentative algorithm, we restrict clinical-diagnostic use to dementia with age of onset before 60 years, primary progressive aphasia and corticobasal syndrome, cases with objective cognitive deficits that could be due to a neurodegenerative cause but also have significant cerebrovascular or psychiatric comorbidity, and rapidly progressive dementia. SUMMARY Empirical studies that evaluate how amyloid PET can change clinical-diagnostic thinking are starting to emerge. Key questions to be resolved are its role compared with cerebrospinal fluid markers and its impact on patient outcome.
Collapse
|