1
|
Liu S, Liu T, Li J, Hong J, Moosavi-Movahedi AA, Wei J. Type 2 Diabetes Mellitus Exacerbates Pathological Processes of Parkinson's Disease: Insights from Signaling Pathways Mediated by Insulin Receptors. Neurosci Bull 2025; 41:676-690. [PMID: 39754628 PMCID: PMC11978575 DOI: 10.1007/s12264-024-01342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/15/2024] [Indexed: 01/06/2025] Open
Abstract
Parkinson's disease (PD), a chronic and common neurodegenerative disease, is characterized by the progressive loss of dopaminergic neurons in the dense part of the substantia nigra and abnormal aggregation of alpha-synuclein. Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by chronic insulin resistance and deficiency in insulin secretion. Extensive evidence has confirmed shared pathogenic mechanisms underlying PD and T2DM, such as oxidative stress caused by insulin resistance, mitochondrial dysfunction, inflammation, and disorders of energy metabolism. Conventional drugs for treating T2DM, such as metformin and glucagon-like peptide-1 receptor agonists, affect nerve repair. Even drugs for treating PD, such as levodopa, can affect insulin secretion. This review summarizes the relationship between PD and T2DM and related therapeutic drugs from the perspective of insulin signaling pathways in the brain.
Collapse
Affiliation(s)
- Shufen Liu
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Tingting Liu
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Jingwen Li
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Jun Hong
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | | | - Jianshe Wei
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China.
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Abdalla MMI. Insulin resistance as the molecular link between diabetes and Alzheimer's disease. World J Diabetes 2024; 15:1430-1447. [PMID: 39099819 PMCID: PMC11292327 DOI: 10.4239/wjd.v15.i7.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 07/08/2024] Open
Abstract
Diabetes mellitus (DM) and Alzheimer's disease (AD) are two major health concerns that have seen a rising prevalence worldwide. Recent studies have indicated a possible link between DM and an increased risk of developing AD. Insulin, while primarily known for its role in regulating blood sugar, also plays a vital role in protecting brain functions. Insulin resistance (IR), especially prevalent in type 2 diabetes, is believed to play a significant role in AD's development. When insulin signalling becomes dysfunctional, it can negatively affect various brain functions, making individuals more susceptible to AD's defining features, such as the buildup of beta-amyloid plaques and tau protein tangles. Emerging research suggests that addressing insulin-related issues might help reduce or even reverse the brain changes linked to AD. This review aims to explore the rela-tionship between DM and AD, with a focus on the role of IR. It also explores the molecular mechanisms by which IR might lead to brain changes and assesses current treatments that target IR. Understanding IR's role in the connection between DM and AD offers new possibilities for treatments and highlights the importance of continued research in this interdisciplinary field.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Zhang J, Zhang Y, Zhang Y, Yao J. The Association of Brain Insulin Resistance with Anesthesia/Surgery-Induced Cognitive Deterioration Is Female-Specific in 5XFAD Transgenic Mice. J Alzheimers Dis 2024; 101:183-195. [PMID: 39213082 DOI: 10.3233/jad-231444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Our previous studies indicated that anesthesia/surgery could aggravate cognitive impairment and tau pathology in female 5XFAD transgenic (Tg) mice. However, it is unknown whether there are sex differences in the susceptibility of developing postoperative cognitive dysfunction in 5XFAD Tg mice. Objective In this study, we aim to determine whether anesthesia/surgery can have different effects on female and male 5XFAD Tg mice, and to explore the underpinning mechanisms. Methods The mice received abdominal surgery under isoflurane anesthesia. Morris water maze was used to assess the cognitive function. Hippocampal levels of p-tau (AT8), p-IRS1 (Ser612), IRS1, p-GSK3β (Tyr216), and p-GSK3β (Ser9) at postoperative day 1 were evaluated by western blot assays. Results Anesthesia/surgery exaggerated cognitive impairment and tau pathology in female, but not male 5XFAD Tg mice. The anesthesia/surgery led to elevated hippocampus protein levels of p-IRS1 (Ser612)/IRS1 ratio and p-GSK3β (Tyr216) and reduced hippocampus protein levels of p-GSK3β (Ser9) in female, but not male 5XFAD Tg mice. Conclusions This study demonstrated that female 5XFAD Tg mice were more susceptible to anesthesia/surgery-induced cognitive deterioration and tau pathology aggravation, potentially due to female-specific brain insulin resistance.
Collapse
Affiliation(s)
- Junyao Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinglin Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingying Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyan Yao
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Cheng H, Villahoz BF, Ponzio RD, Aschner M, Chen P. Signaling Pathways Involved in Manganese-Induced Neurotoxicity. Cells 2023; 12:2842. [PMID: 38132161 PMCID: PMC10742340 DOI: 10.3390/cells12242842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Manganese (Mn) is an essential trace element, but insufficient or excessive bodily amounts can induce neurotoxicity. Mn can directly increase neuronal insulin and activate insulin-like growth factor (IGF) receptors. As an important cofactor, Mn regulates signaling pathways involved in various enzymes. The IGF signaling pathway plays a protective role in the neurotoxicity of Mn, reducing apoptosis in neurons and motor deficits by regulating its downstream protein kinase B (Akt), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR). In recent years, some new mechanisms related to neuroinflammation have been shown to also play an important role in Mn-induced neurotoxicity. For example, DNA-sensing receptor cyclic GMP-AMP synthase (cCAS) and its downstream signal efficient interferon gene stimulator (STING), NOD-like receptor family pyrin domain containing 3(NLRP3)-pro-caspase1, cleaves to the active form capase1 (CASP1), nuclear factor κB (NF-κB), sirtuin (SIRT), and Janus kinase (JAK) and signal transducers and activators of the transcription (STAT) signaling pathway. Moreover, autophagy, as an important downstream protein degradation pathway, determines the fate of neurons and is regulated by these upstream signals. Interestingly, the role of autophagy in Mn-induced neurotoxicity is bidirectional. This review summarizes the molecular signaling pathways of Mn-induced neurotoxicity, providing insight for further understanding of the mechanisms of Mn.
Collapse
Affiliation(s)
| | | | | | | | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.C.); (B.F.V.); (R.D.P.); (M.A.)
| |
Collapse
|
5
|
Yu H, Sun T, He X, Wang Z, Zhao K, An J, Wen L, Li JY, Li W, Feng J. Association between Parkinson's Disease and Diabetes Mellitus: From Epidemiology, Pathophysiology and Prevention to Treatment. Aging Dis 2022; 13:1591-1605. [PMID: 36465171 PMCID: PMC9662283 DOI: 10.14336/ad.2022.0325] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/25/2022] [Indexed: 08/27/2023] Open
Abstract
Diabetes mellitus (DM) and Parkinson's disease (PD) are both age-related diseases of global concern being among the most common chronic metabolic and neurodegenerative diseases, respectively. While both diseases can be genetically inherited, environmental factors play a vital role in their pathogenesis. Moreover, DM and PD have common underlying molecular mechanisms, such as misfolded protein aggregation, mitochondrial dysfunction, oxidative stress, chronic inflammation, and microbial dysbiosis. Recently, epidemiological and experimental studies have reported that DM affects the incidence and progression of PD. Moreover, certain antidiabetic drugs have been proven to decrease the risk of PD and delay its progression. In this review, we elucidate the epidemiological and pathophysiological association between DM and PD and summarize the antidiabetic drugs used in animal models and clinical trials of PD, which may provide reference for the clinical translation of antidiabetic drugs in PD treatment.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Tong Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhen Wang
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
| | - Kaidong Zhao
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
| | - Jing An
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jia-Yi Li
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Wen Li
- Laboratory of Research in Parkinson’s Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
6
|
Zhou C, Jung CG, Kim MJ, Watanabe A, Abdelhamid M, Taslima F, Michikawa M. Insulin Deficiency Increases Sirt2 Level in Streptozotocin-Treated Alzheimer's Disease-Like Mouse Model: Increased Sirt2 Induces Tau Phosphorylation Through ERK Activation. Mol Neurobiol 2022; 59:5408-5425. [PMID: 35701718 PMCID: PMC9395464 DOI: 10.1007/s12035-022-02918-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/07/2022] [Indexed: 11/11/2022]
Abstract
Accumulating evidence suggests that insulin deficiency is a risk factor for Alzheimer's disease (AD); however, the underlying molecular mechanisms are not completely understood. Here, we investigated the effects of insulin deficiency on AD-like pathologies using an insulin-deficient amyloid-β (Aβ) precursor protein (APP) transgenic mouse model (Tg2576 mice). Female Tg2576 mice were injected intraperitoneally with streptozotocin (STZ) to induce insulin deficiency, and their body weights, serum glucose levels, and serum insulin levels were evaluated. STZ-treated mice showed exacerbated Aβ accumulation, tau hyperphosphorylation, glial activation, neuroinflammation, and increased Sirt2 protein levels in the brain, as determined by two-dimensional gel electrophoresis (2-DE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and Western blotting. Furthermore, our in vitro experiments revealed that insulin depletion or interleukin-6 treatment increased Sirt2 protein levels in both Neuro2a and Neuro2a-P301L cells. The overexpression of Sirt2 in these cells induced tau hyperphosphorylation through extracellular signal-regulated kinase (ERK) activation. Conversely, Sirt2 knockdown reversed tau hyperphosphorylation in these cells. We showed for the first time that Sirt2 is upregulated in the brains of STZ-treated Tg2576 mice and is involved in tau phosphorylation through ERK activation. Our findings suggest that Sirt2 is a promising therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Chunyu Zhou
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601 Japan
| | - Cha-Gyun Jung
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601 Japan
| | - Mi-Jeong Kim
- Department of Food & Biotechnology, Korea University, Sejong, 30019 South Korea
| | - Atsushi Watanabe
- Laboratory of Research Advancement, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 Japan
| | - Mona Abdelhamid
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601 Japan
| | - Ferdous Taslima
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601 Japan
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601 Japan
| |
Collapse
|
7
|
Zhao N, Francis NL, Song S, Kholodovych V, Calvelli HR, Hoop CL, Pang ZP, Baum J, Uhrich KE, Moghe PV. CD36-Binding Amphiphilic Nanoparticles for Attenuation of Alpha Synuclein-Induced Microglial Activation. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100120. [PMID: 36051821 PMCID: PMC9426437 DOI: 10.1002/anbr.202100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neuroinflammation is one of the hallmarks contributing to Parkinson's Disease (PD) pathology, where microglial activation occurs as one of the earliest events, triggered by extracellular alpha synuclein (aSYN) binding to the CD36 receptor. Here, CD36-binding nanoparticles (NPs) containing synthetic tartaric acid-based amphiphilic polymers (AMs) were rationally designed to inhibit this aSYN-CD36 binding. In silico docking revealed that four AMs with varying alkyl side chain lengths presented differential levels of CD36 binding affinity and that an optimal alkyl chain length would promote the strongest inhibitory activity towards aSYN-CD36 interactions. In vitro competitive binding assays indicated that the inhibitory activity of AM-based NPs plateaued at intermediate side chain lengths of 12- and 18-carbons, supporting the in silico docking predictions. These 12- and 18-carbon length AM NPs also had significantly stronger effects on reducing aSYN internalization and inhibiting the production of the proinflammatory molecules TNF-α and nitric oxide from aSYN-challenged microglia. All four NPs modulated the gene expression of aSYN-challenged microglia, downregulating the expression of the proinflammatory genes TNF, IL-6, and IL-1β, and upregulating the expression of the anti-inflammatory genes TGF-β and Arg1. Overall, this work represents a novel polymeric nanotechnology platform that can be used to modulate aSYN-induced microglial activation in PD.
Collapse
Affiliation(s)
- Nanxia Zhao
- Department of Chemical and Biochemical Engineering, 98 Brett Rd, Rutgers University, NJ, 08854 USA
| | - Nicola L. Francis
- Department of Biomedical Engineering, 599 Taylor Rd., Rutgers University, NJ, 08854 USA
| | - Shuang Song
- Department of Chemistry, 501 Big Springs Rd., University of California, Riverside, CA, 92507 USA
| | - Vladyslav Kholodovych
- Office of Advanced Research Computing, 96 Frelinghuysen Road, Rutgers University, NJ, 08854 USA
| | - Hannah R. Calvelli
- Department of Molecular Biology & Biochemistry, 604 Allison Rd, Rutgers University, NJ, 08854 USA
| | - Cody L. Hoop
- Department of Chemistry & Chemical Biology, 123 Bevier Rd, Rutgers University, NJ, 08854 USA
| | - Zhiping P. Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 604 Allison Rd, Rutgers University, NJ, 08854 USA
- Child Health Institute of New Jersey, 89 French St, New Brunswick, NJ, 08901 USA
| | - Jean Baum
- Department of Chemistry & Chemical Biology, 123 Bevier Rd, Rutgers University, NJ, 08854 USA
| | - Kathryn E. Uhrich
- Department of Chemistry, 501 Big Springs Rd., University of California, Riverside, CA, 92507 USA
| | - Prabhas V. Moghe
- Department of Chemical and Biochemical Engineering, 98 Brett Rd, Rutgers University, NJ, 08854 USA
- Department of Biomedical Engineering, 599 Taylor Rd., Rutgers University, NJ, 08854 USA
| |
Collapse
|
8
|
Troshneva A, Ametov A. Parkinson’s disease and type 2 diabetes mellitus: interrelation of pathogenetic mechanisms and general therapeutic approaches. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:12-18. [DOI: 10.17116/jnevro202212211212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Peng L, Fang X, Xu F, Liu S, Qian Y, Gong X, Zhao X, Ma Z, Xia T, Gu X. Amelioration of Hippocampal Insulin Resistance Reduces Tau Hyperphosphorylation and Cognitive Decline Induced by Isoflurane in Mice. Front Aging Neurosci 2021; 13:686506. [PMID: 34512303 PMCID: PMC8425557 DOI: 10.3389/fnagi.2021.686506] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/12/2021] [Indexed: 01/03/2023] Open
Abstract
General anesthetics can induce cognitive impairments and increase the risk of Alzheimer’s disease (AD). However, the underlying mechanisms are still unknown. Our previous studies shown that long-term isoflurane exposure induced peripheral and central insulin resistance (IR) in adult mice and aggravated IR in type 2 diabetes mellitus (T2DM) mice. Clinical and preclinical studies revealed an association between impaired insulin signaling and tau pathology in AD and other tauopathies. We investigated if alleviation of hippocampal IR by the antidiabetic agent metformin could reduce tau hyperphosphorylation and cognitive decline induced by isoflurane in mice. The effects of prolonged (6 h) isoflurane anesthesia on hippocampal IR, hippocampal tau hyperphosphorylation, and hippocampus-dependent cognitive function were evaluated in wild type (WT) adult mice and the high-fat diet plus streptozotocin (HFD/STZ) mouse model of T2DM. Here we shown that isoflurane and HFD/STZ dramatically and synergistically induced hippocampal IR and fear memory impairment. Metformin pretreatment strongly ameliorated hippocampal IR and cognitive dysfunction caused by isoflurane in WT mice, but was less effective in T2DM mice. Isoflurane also induced hippocampal tau hyperphosphorylation and metformin reversed this effect. In addition, isoflurane significantly increased blood glucose levels in both adult and T2DM mice, and metformin reversed this effect as well. Administration of 25% glucose to metformin-pretreated mice induced hyperglycemia, but surprisingly did not reverse the benefits of metformin on hippocampal insulin signaling and fear memory following isoflurane anesthesia. Our findings show hippocampal IR and tau hyperphosphorylation contribute to acute isoflurane-induced cognitive dysfunction. Brief metformin treatment can mitigate these effects through a mechanism independent of glycemic control. Future studies are needed to investigate whether long-term metformin treatment can also prevent T2DM-induced hippocampal IR and cognitive decline.
Collapse
Affiliation(s)
- Liangyu Peng
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Xin Fang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Fangxia Xu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Shuai Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Yue Qian
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Xiangdan Gong
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Xin Zhao
- Medical School of Nanjing University, Nanjing, China.,Department of Anesthesiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| | - Tianjiao Xia
- Medical School of Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Calsolaro V, Bottari M, Coppini G, Lemmi B, Monzani F. Endocrine dysfunction and cognitive impairment. Minerva Endocrinol (Torino) 2021; 46:335-349. [PMID: 33435644 DOI: 10.23736/s2724-6507.20.03295-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dementia is a highly prevalent chronic disease among the older population, affecting more than 50 million people worldwide and representing a huge healthcare, social and economic burden. Dementia, and in particular Alzheimer's disease, prevalence is expected to raise within the next few years. Unfortunately, no disease-modifying therapies are available so far, despite a plethora of clinical trials targeting the hallmarks of Alzheimer's disease. Given these premises, it appears crucial to address not only the neuropathological correlates of the disease, but also the modifiable risk factors. Among them, evidence suggest a role of the endocrine system not only in the brain development, but also in the maintenance of its health, having neurotrophic, antioxidant and metabolic functions crucial for the cognitive abilities. This review focuses on the evidence evaluating the impact of the endocrine systems, in particular thyroid function, insulin resistance, parathyroid hormone, vitamin D and sexual hormones on cognitive status. Results from epidemiological, preclinical and some clinical studies demonstrated the link between thyroid, parathyroid hormone and vitamin D and cognitive status, between diabetes, and insulin resistance in particular, and dementia, between sexual and adrenal hormones, particularly estrogen variation at menopause, and cognitive decline. The growing interest on the modifiable risks factors of cognitive decline increased the knowledge about the complex interplay of endocrine systems and cognition, highlighting the need and the usefulness of a multidisciplinary approach to the prevention of a complex and devastating disease.
Collapse
Affiliation(s)
- Valeria Calsolaro
- Geriatrics Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Marina Bottari
- Geriatrics Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Giulia Coppini
- Geriatrics Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Bianca Lemmi
- Geriatrics Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Fabio Monzani
- Geriatrics Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy -
| |
Collapse
|
11
|
Mustapic M, Tran J, Craft S, Kapogiannis D. Extracellular Vesicle Biomarkers Track Cognitive Changes Following Intranasal Insulin in Alzheimer's Disease. J Alzheimers Dis 2020; 69:489-498. [PMID: 30958348 DOI: 10.3233/jad-180578] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Insulin resistance is implicated in Alzheimer's disease (AD), whereas intranasal insulin is an experimental treatment in clinical trials. We previously proposed insulin signaling mediators in plasma neuronal-enriched extracellular vesicles (EVs) as biomarkers of brain insulin resistance. OBJECTIVE We sought to demonstrate the capacity of neuronal-enriched EV biomarkers to demonstrate target engagement in response to intranasal insulin and their ability to track treatment-associated cognitive changes in AD. METHODS We isolated neuronal-enriched EVs from plasma samples of participants with amnestic mild cognitive impairment or probable AD involved in a 4-month duration placebo-controlled clinical trial of 20 or 40 IU intranasal insulin. We measured insulin signaling mediators as biomarkers and examined treatment-associated changes and their relationship with cognitive performance (ADAS-Cog). RESULTS There were no EV biomarker changes from baseline in any of the treatment groups. In participants treated with 20 IU insulin, EV biomarkers of insulin resistance (pS312-IRS-1, pY-IRS-1) showed strong positive correlations with ADAS-Cog changes, especially in ApoE ɛ4 non-carriers. CONCLUSION Neuronal EV biomarkers of insulin resistance (pS312-IRS-1, pY-IRS-1) were associated with cognitive changes in response to low dose intranasal insulin suggesting engagement of the insulin cascade in neurons of origin.
Collapse
Affiliation(s)
- Maja Mustapic
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Joyce Tran
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Suzanne Craft
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| |
Collapse
|
12
|
De Sousa RAL, Harmer AR, Freitas DA, Mendonça VA, Lacerda ACR, Leite HR. An update on potential links between type 2 diabetes mellitus and Alzheimer's disease. Mol Biol Rep 2020; 47:6347-6356. [PMID: 32740795 DOI: 10.1007/s11033-020-05693-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) major feature is insulin resistance. Brain and peripheral insulin resistance lead to hyperglycemia, which contributes to the development of T2D-linked comorbidities, such as obesity and dyslipidemia. Individuals with hyperglycemia in AD present with neuronal loss, formation of plaques and tangles and reduced neurogenesis. Inflammation seems to play an essential role in the development of insulin resistance in AD and T2D. We conducted a literature review about the links between AD and T2D. Alterations in glucose metabolism result from changes in the expression of the insulin receptor substrates 1 and 2 (IRS-1 and IRS-2), and seem to be mediated by several inflammatory pathways being present in both pathologies. Although there are some similarities in the insulin resistance of AD and T2D, brain and peripheral insulin resistance also have their discrete features. Failure to activate IRS-1 is the hallmark of AD, while inhibition of IRS-2 is the main feature in T2D. Inflammation mediates the alterations in glucose metabolism in AD and T2D. Targeting inflammation and insulin receptors may be a successful strategy to prevent and ameliorate T2D and AD symptoms.
Collapse
Affiliation(s)
- Ricardo Augusto Leoni De Sousa
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas- Sociedade Brasileira de Fisiologia (SBFis), Universidade Federal dos Vales do Jequitinhonha E Mucuri (UFVJM), Campus JK, Rodovia MGT 367, Km 583, Alto da Jacuba, no 5000, Diamantina, MG, CEP 39100-000, Brazil.
| | - Alison R Harmer
- Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Sydney, Australia
| | - Daniel Almeida Freitas
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas- Sociedade Brasileira de Fisiologia (SBFis), Universidade Federal dos Vales do Jequitinhonha E Mucuri (UFVJM), Campus JK, Rodovia MGT 367, Km 583, Alto da Jacuba, no 5000, Diamantina, MG, CEP 39100-000, Brazil
| | - Vanessa Amaral Mendonça
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas- Sociedade Brasileira de Fisiologia (SBFis), Universidade Federal dos Vales do Jequitinhonha E Mucuri (UFVJM), Campus JK, Rodovia MGT 367, Km 583, Alto da Jacuba, no 5000, Diamantina, MG, CEP 39100-000, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas- Sociedade Brasileira de Fisiologia (SBFis), Universidade Federal dos Vales do Jequitinhonha E Mucuri (UFVJM), Campus JK, Rodovia MGT 367, Km 583, Alto da Jacuba, no 5000, Diamantina, MG, CEP 39100-000, Brazil
| | - Hércules Ribeiro Leite
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas- Sociedade Brasileira de Fisiologia (SBFis), Universidade Federal dos Vales do Jequitinhonha E Mucuri (UFVJM), Campus JK, Rodovia MGT 367, Km 583, Alto da Jacuba, no 5000, Diamantina, MG, CEP 39100-000, Brazil
| |
Collapse
|
13
|
Wang ZJ, Han YF, Zhao F, Yang GZ, Yuan L, Cai HY, Yang JT, Holscher C, Qi JS, Wu MN. A dual GLP-1 and Gcg receptor agonist rescues spatial memory and synaptic plasticity in APP/PS1 transgenic mice. Horm Behav 2020; 118:104640. [PMID: 31765661 DOI: 10.1016/j.yhbeh.2019.104640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 11/16/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that severely affects the health and lifespan of the elderly worldwide. Recently, the correlation between AD and type 2 diabetes mellitus (T2DM) has received intensive attention, and a promising new anti-AD strategy is the use of anti-diabetic drugs. Oxyntomodulin (Oxm) is a peptide hormone and growth factor that acts on neurons in the hypothalamus. OXM activates glucagon-like peptide 1 (GLP-1) and glucagon (Gcg) receptors, facilitates insulin signaling and has neuroprotective effects against Aβ1-42-induced cytotoxicity in primary hippocampal neurons. Here, we tested the effects of the protease-resistant analogue (D-Ser2)Oxm on spatial memory and synaptic plasticity and the underlying molecular mechanisms in the APP/PS1 transgenic mouse model of AD. The results showed that (D-Ser2)Oxm not only alleviated the impairments of working memory and long-term spatial memory, but also reduced the number of Aβ plaques in the hippocampus, and reversed the suppression of hippocampal synaptic long-term potentiation (LTP). Moreover, (D-Ser2)Oxm administration significantly increased p-PI3K/p-AKT1 expression and decreased p-GSK3β levels in the hippocampus. These results are the first to show an in vivo neuroprotective role of (D-Ser2)Oxm in APP/PS1 mice, and this role involves the improvement of synaptic plasticity, clearance of Aβ and normalization of PI3K/AKT/GSK3β cell signaling in the hippocampus. This study suggests that (D-Ser2)Oxm holds promise for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | - Yu-Fei Han
- Guangzhou Kingmed Diagnostics, Guangzhou, PR China
| | - Fang Zhao
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | - Guang-Zhao Yang
- Department of Cardiovascular Medicine, The First Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Li Yuan
- Department of Physiology, Changzhi Medical College, Changzhi, PR China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, PR China
| | - Jun-Ting Yang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | - Christian Holscher
- Neuroscience research group, Henan university of Chinese medicine, Zhengzhou, PR China
| | - Jin-Shun Qi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China.
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China.
| |
Collapse
|
14
|
Gralle M, Labrecque S, Salesse C, De Koninck P. Spatial dynamics of the insulin receptor in living neurons. J Neurochem 2020; 156:88-105. [PMID: 31886886 DOI: 10.1111/jnc.14950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/11/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022]
Abstract
Insulin signaling through the insulin receptor has long been studied in classic target organs, such as adipose tissue and skeletal muscle, where one of its effects is to increase glucose uptake. Insulin and insulin receptor are present in many areas of the brain, but the functions of brain insulin signaling outside feeding circuits are not well defined. It has been proposed that hippocampal insulin signaling is important for memory, that brain insulin signaling is deficient in Alzheimer's disease, and that intranasal insulin treatment improves cognition, but the mechanisms remain unclear and do not seem to involve increased glucose uptake by neurons. The molecular behavior of the insulin receptor itself is not well known in living neurons; therefore, we investigated the spatial dynamics of the insulin receptor on somatodendritic membranes of live rat hippocampal neurons in culture. Using single-molecule tracking of quantum dot-tagged insulin receptors and single-particle tracking photoactivation localization microscopy, we show that the insulin receptor is distributed over both dendritic shafts and spines. Using colocalization with synaptic markers, we also show that in contrast to the glutamate receptor subunit glutamate receptor subunit A1, the dynamics of the insulin receptor are not affected by association with excitatory synapses; however, the insulin receptor is immobilized by components of inhibitory synapses. The mobility of the insulin receptor is reduced both by low concentrations of the pro-inflammatory cytokine tumor necrosis factor α and by cholesterol depletion, suggesting an association with sphingolipid-rich membrane domains. On the other hand, the insulin receptor dynamics in hippocampal neurons are not affected by increased excitatory signaling. Finally, using real-time single-event quantification, we find evidence of strong insulin receptor exocytosis on dendritic shafts. Our results suggest an association of the neuronal insulin receptor with specific elements of the dendritic shaft, rather than excitatory synapses.
Collapse
Affiliation(s)
- Matthias Gralle
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,CERVO Brain Research Center, Québec, QC, Canada
| | | | | | - Paul De Koninck
- CERVO Brain Research Center, Québec, QC, Canada.,Département de biochimie, microbiologie et bio-informatique, Université Laval, Québec, QC, Canada
| |
Collapse
|
15
|
Cheong JL, de Pablo-Fernandez E, Foltynie T, Noyce AJ. The Association Between Type 2 Diabetes Mellitus and Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2020; 10:775-789. [PMID: 32333549 PMCID: PMC7458510 DOI: 10.3233/jpd-191900] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
In recent years, an emerging body of evidence has forged links between Parkinson's disease (PD) and type 2 diabetes mellitus (T2DM). In observational studies, those with T2DM appear to be at increased risk of developing PD, as well as experiencing faster progression and a more severe phenotype of PD, with the effects being potentially mediated by several common cellular pathways. The insulin signalling pathway, for example, may be responsible for neurodegeneration via insulin dysregulation, aggregation of amyloids, neuroinflammation, mitochondrial dysfunction and altered synaptic plasticity. In light of these potential shared disease mechanisms, clinical trials are now investigating the use of established diabetes drugs targeting insulin resistance in the management of PD. This review will discuss the epidemiological links between T2DM and PD, the potential shared cellular mechanisms, and assess the relevant treatment options for disease modification of PD.
Collapse
Affiliation(s)
- Julia L.Y. Cheong
- Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Eduardo de Pablo-Fernandez
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, UK
| | - Alastair J. Noyce
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
- Department of Clinical and Movement Neurosciences, University College London Institute of Neurology, London, UK
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
16
|
de la Rubia Ortí JE, García-Pardo MP, Drehmer E, Sancho Cantus D, Julián Rochina M, Aguilar MA, Hu Yang I. Improvement of Main Cognitive Functions in Patients with Alzheimer's Disease after Treatment with Coconut Oil Enriched Mediterranean Diet: A Pilot Study. J Alzheimers Dis 2019; 65:577-587. [PMID: 30056419 DOI: 10.3233/jad-180184] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder (mainly in women), and new therapies are needed. In this way, ketone bodies are a direct source of cellular energy and can be obtained from coconut oil, postulating that coconut oil could be a new non-pharmacological alternative in AD patients. OBJECTIVE The aim of this study is to detect changes in the main cognitive functions of patients with AD after following a coconut oil enriched Mediterranean diet, and to determine whether there are differences in function of stage or sex. METHODS A prospective, longitudinal, qualitative, analytic, experimental study was carried out in 44 patients with AD, who were randomly divided into two homogenous groups of 22 patients each: an experimental group of patients who followed a coconut oil enriched Mediterranean diet for 21 days and a control group. In order to determine the cognitive changes after the intervention, we carried out the 7 Minute Screen, which analyses temporal orientation, visuospatial and visuoconstructive abilities, and semantic and episodic memory. RESULTS After intervention with coconut oil, improvements in episodic, temporal orientation, and semantic memory were observed, and it seems that the positive effect is more evident in women with mild-moderate state, although other improvements in males and severe state were also shown. CONCLUSIONS The isocaloric coconut oil enriched Mediterranean diet seems to improve cognitive functions in patients with AD, with differences according to patient sex and degree of severity of the disease, although more studies in this line are needed.
Collapse
Affiliation(s)
| | - María Pilar García-Pardo
- Pre-Departmental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I. Castelló de la Plana, Castelló, Spain
| | - Eraci Drehmer
- Faculty of Nursing, Catholic University of Valencia, Valencia, Spain
| | | | | | | | - Iván Hu Yang
- Faculty of Nursing, Catholic University of Valencia, Valencia, Spain
| |
Collapse
|
17
|
Movassat J, Delangre E, Liu J, Gu Y, Janel N. Hypothesis and Theory: Circulating Alzheimer's-Related Biomarkers in Type 2 Diabetes. Insight From the Goto-Kakizaki Rat. Front Neurol 2019; 10:649. [PMID: 31293498 PMCID: PMC6606723 DOI: 10.3389/fneur.2019.00649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022] Open
Abstract
Epidemiological data suggest an increased risk of developing Alzheimer's disease (AD) in individuals with type 2 diabetes (T2D). AD is anatomically associated with an early progressive accumulation of Aβ leading to a gradual Tau hyperphosphorylation, which constitute the main characteristics of damaged brain in AD. Apart from these processes, mounting evidence suggests that specific features of diabetes, namely impaired glucose metabolism and insulin signaling in the brain, play a key role in AD. Moreover, several studies report a potential role of Aβ and Tau in peripheral tissues such as pancreatic β cells. Thus, it appears that several biological pathways associated with diabetes overlap with AD. The link between peripheral insulin resistance and brain insulin resistance with concomitant cognitive impairment may also potentially be mediated by a liver/pancreatic/brain axis, through the excessive trafficking of neurotoxic molecules across the blood-brain barrier. Insulin resistance incites inflammation and pro-inflammatory cytokine activation modulates the homocysteine cycle in T2D patients. Elevated plasma homocysteine level is a risk factor for AD pathology and is also closely associated with metabolic syndrome. We previously demonstrated a strong association between homocysteine metabolism and insulin via cystathionine beta synthase (CBS) activity, the enzyme implicated in the first step of the trans-sulfuration pathway, in Goto-Kakizaki (GK) rats, a spontaneous model of T2D, with close similarities with human T2D. CBS activity is also correlated with DYRK1A, a serine/threonine kinase regulating brain-derived neurotrophic factor (BDNF) levels, and Tau phosphorylation, which are implicated in a wide range of disease such as T2D and AD. We hypothesized that DYRK1A, BDNF, and Tau, could be among molecular factors linking T2D to AD. In this focused review, we briefly examine the main mechanisms linking AD to T2D and provide the first evidence that certain circulating AD biomarkers are found in diabetic GK rats. We propose that the spontaneous model of T2D in GK rat could be a suitable model to investigate molecular mechanisms linking T2D to AD.
Collapse
Affiliation(s)
- Jamileh Movassat
- Univ Paris Diderot-Sorbonne Paris Cité, Laboratoire de Biologie et Pathologie du Pancréas Endocrine, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, Paris, France
| | - Etienne Delangre
- Univ Paris Diderot-Sorbonne Paris Cité, Laboratoire de Biologie et Pathologie du Pancréas Endocrine, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, Paris, France
| | - Junjun Liu
- Univ Paris Diderot-Sorbonne Paris Cité, Laboratoire de Biologie et Pathologie du Pancréas Endocrine, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, Paris, France
| | - YuChen Gu
- Univ Paris Diderot-Sorbonne Paris Cité, Laboratoire Processus Dégénératifs, Stress et Vieillissement, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, Paris, France
| | - Nathalie Janel
- Univ Paris Diderot-Sorbonne Paris Cité, Laboratoire Processus Dégénératifs, Stress et Vieillissement, Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 CNRS, Paris, France
| |
Collapse
|
18
|
Molecular Connection Between Diabetes and Dementia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:103-131. [DOI: 10.1007/978-981-13-3540-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Duarte A, Santos M, Oliveira C, Moreira P. Brain insulin signalling, glucose metabolism and females' reproductive aging: A dangerous triad in Alzheimer's disease. Neuropharmacology 2018; 136:223-242. [PMID: 29471055 DOI: 10.1016/j.neuropharm.2018.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
|
20
|
Avgerinos KI, Kalaitzidis G, Malli A, Kalaitzoglou D, Myserlis PG, Lioutas VA. Intranasal insulin in Alzheimer's dementia or mild cognitive impairment: a systematic review. J Neurol 2018; 265:1497-1510. [PMID: 29392460 PMCID: PMC6465964 DOI: 10.1007/s00415-018-8768-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Due to common pathophysiological findings of Alzheimer's disease (AD) with diabetes mellitus (DM), insulin has been suggested as a possible treatment of AD or mild cognitive impairment (MCI). A safe alternative of IV insulin is intranasal (IN) insulin. The aim of this systematic review is to investigate the effects of IN insulin on cognitive function of patients with either AD or MCI. METHODS A literature search of the electronic databases Medline, Scopus and CENTRAL was performed to identify RCTs investigating the effect of IN insulin administration on cognitive tasks, in patients with AD or MCI. RESULTS Seven studies (293 patients) met our inclusion criteria. Most studies showed that verbal memory and especially story recall was improved after IN insulin administration. Sometimes the effect was restricted for apoe4 (-) patients. Intranasal insulin did not affect other cognitive functions. However, there were some positive results in functional status and daily activity. Data suggested that different insulin types and doses may have different effects on different apoe4 groups. In addition, the effects of treatment on Αβ levels differed from study to study. Finally, IN insulin resulted in minor adverse effects. CONCLUSIONS Intranasal insulin improved story recall performance of apoe4 (-) patients with AD or MCI. Other cognitive functions were not affected, but there were some positive results in functional status and daily activity. Since IN insulin is a safe intervention, future studies should be conducted with larger doses and after proper selection of patients and insulin types.
Collapse
Affiliation(s)
- Konstantinos Ioannis Avgerinos
- 251 Hellenic Airforce General Hospital, Kanellopoulou 3, 11525, Athens, Greece.
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
- Society of Junior Doctors, Athens, Greece.
| | - Grigorios Kalaitzidis
- Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Society of Junior Doctors, Athens, Greece
| | - Antonia Malli
- Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Society of Junior Doctors, Athens, Greece
| | - Dimitrios Kalaitzoglou
- Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Society of Junior Doctors, Athens, Greece
| | - Pavlos Gr Myserlis
- 401 General Army Hospital, Athens, Greece
- Society of Junior Doctors, Athens, Greece
| | - Vasileios-Arsenios Lioutas
- Department of Neurology, Division of Cerebrovascular Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| |
Collapse
|
21
|
Differential Binding of Human ApoE Isoforms to Insulin Receptor is Associated with Aberrant Insulin Signaling in AD Brain Samples. Neuromolecular Med 2018; 20:124-132. [PMID: 29450841 DOI: 10.1007/s12017-018-8480-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/03/2018] [Indexed: 01/26/2023]
Abstract
Apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for sporadic Alzheimer's disease (AD), where inheritance of this isoform predisposes development of AD in a gene dose-dependent manner. Although the mode of action of ApoE4 on AD onset and progression remains unknown, we have previously shown that ApoE4, and not ApoE3 expression, resulted in insulin signaling deficits in the presence of amyloid beta (Aβ). However, these reports were not conducted with clinical samples that more accurately reflect human disease. In this study, we investigated the effect of ApoE genotype on the insulin signaling pathway in control and AD human brain samples. We found that targets of the insulin signaling pathway were attenuated in AD cases, regardless of ApoE isoform. We also found a decrease in GluR1 subunit expression, and an increase NR2B subunit expression in AD cases, regardless of ApoE isoform. Lastly, we observed that more insulin receptor (IR) was immunoprecipitated in control cases, and more Aβ was immunoprecipitated with AD cases. But, when comparing among AD cases, we found that more IR was immunoprecipitated with ApoE3 than ApoE4, and more Aβ was immunoprecipitated with ApoE4 than ApoE3. Our results suggest that the difference in IR binding and effect on protein expression downstream of the IR may affect onset and progression of AD.
Collapse
|
22
|
Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer's and Parkinson's disease models. Neuropharmacology 2018; 136:251-259. [PMID: 29402504 DOI: 10.1016/j.neuropharm.2018.01.040] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/10/2018] [Accepted: 01/27/2018] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes is a risk factor for several chronic neurodegenerative disorders such as Alzheimer's or Parkinson's disease. The link appears to be insulin de-sensitisation in the brain. Insulin is an important neuroprotective growth factor. GLP-1 and GIP are growth factors that re-sensitise insulin and GLP-1 mimetics are used in the clinic to treat diabetes. GLP-1 and GIP mimetics initially designed to treat diabetes show good protective effects in animal models of Alzheimer's and Parkinson's disease. Based on these results, several clinical trials have shown first encouraging effects in patients with Alzheimer's or Parkinson' disease. Novel dual GLP-1/GIP receptor agonists have been developed to treat diabetes, and they also show good neuroprotective effects that are superior to single GLP-1 analogues. Several newer dual analogues have been tested that have been engineered to cross the blood -brain barrier. They show clear neuroprotective effects by reducing inflammation and oxidative stress and apoptotic signalling and protecting memory formation, synaptic numbers and synaptic activity, motor activity, dopaminergic neurons, cortical activity and energy utilisation in the brain. These results demonstrate the potential of developing disease-modifying treatments for Alzheimer's and Parkinson's disease that are superior to current single GLP-1 mimetics. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
|
23
|
Li Y, Li L, Hölscher C. Incretin-based therapy for type 2 diabetes mellitus is promising for treating neurodegenerative diseases. Rev Neurosci 2018; 27:689-711. [PMID: 27276528 DOI: 10.1515/revneuro-2016-0018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/02/2016] [Indexed: 12/13/2022]
Abstract
Incretin hormones include glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Due to their promising action on insulinotropic secretion and improving insulin resistance (IR), incretin-based therapies have become a new class of antidiabetic agents for the treatment of type 2 diabetes mellitus (T2DM). Recently, the links between neurodegenerative diseases and T2DM have been identified in a number of studies, which suggested that shared mechanisms, such as insulin dysregulation or IR, may underlie these conditions. Therefore, the effects of incretins in neurodegenerative diseases have been extensively investigated. Protease-resistant long-lasting GLP-1 mimetics such as lixisenatide, liraglutide, and exenatide not only have demonstrated promising effects for treating neurodegenerative diseases in preclinical studies but also have shown first positive results in Alzheimer's disease (AD) and Parkinson's disease (PD) patients in clinical trials. Furthermore, the effects of other related incretin-based therapies such as GIP agonists, dipeptidyl peptidase-IV (DPP-IV) inhibitors, oxyntomodulin (OXM), dual GLP-1/GIP, and triple GLP-1/GIP/glucagon receptor agonists on neurodegenerative diseases have been tested in preclinical studies. Incretin-based therapies are a promising approach for treating neurodegenerative diseases.
Collapse
|
24
|
Kulas JA, Puig KL, Combs CK. Amyloid precursor protein in pancreatic islets. J Endocrinol 2017; 235:49-67. [PMID: 28710249 PMCID: PMC6267436 DOI: 10.1530/joe-17-0122] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/13/2017] [Indexed: 01/04/2023]
Abstract
The amyloid precursor protein (APP) has been extensively investigated for its role in the production of amyloid beta (Aβ), a plaque-forming peptide in Alzheimer's disease (AD). Epidemiological evidence suggests type 2 diabetes is a risk factor for AD. The pancreas is an essential regulator of blood glucose levels through the secretion of the hormones insulin and glucagon. Pancreatic dysfunction is a well-characterized consequence of type 1 and type 2 diabetes. In this study, we have examined the expression and processing of pancreatic APP to test the hypothesis that APP may play a role in pancreatic function and the pathophysiology of diabetes. Our data demonstrate the presence of APP within the pancreas, including pancreatic islets in both mouse and human samples. Additionally, we report that the APP/PS1 mouse model of AD overexpresses APP within pancreatic islets, although this did not result in detectable levels of Aβ. We compared whole pancreas and islet culture lysates by Western blot from C57BL/6 (WT), APP-/- and APP/PS1 mice and observed APP-dependent differences in the total protein levels of GLUT4, IDE and BACE2. Immunohistochemistry for BACE2 detected high levels in pancreatic α cells. Additionally, both mouse and human islets processed APP to release sAPP into cell culture media. Moreover, sAPP stimulated insulin but not glucagon secretion from islet cultures. We conclude that APP and its metabolites are capable of influencing the basic physiology of the pancreas, possibly through the release of sAPP acting in an autocrine or paracrine manner.
Collapse
Affiliation(s)
- Joshua A Kulas
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health Sciences, Grand Forks, USA
| | - Kendra L Puig
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health Sciences, Grand Forks, USA
| | - Colin K Combs
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health Sciences, Grand Forks, USA
| |
Collapse
|
25
|
Intranasal insulin reverts central pathology and cognitive impairment in diabetic mother offspring. Mol Neurodegener 2017; 12:57. [PMID: 28768549 PMCID: PMC5541692 DOI: 10.1186/s13024-017-0198-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
Abstract
Background Adverse effects in diabetic mothers offspring (DMO) are a major concern of increasing incidence. Among these, chronic central complications in DMO remain poorly understood, and in extreme cases, diabetes can essentially function as a gestational brain insult. Nevertheless, therapeutic alternatives for DMO are limited. Methods Therefore, we have analyzed the central long-term complications in the offspring from CD1 diabetic mothers treated with streptozotozin, as well as the possible reversion of these alterations by insulin administration to neonates. Brain atrophy, neuronal morphology, tau phosphorylation, proliferation and neurogenesis were assessed in the short term (P7) and in the early adulthood (10 weeks) and cognitive function was also analyzed in the long-term. Results Central complications in DMO were still detected in the adulthood, including cortical and hippocampal thinning due to synaptic loss and neuronal simplification, increased tau hyperphosphorylation, and diminished cell proliferation and neurogenesis. Additionally, maternal diabetes increased the long-term susceptibility to spontaneous central bleeding, inflammation and cognition impairment in the offspring. On the other hand, intracerebroventricular insulin administration to neonates significantly reduced observed alterations. Moreover, non-invasive intranasal insulin reversed central atrophy and tau hyperphosphorylation, and rescued central proliferation and neurogenesis. Vascular damage, inflammation and cognitive alterations were also comparable to their counterparts born to nondiabetic mice, supporting the utility of this pathway to access the central nervous system. Conclusions Our data underlie the long-term effects of central complications in DMO. Moreover, observed improvement after insulin treatment opens the door to therapeutic alternatives for children who are exposed to poorly controlled gestational diabetes, and who may benefit from more individualized treatments.
Collapse
|
26
|
A novel dual GLP-1/GIP receptor agonist alleviates cognitive decline by re-sensitizing insulin signaling in the Alzheimer icv. STZ rat model. Behav Brain Res 2017; 327:65-74. [DOI: 10.1016/j.bbr.2017.03.032] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/09/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022]
|
27
|
Buxbaum JN, Johansson J. Transthyretin and BRICHOS: The Paradox of Amyloidogenic Proteins with Anti-Amyloidogenic Activity for Aβ in the Central Nervous System. Front Neurosci 2017; 11:119. [PMID: 28360830 PMCID: PMC5350149 DOI: 10.3389/fnins.2017.00119] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/27/2017] [Indexed: 01/19/2023] Open
Abstract
Amyloid fibrils are physiologically insoluble biophysically specific β-sheet rich structures formed by the aggregation of misfolded proteins. In vivo tissue amyloid formation is responsible for more than 30 different disease states in humans and other mammals. One of these, Alzheimer's disease (AD), is the most common form of human dementia for which there is currently no definitive treatment. Amyloid fibril formation by the amyloid β-peptide (Aβ) is considered to be an underlying cause of AD, and strategies designed to reduce Aβ production and/or its toxic effects are being extensively investigated in both laboratory and clinical settings. Transthyretin (TTR) and proteins containing a BRICHOS domain are etiologically associated with specific amyloid diseases in the CNS and other organs. Nonetheless, it has been observed that TTR and BRICHOS structures are efficient inhibitors of Aβ fibril formation and toxicity in vitro and in vivo, raising the possibility that some amyloidogenic proteins, or their precursors, possess properties that may be harnessed for combating AD and other amyloidoses. Herein, we review properties of TTR and the BRICHOS domain and discuss how their abilities to interfere with amyloid formation may be employed in the development of novel treatments for AD.
Collapse
Affiliation(s)
- Joel N Buxbaum
- Department of Molecular and Experimental Medicine, The Scripps Research InstituteLa Jolla, CA, USA; Scintillon InstituteSan Diego, CA, USA
| | - Jan Johansson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society (NVS), Center for Alzheimer Research, Karolinska Institutet Huddinge, Sweden
| |
Collapse
|
28
|
Gralle M. The neuronal insulin receptor in its environment. J Neurochem 2016; 140:359-367. [PMID: 27889917 DOI: 10.1111/jnc.13909] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 01/01/2023]
Abstract
Insulin is known mainly for its effects in peripheral tissues, such as the liver, skeletal muscles and adipose tissue, where the activation of the insulin receptor (IR) has both short-term and long-term effects. Insulin and the IR are also present in the brain, and since there is evidence that neuronal insulin signaling regulates synaptic plasticity and that it is impaired in disease, this pathway might be the key to protection or reversal of symptoms, especially in Alzheimer's disease. However, there are controversies about the importance of the neuronal IR, partly because biophysical data on its activation and signaling are much less complete than for the peripheral IR. This review briefly summarizes the neuronal IR signaling in health and disease, and then focuses on known differences between the neuronal and peripheral IR with regard to alternative splicing and glycosylation, and lack of data with respect to phosphorylation and membrane subdomain localization. Particularities in the neuronal IR itself and its environment may have consequences for downstream signaling and impact synaptic plasticity. Furthermore, establishing the relative importance of insulin signaling through IR or through hybrids with its homolog, the insulin-like growth factor 1 receptor, is crucial for evaluating the consequences of brain IR activation. An improved biophysical understanding of the neuronal IR may help predict the consequences of insulin-targeted interventions.
Collapse
Affiliation(s)
- Matthias Gralle
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Brain-Wide Insulin Resistance, Tau Phosphorylation Changes, and Hippocampal Neprilysin and Amyloid-β Alterations in a Monkey Model of Type 1 Diabetes. J Neurosci 2016; 36:4248-58. [PMID: 27076423 DOI: 10.1523/jneurosci.4640-14.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/02/2016] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Epidemiological findings suggest that diabetic individuals are at a greater risk for developing Alzheimer's disease (AD). To examine the mechanisms by which diabetes mellitus (DM) may contribute to AD pathology in humans, we examined brain tissue from streptozotocin-treated type 1 diabetic adult male vervet monkeys receiving twice-daily exogenous insulin injections for 8-20 weeks. We found greater inhibitory phosphorylation of insulin receptor substrate 1 in each brain region examined of the diabetic monkeys when compared with controls, consistent with a pattern of brain insulin resistance that is similar to that reported in the human AD brain. Additionally, a widespread increase in phosphorylated tau was seen, including brain areas vulnerable in AD, as well as relatively spared structures, such as the cerebellum. An increase in active ERK1/2 was also detected, consistent with DM leading to changes in tau-kinase activity broadly within the brain. In contrast to these widespread changes, we found an increase in soluble amyloid-β (Aβ) levels that was restricted to the temporal lobe, with the greatest increase seen in the hippocampus. Consistent with this localized Aβ increase, a hippocampus-restricted decrease in the protein and mRNA for the Aβ-degrading enzyme neprilysin (NEP) was found, whereas various Aβ-clearing and -degrading proteins were unchanged. Thus, we document multiple biochemical changes in the insulin-controlled DM monkey brain that can link DM with the risk of developing AD, including dysregulation of the insulin-signaling pathway, changes in tau phosphorylation, and a decrease in NEP expression in the hippocampus that is coupled with a localized increase in Aβ. SIGNIFICANCE STATEMENT Given that diabetes mellitus (DM) appears to increase the risk of developing Alzheimer's disease (AD), understanding the mechanisms by which DM promotes AD is important. We report that DM in a nonhuman primate brain leads to changes in the levels or posttranslational processing of proteins central to AD pathobiology, including tau, amyloid-β (Aβ), and the Aβ-degrading protease neprilysin. Additional evidence from this model suggests that alterations in brain insulin signaling occurred that are reminiscent of insulin signaling pathway changes seen in human AD. Thus, in an in vivo model highly relevant to humans, we show multiple alterations in the brain resulting from DM that are mechanistically linked to AD risk.
Collapse
|
30
|
Li J, Cesari M, Liu F, Dong B, Vellas B. Effects of Diabetes Mellitus on Cognitive Decline in Patients with Alzheimer Disease: A Systematic Review. Can J Diabetes 2016; 41:114-119. [PMID: 27614804 DOI: 10.1016/j.jcjd.2016.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/26/2016] [Accepted: 07/14/2016] [Indexed: 02/05/2023]
Abstract
Basic and clinical research support a link between diabetes mellitus and Alzheimer disease (AD). However, the relationship with AD progression is unclear. This review focuses on the association between diabetes and cognitive decline in patients with AD. The literature published through May 2015 was searched in 3 databases: PubMed, Embase and Cochrane. Studies evaluating the effects of diabetes on patients with AD or cognitive decline were included, and extracted data were analyzed. A total of 10 articles met the inclusion criteria for review. The results of these studies were inconsistent in terms of the association between diabetes and cognitive decline. Only 2 studies demonstrated that the presence of diabetes was independently related to the progression of cognitive decline in the patients with AD, and 3 studies suggested that histories of diabetes were not correlated with the changes in cognitive function in patients with AD. Half of the included studies even indicated that histories of diabetes were associated with lesser declines in cognitive function in patients with AD. Current evidence indicates that the link between diabetes and cognitive decline in patients with AD is uncertain. Further clinical studies are needed, with larger samples, long-term follow up and an extended battery of cognitive assessments.
Collapse
Affiliation(s)
- Jun Li
- The Center of Gerontology and Geriatrics, West China Medical School/West China Hospital, Sichuan University, Chengdu, Sichuan, China; Institut du Vieillissement, Gérontopôle, Université Toulouse III-Paul Sabatier, Toulouse, France.
| | - Matteo Cesari
- Institut du Vieillissement, Gérontopôle, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Fei Liu
- Department of Nephrology, West China Medical School/West China Hospital, Sichuan University, Chengdu, Sichuan,China
| | - Birong Dong
- The Center of Gerontology and Geriatrics, West China Medical School/West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bruno Vellas
- Institut du Vieillissement, Gérontopôle, Université Toulouse III-Paul Sabatier, Toulouse, France
| |
Collapse
|
31
|
Hölscher C. Glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide analogues as novel treatments for Alzheimer’s and Parkinson’s disease. Cardiovasc Endocrinol 2016. [DOI: 10.1097/xce.0000000000000087] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
32
|
Bahramian A, Rastegar K, Namavar MR, Moosavi M. Insulin potentiates the therapeutic effect of memantine against central STZ-induced spatial learning and memory deficit. Behav Brain Res 2016; 311:247-254. [DOI: 10.1016/j.bbr.2016.05.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/17/2016] [Accepted: 05/21/2016] [Indexed: 10/21/2022]
|
33
|
Angiotensin Converting Enzyme Inhibitors Ameliorate Brain Inflammation Associated with Microglial Activation: Possible Implications for Alzheimer’s Disease. J Neuroimmune Pharmacol 2016; 11:774-785. [DOI: 10.1007/s11481-016-9703-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
|
34
|
Banik A, Brown RE, Bamburg J, Lahiri DK, Khurana D, Friedland RP, Chen W, Ding Y, Mudher A, Padjen AL, Mukaetova-Ladinska E, Ihara M, Srivastava S, Padma Srivastava MV, Masters CL, Kalaria RN, Anand A. Translation of Pre-Clinical Studies into Successful Clinical Trials for Alzheimer's Disease: What are the Roadblocks and How Can They Be Overcome? J Alzheimers Dis 2016; 47:815-43. [PMID: 26401762 DOI: 10.3233/jad-150136] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preclinical studies are essential for translation to disease treatments and effective use in clinical practice. An undue emphasis on single approaches to Alzheimer's disease (AD) appears to have retarded the pace of translation in the field, and there is much frustration in the public about the lack of an effective treatment. We critically reviewed past literature (1990-2014), analyzed numerous data, and discussed key issues at a consensus conference on Brain Ageing and Dementia to identify and overcome roadblocks in studies intended for translation. We highlight various factors that influence the translation of preclinical research and highlight specific preclinical strategies that have failed to demonstrate efficacy in clinical trials. The field has been hindered by the domination of the amyloid hypothesis in AD pathogenesis while the causative pathways in disease pathology are widely considered to be multifactorial. Understanding the causative events and mechanisms in the pathogenesis are equally important for translation. Greater efforts are necessary to fill in the gaps and overcome a variety of confounds in the generation, study design, testing, and evaluation of animal models and the application to future novel anti-dementia drug trials. A greater variety of potential disease mechanisms must be entertained to enhance progress.
Collapse
Affiliation(s)
- Avijit Banik
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - James Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Debomoy K Lahiri
- Departments of Psychiatry and of Medical & Molecular Genetics, Indiana University School of Medicine, Neuroscience Research Center, Indianapolis, IN, USA
| | - Dheeraj Khurana
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Robert P Friedland
- Department of Neurology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Allergy and Immunology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, 318C Parran Hall, Pittsburgh, PA, USA
| | - Amritpal Mudher
- Southampton Neurosciences Group, University of Southampton, Southampton, UK
| | - Ante L Padjen
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Elizabeta Mukaetova-Ladinska
- Institute of Neuroscience, Newcastle University, NIHR Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Sudhir Srivastava
- Division of Toxicology, Central Drug Research Institute, Lucknow, India
| | - M V Padma Srivastava
- Department of Neurology, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Colin L Masters
- Mental Health Research Institute, University of Melbourne, Royal Parade, The VIC, Australia
| | - Raj N Kalaria
- Institute of Neuroscience, Newcastle University, NIHR Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
35
|
Bhat NR. Vasculoprotection as a Convergent, Multi-Targeted Mechanism of Anti-AD Therapeutics and Interventions. J Alzheimers Dis 2016; 46:581-91. [PMID: 26402511 DOI: 10.3233/jad-150098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Using a variety of animal models of Alzheimer's disease (AD), there have been a number of recent studies reporting varying degrees of success with anti-AD therapeutics. The efficacies are often discussed in terms of the modulatory effects of the compounds tested on identified or assumed targets among the known (or proposed) pathogenic and neuroprotective mechanisms, largely within the context of the dominant amyloid cascade hypothesis. However, it is clear that several of the relatively more efficacious treatments tend to be multifunctional and target multiple pathological processes associated with AD including most commonly, oxidative and metabolic stress and neuroinflammation. Increasing evidence suggests that vascular and neurodegenerative pathologies often co-exist and that neurovascular dysfunction plays a critical role in the development or progression of AD. In this review, we will discuss the significance of vasculoprotection or neurovascular unit integrity as a common, multi-targeted mechanism underlying the reported efficacy of a majority of anti-AD therapeutics--amyloid-targeted or otherwise--while providing a strong support for future neurovascular-based treatment strategies and interventions.
Collapse
|
36
|
Abstract
Many physicians are unaware of the many phenotypes associated with the fragile X premutation, an expansion in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene that consists of 55-200 CGG repeats. The most severe of these phenotypes is fragile X-associated tremor/ataxia syndrome (FXTAS), which occurs in the majority of ageing male premutation carriers but in fewer than 20% of ageing women with the premutation. The prevalence of the premutation is 1 in 150-300 females, and 1 in 400-850 males, so physicians are likely to see people affected by FXTAS. Fragile X DNA testing is broadly available in the Western world. The clinical phenotype of FXTAS at presentation can vary and includes intention tremor, cerebellar ataxia, neuropathic pain, memory and/or executive function deficits, parkinsonian features, and psychological disorders, such as depression, anxiety and/or apathy. FXTAS causes brain atrophy and white matter disease, usually in the middle cerebellar peduncles, the periventricular area, and the splenium and/or genu of the corpus callosum. Here, we review the complexities involved in the clinical management of FXTAS and consider how targeted treatment for these clinical features of FXTAS will result from advances in our understanding of the molecular mechanisms that underlie this neurodegenerative disorder. Such targeted approaches should also be more broadly applicable to earlier forms of clinical involvement among premutation carriers.
Collapse
|
37
|
Torika N, Asraf K, Danon A, Apte RN, Fleisher-Berkovich S. Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies. PLoS One 2016; 11:e0155823. [PMID: 27187688 PMCID: PMC4871324 DOI: 10.1371/journal.pone.0155823] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/04/2016] [Indexed: 12/16/2022] Open
Abstract
The circulating renin-angiotensin system (RAS), including the biologically active angiotensin II, is a fundamental regulatory mechanism of blood pressure conserved through evolution. Angiotensin II components of the RAS have also been identified in the brain. In addition to pro-inflammatory cytokines, neuromodulators, such as angiotensin II can induce (through angiotensin type 1 receptor (AT1R)) some of the inflammatory actions of brain glial cells and influence brain inflammation. Moreover, in Alzheimer’s disease (AD) models, where neuroinflammation occurs, increased levels of cortical AT1Rs have been shown. Still, the precise role of RAS in neuroinflammation is not completely clear. The overall aim of the present study was to elucidate the role of RAS in the modulation of glial functions and AD pathology. To reach this goal, the specific aims of the present study were a. to investigate the long term effect of telmisartan (AT1R blocker) on tumor necrosis factor-α (TNF-α), interleukin 1-β (IL1-β) and nitric oxide (NO) release from glial cells. b. to examine the effect of intranasally administered telmisartan on amyloid burden and microglial activation in 5X familial AD (5XFAD) mice. Telmisartan effects in vivo were compared to those of perindopril (angiotensin converting enzyme inhibitor). Long-term-exposure of BV2 microglia to telmisartan significantly decreased lipopolysaccharide (LPS) -induced NO, inducible NO synthase, TNF-α and IL1-β synthesis. The effect of Telmisartan on NO production in BV2 cells was confirmed also in primary neonatal rat glial cells. Intranasal administration of telmisartan (1 mg/kg/day) for up to two months significantly reduced amyloid burden and CD11b expression (a marker for microglia) both in the cortex and hipoccampus of 5XFAD. Based on the current view of RAS and our data, showing reduced amyloid burden and glial activation in the brains of 5XFAD transgenic mice, one may envision potential intervention with the progression of glial activation and AD by using AT1R blockers.
Collapse
Affiliation(s)
- Nofar Torika
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
| | - Keren Asraf
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
| | - Abraham Danon
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
| | - Ron N. Apte
- Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
| | - Sigal Fleisher-Berkovich
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva P.O.B 653, Israel
- * E-mail:
| |
Collapse
|
38
|
Increased susceptibility to metabolic dysregulation in a mouse model of Alzheimer's disease is associated with impaired hypothalamic insulin signaling and elevated BCAA levels. Alzheimers Dement 2016; 12:851-61. [PMID: 26928090 DOI: 10.1016/j.jalz.2016.01.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Epidemiologic studies have demonstrated an association between diabetes and dementia. Insulin signaling within the brain, in particular within the hypothalamus regulates carbohydrate, lipid, and branched chain amino acid (BCAA) metabolism in peripheral organs such as the liver and adipose tissue. We hypothesized that cerebral amyloidosis impairs central nervous system control of metabolism through disruption of insulin signaling in the hypothalamus, which dysregulates glucose and BCAA homeostasis resulting in increased susceptibility to diabetes. METHODS We examined whether APP/PS1 mice exhibit increased susceptibility to aging or high-fat diet (HFD)-induced metabolic impairment using metabolic phenotyping and insulin-signaling studies. RESULTS APP/PS1 mice were more susceptible to high-fat feeding and aging-induced metabolic dysregulation including disrupted BCAA homeostasis and exhibited impaired hypothalamic insulin signaling. DISCUSSION Our data suggest that AD pathology increases susceptibility to diabetes due to impaired hypothalamic insulin signaling, and that plasma BCAA levels could serve as a biomarker of hypothalamic insulin action in patients with AD.
Collapse
|
39
|
Engelhardt L, Röhm M, Mavoungou C, Schindowski K, Schafmeister A, Simon U. First Steps to Develop and Validate a CFPD Model in Order to Support the Design of Nose-to-Brain Delivered Biopharmaceuticals. Pharm Res 2016; 33:1337-50. [PMID: 26887679 DOI: 10.1007/s11095-016-1875-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 02/08/2016] [Indexed: 11/24/2022]
Abstract
PURPOSE Aerosol particle deposition in the human nasal cavity is of high interest in particular for intranasal central nervous system (CNS) drug delivery via the olfactory cleft. The objective of this study was the development and comparison of a numerical and experimental model to investigate various parameters for olfactory particle deposition within the complex anatomical nasal geometry. METHODS Based on a standardized nasal cavity, a computational fluid and particle dynamics (CFPD) model was developed that enables the variation and optimization of different parameters, which were validated by in vitro experiments using a constructed rapid-prototyped human nose model. RESULTS For various flow rates (5 to 40 l/min) and particle sizes (1 to 10 μm), the airflow velocities, the calculated particle airflow patterns and the particle deposition correlated very well with the experiment. Particle deposition was investigated numerically by varying particle sizes at constant flow rate and vice versa assuming the particle size distribution of the used nebulizer. CONCLUSIONS The developed CFPD model could be directly translated to the in vitro results. Hence, it can be applied for parameter screening and will contribute to the improvement of aerosol particle deposition at the olfactory cleft for CNS drug delivery in particular for biopharmaceuticals.
Collapse
Affiliation(s)
- Lucas Engelhardt
- Scientific Computing Centre Ulm, Ulm University, Helmholtzstraße 20, 89081, Ulm, Germany
| | - Martina Röhm
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Hubertus-Liebrecht-Strasse 35, 88400, Biberach, Germany. .,Faculty of Medicine, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Chrystelle Mavoungou
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Hubertus-Liebrecht-Strasse 35, 88400, Biberach, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Hubertus-Liebrecht-Strasse 35, 88400, Biberach, Germany
| | - Annette Schafmeister
- Institute of Applied Biotechnology, Biberach University of Applied Sciences, Hubertus-Liebrecht-Strasse 35, 88400, Biberach, Germany
| | - Ulrich Simon
- Scientific Computing Centre Ulm, Ulm University, Helmholtzstraße 20, 89081, Ulm, Germany
| |
Collapse
|
40
|
Novel GLP-1 (Glucagon-Like Peptide-1) Analogues and Insulin in the Treatment for Alzheimer's Disease and Other Neurodegenerative Diseases. CNS Drugs 2015; 29:1023-39. [PMID: 26666230 DOI: 10.1007/s40263-015-0301-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The link between diabetes mellitus and Alzheimer's disease (AD) has been known for the last few decades. Since insulin and insulin receptors are known to be present in the brain, the downstream signalling as well as the effect of hyperinsulinemia have been extensively studied in both AD and Parkinson's disease. Glucagon-like peptide-1 (GLP-1) is a hormone belonging to the incretin family, and its receptors (GLP-1Rs) can be found in pancreatic cells and in vascular endothelium. Interestingly, GLP-1Rs are found in the neuronal cell body and dendrites in the central nervous system (CNS), in particular in the hypothalamus, hippocampus, cerebral cortex and olfactory bulb. Several studies have shown the importance of both insulin and GLP-1 signalling on cognitive function, and many preclinical studies have been performed to evaluate the potential protective role of GLP-1 on the brain. Here we review the underlying mechanism of insulin and GLP-1 signalling in the CNS, as well as the preclinical data for the use of GLP-1 analogues such as liraglutide, exenatide and lixisenatide in neurodegenerative diseases.
Collapse
|
41
|
Pan X, Fei G, Lu J, Jin L, Pan S, Chen Z, Wang C, Sang S, Liu H, Hu W, Zhang H, Wang H, Wang Z, Tan Q, Qin Y, Zhang Q, Xie X, Ji Y, Cui D, Gu X, Xu J, Yu Y, Zhong C. Measurement of Blood Thiamine Metabolites for Alzheimer's Disease Diagnosis. EBioMedicine 2015; 3:155-162. [PMID: 26870826 PMCID: PMC4739421 DOI: 10.1016/j.ebiom.2015.11.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 01/25/2023] Open
Abstract
Background Brain glucose hypometabolism is an invariant feature and has significant diagnostic value for Alzheimer's disease. Thiamine diphosphate (TDP) is a critical coenzyme for glucose metabolism and significantly reduced in brain and blood samples of patients with Alzheimer's disease (AD). Aims To explore the diagnostic value of the measurement of blood thiamine metabolites for AD. Methods Blood TDP, thiamine monophosphate, and thiamine levels were detected using high performance liquid chromatography (HPLC). The study included the exploration and validation phases. In the exploration phase, the samples of 338 control subjects and 43 AD patients were utilized to establish the models for AD diagnosis assayed by receiver operating characteristic (ROC) curve, including the variable γ that represents the best combination of thiamine metabolites and age to predict the possibility of AD. In the validation phase, the values of models were further tested for AD diagnosis using samples of 861 control subjects, 81 AD patients, 70 vascular dementia patients, and 13 frontotemporal dementia patients. Results TDP and the γ exhibited significant and consistent values for AD diagnosis in both exploration and validation phases. TDP had 0.843 and 0.837 of the areas under ROC curve (AUCs), 77.4% and 81.5% of sensitivities, and 78.1% and 77.2% of specificities respectively in the exploration and validation phases. The γ had 0.938 and 0.910 of AUCs, 81.4% and 80.2% of sensitivities, and 90.5% and 87.2% of specificities respectively in the exploration and validation phases. TDP and the γ can effectively distinguish AD from vascular dementia (64.3% for TDP, 67.1% for γ) and frontotemporal dementia (84.6% for TDP, 100.0% for γ). Interpretation. The measurement of blood thiamine metabolites by HPLC is an ideal diagnostic test for AD with inexpensive, easy to perform, noninvasive merits. The measurement of blood thiamine metabolites by HPLC as a promising biomarker test for Alzheimer’s disease diagnosis. This test is inexpensive, easy to perform and noninvasive which meets the criteria of ideal biomarker for Alzheimer’s disease.
The disturbance of brain glucose metabolism is an invariant feature and has significant diagnostic value for Alzheimer's disease. Thiamine diphosphate, one of thiamine metabolites, is a critical coenzyme for three key enzymes of glucose metabolism and significantly reduced in brain and blood samples of a small number of Alzheimer's disease patients. Our study demonstrates that the measurement of blood thiamine metabolites, manifested as thiamine diphosphate level and the variable γ representing the best combination of thiamine metabolites and age, exhibits excellent value for Alzheimer's disease diagnosis with inexpensive, easy to perform, noninvasive merits.
Collapse
Affiliation(s)
- Xiaoli Pan
- Department of Neurology, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Guoqiang Fei
- Department of Neurology, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jingwen Lu
- Department of Neurology, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Lirong Jin
- Department of Neurology, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Shumei Pan
- Department of Neurology, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zhichun Chen
- Department of Neurology, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Changpeng Wang
- Department of Neurology, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Huimin Liu
- Department of Neurology, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Weihong Hu
- The Key laboratory of Translational Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Hua Zhang
- The Key laboratory of Translational Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Hui Wang
- Regional Health Service Center of Xujiahui, Xuhui District, Shanghai 200030, China
| | - Zhiliang Wang
- Regional Health Service Center of Xujiahui, Xuhui District, Shanghai 200030, China
| | - Qiong Tan
- Shanghai Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Yan Qin
- Shanghai Institute of Pharmaceutical Industry, Shanghai 200437, China
| | | | - Xueping Xie
- Department of Geriatrics, Fengcheng Branch, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai 201411, China
| | - Yong Ji
- Department of Neurology, Huanhu Hospital, Tianjin 300074, China
| | - Donghong Cui
- The Key laboratory of Translational Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaohua Gu
- Department of Neurology, Brain Hospital affiliated to Nanjing medical university, Nanjing 210029, Jiangsu Province, China
| | - Jun Xu
- Department of Neurology, Brain Hospital affiliated to Nanjing medical university, Nanjing 210029, Jiangsu Province, China
| | - Yuguo Yu
- Center for Computational Systems Biology, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
42
|
Karelina K, Weil ZM. Neuroenergetics of traumatic brain injury. ACTA ACUST UNITED AC 2015; 1:CNC9. [PMID: 30202553 PMCID: PMC6114023 DOI: 10.2217/cnc.15.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/13/2015] [Indexed: 01/21/2023]
Abstract
A subset of traumatic brain injury (TBI) patients exhibit cognitive deficits later in life which may be due to the underlying pathology associated with Alzheimer's disease (AD) or chronic traumatic encephalopathy. The similarities between chronic traumatic encephalopathy and AD merit investigation of potentially similar mechanisms underlying the two diseases. Experimental and clinical studies of AD brains have revealed that insulin resistance links metabolic dysfunction to the neurodegeneration and cognitive deficits associated with AD. Recent work in experimental TBI has established that recovery is dependent on the return of normal brain metabolism and mounting evidence for a role of brain insulin in regulating central metabolism suggests that TBI, like AD, results in central insulin resistance. Here, we review the converging evidence from AD, TBI and diabetes research linking insulin insensitivity to neurodegeneration.
Collapse
Affiliation(s)
- Kate Karelina
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus OH, USA
| | - Zachary M Weil
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus OH, USA
| |
Collapse
|
43
|
Desai P, Shete H, Adnaik R, Disouza J, Patravale V. Therapeutic targets and delivery challenges for Alzheimer’s disease. World J Pharmacol 2015; 4:236-264. [DOI: 10.5497/wjp.v4.i3.236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 05/29/2015] [Accepted: 08/11/2015] [Indexed: 02/06/2023] Open
Abstract
Dementia, including Alzheimer’s disease, the 21st Century epidemic, is one of the most significant social and health crises which has currently afflicted nearly 44 million patients worldwide and about new 7.7 million cases are reported every year. This portrays the unmet need towards better understanding of Alzheimer’s disease pathomechanisms and related research towards more effective treatment strategies. The review thus comprehensively addresses Alzheimer’s disease pathophysiology with an insight of underlying multicascade pathway and elaborates possible therapeutic targets- particularly anti-amyloid approaches, anti-tau approaches, acetylcholinesterase inhibitors, glutamatergic system modifiers, immunotherapy, anti-inflammatory targets, antioxidants, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors and insulin. In spite of extensive research leading to identification of newer targets and potent drugs, complete cure of Alzheimer’s disease appears to be an unreached holy grail. This can be attributed to their ineffective delivery across blood brain barrier and ultimately to the brain. With this understanding, researchers are now focusing on development of drug delivery systems to be delivered via suitable route that can circumvent blood brain barrier effectively with enhanced patient compliance. In this context, we have summarized current drug delivery strategies by oral, transdermal, intravenous, intranasal and other miscellaneous routes and have accentuated the future standpoint towards promising therapy ultimately leading to Alzheimer’s disease cure.
Collapse
|
44
|
The Interplay of Akt and ERK in Aβ Toxicity and Insulin-Mediated Protection in Primary Hippocampal Cell Culture. J Mol Neurosci 2015; 57:325-34. [PMID: 26266487 DOI: 10.1007/s12031-015-0622-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/14/2015] [Indexed: 01/11/2023]
Abstract
It is not known if insulin prevents Aβ-induced cell death, MAPK, and Akt activity in isolated hippocampal cell culture. This study was aimed to explore the effect of insulin on Aβ-induced cell death and ERK and Akt signaling alteration in isolated hippocampal cell culture. Additionally, it was desirable to assess if there is any interaction between these two pathways. The hippocampal cells were derived from fetuses at the embryonic day 18-19. The cells were treated with different drugs, and MTT assay, morphological assessments, and Western blot were done. Insulin prevented Aβ-induced cell death and caspase-3 cleavage. Aβ-induced toxicity was aligned with decrement of the phosphorylated Akt (pAkt) which was prevented by insulin. The PI3 kinase inhibitor, LY294002, decreased pAkt and abolished the protective effect of insulin. Aβ exposure increased phosphorylated ERK (pERK) in parallel with cell death and apoptosis. Insulin-inhibited ERK activation (phosphorylation) induced by Aβ and PD98059 (as ERK inhibitor) did not affect the protective effect of insulin. One of the interesting finding of this study was the interplay of Akt and ERK in Aβ toxicity and insulin-mediated protection; meaning that there is an inverse relation between pERK and pAkt, in a way that PI3-Akt pathway inhibition leads to pERK increment while ERK inhibition causes Akt phosphorylation (activation). This study showed, for the first time, that insulin protects against Aβ toxicity in isolated hippocampal cell culture via modulating Akt and ERK phosphorylation and also revealed an interaction between those signals in Aβ toxicity and insulin-mediated protection.
Collapse
|
45
|
Hertz L, Chen Y, Waagepetersen HS. Effects of ketone bodies in Alzheimer's disease in relation to neural hypometabolism, β-amyloid toxicity, and astrocyte function. J Neurochem 2015; 134:7-20. [PMID: 25832906 DOI: 10.1111/jnc.13107] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 12/11/2022]
Abstract
Diet supplementation with ketone bodies (acetoacetate and β-hydroxybuturate) or medium-length fatty acids generating ketone bodies has consistently been found to cause modest improvement of mental function in Alzheimer's patients. It was suggested that the therapeutic effect might be more pronounced if treatment was begun at a pre-clinical stage of the disease instead of well after its manifestation. The pre-clinical stage is characterized by decade-long glucose hypometabolism in brain, but ketone body metabolism is intact even initially after disease manifestation. One reason for the impaired glucose metabolism may be early destruction of the noradrenergic brain stem nucleus, locus coeruleus, which stimulates glucose metabolism, at least in astrocytes. These glial cells are essential in Alzheimer pathogenesis. The β-amyloid peptide Aβ interferes with their cholinergic innervation, which impairs synaptic function because of diminished astrocytic glutamate release. Aβ also reduces glucose metabolism and causes hyperexcitability. Ketone bodies are similarly used against seizures, but the effectively used concentrations are so high that they must interfere with glucose metabolism and de novo synthesis of neurotransmitter glutamate, reducing neuronal glutamatergic signaling. The lower ketone body concentrations used in Alzheimer's disease may owe their effect to support of energy metabolism, but might also inhibit release of gliotransmitter glutamate. Alzheimer's disease is a panglial-neuronal disorder with long-standing brain hypometabolism, aberrations in both neuronal and astrocytic glucose metabolism, inflammation, hyperexcitability, and dementia. Relatively low doses of β-hydroxybutyrate can have an ameliorating effect on cognitive function. This could be because of metabolic supplementation or inhibition of Aβ-induced release of glutamate as gliotransmitter, which is likely to reduce hyperexcitability and inflammation. The therapeutic β-hydroxybutyrate doses are too low to reduce neuronally released glutamate.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Ye Chen
- Henry M. Jackson Foundation, Bethesda, Maryland, USA
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Ascher-Svanum H, Chen YF, Hake A, Kahle-Wrobleski K, Schuster D, Kendall D, Heine RJ. Cognitive and Functional Decline in Patients With Mild Alzheimer Dementia With or Without Comorbid Diabetes. Clin Ther 2015; 37:1195-205. [PMID: 25676448 DOI: 10.1016/j.clinthera.2015.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/06/2015] [Indexed: 01/21/2023]
Abstract
PURPOSE Although diabetes is recognized as a risk factor for the development of cognitive impairment and for accelerated progression to Alzheimer disease (AD), it is unclear whether patients with diabetes who have already progressed to AD have a different rate of cognitive and functional decline compared with that in those without diabetes. This post hoc exploratory analysis compared cognitive and functional decline over an 18-month period in patients with mild AD dementia with and without comorbid diabetes. Decline in quality of life was assessed as a secondary objective. METHODS In a post hoc exploratory analysis, we analyzed data from the placebo groups of three 18-month, randomized, placebo-controlled trials of solanezumab and semagacestat in patients with AD. Data from patients with mild AD dementia (Mini-Mental State Examination [MMSE] score, 20-26) and comorbid diabetes at baseline were compared with data from patients with mild AD dementia without diabetes at baseline. Cognition was assessed using the 14-item AD Assessment Scale-Cognitive Subscale (ADAS-Cog14) and the MMSE. Functioning was assessed with the AD Cooperative Study-Activities of Daily Living Inventory (instrumental subset) (ADCS-iADL). Quality of life was assessed using the European Quality of Life-5 Dimensions scale, proxy version (proxy utility score and visual analog scale score), and the Quality of Life in AD scale, self-report and proxy (caregiver) versions. Group comparisons of changes from baseline to 18 months in cognitive, functional, and quality-of-life measures employed a repeated-measures model adjusted for propensity score, study, baseline cognition score (functional or quality of life), age, sex, level of education, genotype of the apolipoprotein E gene, and concurrent use of an acetylcholinesterase inhibitor or memantine. FINDINGS At baseline, patients with mild AD dementia with and without diabetes did not significantly differ on the cognitive measures, but those without diabetes were functioning at a significantly higher level. At 18 months, compared with patients without diabetes, those with diabetes showed a numerically but statistically nonsignificantly lesser cognitive decline (least squares mean between-group differences: ADAS-Cog14 score, 1.61 [P = 0.21]; MMSE score, -0.40 [P = 0.49]) and a statistically significantly lesser functional decline (least squares mean between-group difference in ADCS-iADL score, -3.07; P = 0.01). The 2 groups did not differ on declines in the quality-of-life measures. IMPLICATIONS The present findings suggest that diabetes may influence the rate of functional decline among patients with mild AD dementia. These results require replication in studies that address the limitations of the present post hoc exploratory analysis and that explore the potential causes of the observed differences.
Collapse
Affiliation(s)
| | | | - Ann Hake
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | | | | |
Collapse
|
47
|
Intranasal delivery of stem cells as therapy for central nervous system disease. Exp Mol Pathol 2015; 98:145-51. [PMID: 25645932 DOI: 10.1016/j.yexmp.2015.01.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 01/29/2015] [Indexed: 12/13/2022]
Abstract
Stem cells, upon entering the CNS, can preferentially migrate into disease foci, where they exert therapeutic effects that compensate for lost tissue, reconstructing damaged neuronal circuitry and establishing in the brain a new microenvironment suitable for cell survival. However, the route of stem cell delivery into the CNS remains a challenge: with systemic administration (e.g., intravenous injection), a fraction of cells may be trapped in other organs than the CNS, while direct CNS injections, e.g., intracerebroventricular or transcranial, are invasive. Intranasal (i.n.) delivery of stem cells, in contrast, can effectively bypass the blood-brain barrier, rapidly enter the CNS, and minimize systemic distribution. I.n. delivery of stem cells may therefore be a safe and non-invasive way of targeting the CNS and would thus be a promising therapeutic option for CNS disease. In this review we discuss the i.n. route for stem cell delivery into the CNS, and the perspectives of i.n. stem cell-based therapy in CNS disease.
Collapse
|
48
|
Fayaz SM, Suvanish Kumar VS, Rajanikant KG. Finding needles in a haystack: application of network analysis and target enrichment studies for the identification of potential anti-diabetic phytochemicals. PLoS One 2014; 9:e112911. [PMID: 25396726 PMCID: PMC4232558 DOI: 10.1371/journal.pone.0112911] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 10/16/2014] [Indexed: 01/19/2023] Open
Abstract
Diabetes mellitus is a debilitating metabolic disorder and remains a significant threat to public health. Herbal medicines have been proven to be effective anti-diabetic agents compared to synthetic drugs in terms of side effects. However, the complexity in their chemical constituents and mechanism of action, hinder the effort to discover novel anti-diabetic drugs. Hence, understanding the biological and chemical basis of pharmacological action of phytochemicals is essential for the discovery of potential anti-diabetic drugs. Identifying important active compounds, their protein targets and the pathways involved in diabetes would serve this purpose. In this context, the present study was aimed at exploring the mechanism of action of anti-diabetic plants phytochemicals through network and chemical-based approaches. This study also involves a focused and constructive strategy for preparing new effective anti-diabetic formulations. Further, a protocol for target enrichment was proposed, to identify novel protein targets for important active compounds. Therefore, the successive use of network analysis combined with target enrichment studies would accelerate the discovery of potential anti-diabetic phytochemicals.
Collapse
Affiliation(s)
- Shaik M. Fayaz
- School of Biotechnology, National Institute of Technology Calicut, Calicut 673601, India
| | | | | |
Collapse
|
49
|
Neuroprotective and anti-apoptotic effects of liraglutide in the rat brain following focal cerebral ischemia. Neuroscience 2014; 281:269-81. [PMID: 25301749 DOI: 10.1016/j.neuroscience.2014.09.064] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022]
Abstract
Stroke is a leading cause of death and serious, long-term disability worldwide. We report that rats receiving liraglutide show markedly attenuated infarct volumes and neurological deficit following ischemic insult. We have also investigated the effect of liraglutide on apoptosis and oxidative stress pathways after ischemic injury in diabetic and non-diabetic rats. Male Sprague-Dawley rats weighing 300-350g were used. Diabetes was induced by streptozotocin. Rats were pretreated with either vehicle or liraglutide (50μg/kg, s.c.) for 14days and thereafter subjected to middle cerebral artery occlusion (MCAO). Twenty-four hours after occlusion, rats were assessed for neurological deficit, motor function and subsequently sacrificed for estimation of infarct volume, oxidative stress and apoptotic markers. Vehicle-treated non-diabetic and diabetic rats showed significant (p<0.001) neurological deficit following cerebral ischemia. Liraglutide pretreatment resulted in significantly (p<0.001) less neurological deficit compared to vehicle-treated MCAO rats. Cerebral ischemia produced significant (p<0.0001) infarction in vehicle-treated rats; however, the infarct volume was significantly (p<0.001) less in liraglutide-pretreated rats. Oxidative stress markers were increased following ischemia but were attenuated in liraglutide-treated rats. Anti-apoptotic protein Bcl-2 expression was decreased and pro-apoptotic protein Bax expression was increased in vehicle-treated MCAO rats compared to sham (p<0.0001). On the other hand liraglutide pretreatment showed significantly (p<0.01) increased expression of Bcl-2 and decreased expression of Bax in MCAO rats. In vehicle-treated group, the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells significantly (p<0.0001) increased in the ischemic hemisphere compared to sham-operated group. The number of TUNEL-positive cells in vehicle group was 73.5±3.3 and 85.5±5.2/750μm(2) in non-diabetic and diabetic vehicle-treated MCAO rats, respectively. Following liraglutide treatment the number of TUNEL-positive cells was remarkably attenuated to 25.5±2.8 and 41.5±4.1/750μm(2) (p<0.001) in non-diabetic and diabetic rats, respectively. The results demonstrate that glucagon-like peptide 1 (GLP-1) agonist, liraglutide, is a neuroprotective agent and attenuates the neuronal damage following cerebral ischemia in rats by preventing apoptosis and decreasing oxidative stress.
Collapse
|
50
|
Is Alzheimer's disease related to metabolic syndrome? A Wnt signaling conundrum. Prog Neurobiol 2014; 121:125-46. [PMID: 25084549 DOI: 10.1016/j.pneurobio.2014.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting more than 36 million people worldwide. AD is characterized by a progressive loss of cognitive functions. For years, it has been thought that age is the main risk factor for AD. Recent studies suggest that life style factors, including nutritional behaviors, play a critical role in the onset of dementia. Evidence about the relationship between nutritional behavior and AD includes the role of conditions such as obesity, hypertension, dyslipidemia and elevated glucose levels. The coexistence of some of these cardio-metabolic risk factors is generally known as metabolic syndrome (MS). Some clinical studies support the role of MS in the onset of AD. However, the cross-talk between the molecular signaling implicated in these disorders is unknown. In the present review, we focus on the molecular correlates that support the relationship between MS and the onset of AD. We also discuss relevant issues such as the role of leptin, insulin and renin-angiotensin signaling in the brain and the possible role of Wnt signaling in both MS and AD. We discuss the evidence supporting the use of ob/ob mice, high-fructose diets, aortic coarctation-induced hypertension and Octodon degus, which spontaneously develops β-amyloid deposits and metabolic derangements, as suitable animal models to address the relationships between MS and AD. Finally, we examine emergent data supporting the role of Wnt signaling in the modulation of AD and MS, implicating this pathway as a therapeutic target in both conditions.
Collapse
|