1
|
Zheng W, Shi X, Chen Y, Hou X, Yang Z, Yao W, Lv T, Bai F. Comparative efficacy of intermittent theta burst stimulation and high-frequency repetitive transcranial magnetic stimulation in amnestic mild cognitive impairment patients. Cereb Cortex 2024; 34:bhae460. [PMID: 39604076 DOI: 10.1093/cercor/bhae460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/29/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Intermittent theta burst stimulation, a derivative of repetitive transcranial magnetic stimulation, has been applied to improve cognitive deficits. However, its efficacy and mechanisms in enhancing cognitive function in patients with amnestic mild cognitive impairment compared with traditional repetitive transcranial magnetic stimulation paradigms remain unclear. This study recruited 48 amnestic mild cognitive impairment patients, assigning them to intermittent theta burst stimulation, repetitive transcranial magnetic stimulation, and sham groups (5 times/wk for 4 wk). Neuropsychological assessments and functional magnetic resonance imaging data were collected pre- and post-treatment. Regarding efficacy, both angular gyrus intermittent theta burst stimulation and repetitive transcranial magnetic stimulation significantly improved general cognitive function and memory compared to the sham group, with no significant difference between the 2 treatment groups. Mechanistically, significant changes in brain activity within the temporoparietal network were observed in both the intermittent theta burst stimulation and repetitive transcranial magnetic stimulation groups, and these changes correlated with improvements in general cognitive and memory functions. Additionally, intermittent theta burst stimulation showed stronger modulation of functional connectivity between the hippocampus, parahippocampal gyrus, and temporal regions compared to repetitive transcranial magnetic stimulation. The intermittent theta burst stimulation and repetitive transcranial magnetic stimulation can improve cognitive function in amnestic mild cognitive impairment patients, but intermittent theta burst stimulation may offer higher efficiency. Intermittent theta burst stimulation and repetitive transcranial magnetic stimulation likely enhance cognitive function, especially memory function, by modulating the temporoparietal network.
Collapse
Affiliation(s)
- Wenao Zheng
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xian Shi
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Ya Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xinle Hou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Zhiyuan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Weina Yao
- Department of Neurology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Tingyu Lv
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 188 Lingshan North Road, Nanjing, 210046, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 188 Lingshan North Road, Nanjing, 210046, China
- Institute of Geriatric Medicine, Medical School of Nanjing University, 188 Lingshan North Road, Nanjing, 210046, China
| |
Collapse
|
2
|
Biswas R, Sripada S. Causal functional connectivity in Alzheimer's disease computed from time series fMRI data. Front Comput Neurosci 2023; 17:1251301. [PMID: 38169714 PMCID: PMC10758424 DOI: 10.3389/fncom.2023.1251301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Functional connectivity between brain regions is known to be altered in Alzheimer's disease and promises to be a biomarker for early diagnosis. Several approaches for functional connectivity obtain an un-directed network representing stochastic associations (correlations) between brain regions. However, association does not necessarily imply causation. In contrast, Causal Functional Connectivity (CFC) is more informative, providing a directed network representing causal relationships between brain regions. In this paper, we obtained the causal functional connectome for the whole brain from resting-state functional magnetic resonance imaging (rs-fMRI) recordings of subjects from three clinical groups: cognitively normal, mild cognitive impairment, and Alzheimer's disease. We applied the recently developed Time-aware PC (TPC) algorithm to infer the causal functional connectome for the whole brain. TPC supports model-free estimation of whole brain CFC based on directed graphical modeling in a time series setting. We compared the CFC outcome of TPC with that of other related approaches in the literature. Then, we used the CFC outcomes of TPC and performed an exploratory analysis of the difference in strengths of CFC edges between Alzheimer's and cognitively normal groups, based on edge-wise p-values obtained by Welch's t-test. The brain regions thus identified are found to be in agreement with literature on brain regions impacted by Alzheimer's disease, published by researchers from clinical/medical institutions.
Collapse
Affiliation(s)
- Rahul Biswas
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
3
|
Loughrey DG, Jordan C, Ibanez A, Parra MA, Lawlor BA, Reilly RB. Age-related hearing loss associated with differences in the neural correlates of feature binding in visual working memory. Neurobiol Aging 2023; 132:233-245. [PMID: 37866083 DOI: 10.1016/j.neurobiolaging.2023.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/09/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
The underlying neural mechanisms underpinning the association between age-related hearing loss (ARHL) and dementia remain unclear. A limitation has been the lack of functional neuroimaging studies in ARHL cohorts to help clarify this relationship. In the present study, we investigated the neural correlates of feature binding in visual working memory with ARHL (controls = 14, mild HL = 21, and moderate or greater HL = 23). Participants completed a visual change detection task assessing feature binding while their neural activity was synchronously recorded via high-density electroencephalography. There was no difference in accuracy scores for ARHL groups compared to controls. There was increased electrophysiological activity in those with ARHL, particularly in components indexing the earlier stages of visual cognitive processing. This activity was more pronounced with more severe ARHL and was associated with maintained feature binding. Source space (sLORETA) analyses indicated greater activity in networks modulated by frontoparietal and temporal regions. Our results demonstrate there may be increased involvement of neurocognitive control networks to maintain lower-order neurocognitive processing disrupted by ARHL.
Collapse
Affiliation(s)
- David G Loughrey
- Global Brain Health Institute, Trinity College, The University of Dublin, Ireland; Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA; Trinity College Institute of Neuroscience, Trinity College, The University of Dublin, Ireland.
| | - Catherine Jordan
- Global Brain Health Institute, Trinity College, The University of Dublin, Ireland; Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA
| | - Agustin Ibanez
- Global Brain Health Institute, Trinity College, The University of Dublin, Ireland; Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA; Cognitive Neuroscience Center, University of San Andrés, Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Mario A Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK
| | - Brian A Lawlor
- Global Brain Health Institute, Trinity College, The University of Dublin, Ireland; Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA
| | - Richard B Reilly
- Trinity College Institute of Neuroscience, Trinity College, The University of Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College, The University of Dublin, Ireland; School of Engineering, Trinity College, The University of Dublin, Ireland; School of Medicine, Trinity College, The University of Dublin, Ireland
| |
Collapse
|
4
|
Zhang S, Yang J, Zhang Y, Zhong J, Hu W, Li C, Jiang J. The Combination of a Graph Neural Network Technique and Brain Imaging to Diagnose Neurological Disorders: A Review and Outlook. Brain Sci 2023; 13:1462. [PMID: 37891830 PMCID: PMC10605282 DOI: 10.3390/brainsci13101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Neurological disorders (NDs), such as Alzheimer's disease, have been a threat to human health all over the world. It is of great importance to diagnose ND through combining artificial intelligence technology and brain imaging. A graph neural network (GNN) can model and analyze the brain, imaging from morphology, anatomical structure, function features, and other aspects, thus becoming one of the best deep learning models in the diagnosis of ND. Some researchers have investigated the application of GNN in the medical field, but the scope is broad, and its application to NDs is less frequent and not detailed enough. This review focuses on the research progress of GNNs in the diagnosis of ND. Firstly, we systematically investigated the GNN framework of ND, including graph construction, graph convolution, graph pooling, and graph prediction. Secondly, we investigated common NDs using the GNN diagnostic model in terms of data modality, number of subjects, and diagnostic accuracy. Thirdly, we discussed some research challenges and future research directions. The results of this review may be a valuable contribution to the ongoing intersection of artificial intelligence technology and brain imaging.
Collapse
Affiliation(s)
- Shuoyan Zhang
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Jiacheng Yang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ying Zhang
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Jiayi Zhong
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wenjing Hu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Chenyang Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiehui Jiang
- Shanghai Institute of Biomedical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Hrybouski S, Das SR, Xie L, Wisse LEM, Kelley M, Lane J, Sherin M, DiCalogero M, Nasrallah I, Detre J, Yushkevich PA, Wolk DA. Aging and Alzheimer's disease have dissociable effects on local and regional medial temporal lobe connectivity. Brain Commun 2023; 5:fcad245. [PMID: 37767219 PMCID: PMC10521906 DOI: 10.1093/braincomms/fcad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Functional disruption of the medial temporal lobe-dependent networks is thought to underlie episodic memory deficits in aging and Alzheimer's disease. Previous studies revealed that the anterior medial temporal lobe is more vulnerable to pathological and neurodegenerative processes in Alzheimer's disease. In contrast, cognitive and structural imaging literature indicates posterior, as opposed to anterior, medial temporal lobe vulnerability in normal aging. However, the extent to which Alzheimer's and aging-related pathological processes relate to functional disruption of the medial temporal lobe-dependent brain networks is poorly understood. To address this knowledge gap, we examined functional connectivity alterations in the medial temporal lobe and its immediate functional neighbourhood-the Anterior-Temporal and Posterior-Medial brain networks-in normal agers, individuals with preclinical Alzheimer's disease and patients with Mild Cognitive Impairment or mild dementia due to Alzheimer's disease. In the Anterior-Temporal network and in the perirhinal cortex, in particular, we observed an inverted 'U-shaped' relationship between functional connectivity and Alzheimer's stage. According to our results, the preclinical phase of Alzheimer's disease is characterized by increased functional connectivity between the perirhinal cortex and other regions of the medial temporal lobe, as well as between the anterior medial temporal lobe and its one-hop neighbours in the Anterior-Temporal system. This effect is no longer present in symptomatic Alzheimer's disease. Instead, patients with symptomatic Alzheimer's disease displayed reduced hippocampal connectivity within the medial temporal lobe as well as hypoconnectivity within the Posterior-Medial system. For normal aging, our results led to three main conclusions: (i) intra-network connectivity of both the Anterior-Temporal and Posterior-Medial networks declines with age; (ii) the anterior and posterior segments of the medial temporal lobe become increasingly decoupled from each other with advancing age; and (iii) the posterior subregions of the medial temporal lobe, especially the parahippocampal cortex, are more vulnerable to age-associated loss of function than their anterior counterparts. Together, the current results highlight evolving medial temporal lobe dysfunction in Alzheimer's disease and indicate different neurobiological mechanisms of the medial temporal lobe network disruption in aging versus Alzheimer's disease.
Collapse
Affiliation(s)
- Stanislau Hrybouski
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandhitsu R Das
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Alzheimer’s Disease Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Long Xie
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura E M Wisse
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Diagnostic Radiology, Lund University, 221 00 Lund, Sweden
| | - Melissa Kelley
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacqueline Lane
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monica Sherin
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael DiCalogero
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ilya Nasrallah
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Alzheimer’s Disease Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Detre
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Yushkevich
- Penn Image Computing and Science Laboratory (PICSL), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Alzheimer’s Disease Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Alzheimer’s Disease Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Fang XT, Volpi T, Holmes SE, Esterlis I, Carson RE, Worhunsky PD. Linking resting-state network fluctuations with systems of coherent synaptic density: A multimodal fMRI and 11C-UCB-J PET study. Front Hum Neurosci 2023; 17:1124254. [PMID: 36908710 PMCID: PMC9995441 DOI: 10.3389/fnhum.2023.1124254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Resting-state network (RSN) connectivity is a widely used measure of the brain's functional organization in health and disease; however, little is known regarding the underlying neurophysiology of RSNs. The aim of the current study was to investigate associations between RSN connectivity and synaptic density assessed using the synaptic vesicle glycoprotein 2A radioligand 11C-UCB-J PET. Methods: Independent component analyses (ICA) were performed on resting-state fMRI and PET data from 34 healthy adult participants (16F, mean age: 46 ± 15 years) to identify a priori RSNs of interest (default-mode, right frontoparietal executive-control, salience, and sensorimotor networks) and select sources of 11C-UCB-J variability (medial prefrontal, striatal, and medial parietal). Pairwise correlations were performed to examine potential intermodal associations between the fractional amplitude of low-frequency fluctuations (fALFF) of RSNs and subject loadings of 11C-UCB-J source networks both locally and along known anatomical and functional pathways. Results: Greater medial prefrontal synaptic density was associated with greater fALFF of the anterior default-mode, posterior default-mode, and executive-control networks. Greater striatal synaptic density was associated with greater fALFF of the anterior default-mode and salience networks. Post-hoc mediation analyses exploring relationships between aging, synaptic density, and RSN activity revealed a significant indirect effect of greater age on fALFF of the anterior default-mode network mediated by the medial prefrontal 11C-UCB-J source. Discussion: RSN functional connectivity may be linked to synaptic architecture through multiple local and circuit-based associations. Findings regarding healthy aging, lower prefrontal synaptic density, and lower default-mode activity provide initial evidence of a neurophysiological link between RSN activity and local synaptic density, which may have relevance in neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Xiaotian T. Fang
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Tommaso Volpi
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Sophie E. Holmes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Richard E. Carson
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
7
|
Hrybouski S, Das SR, Xie L, Wisse LEM, Kelley M, Lane J, Sherin M, DiCalogero M, Nasrallah I, Detre JA, Yushkevich PA, Wolk DA. Aging and Alzheimer's Disease Have Dissociable Effects on Medial Temporal Lobe Connectivity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.18.23284749. [PMID: 36711782 PMCID: PMC9882834 DOI: 10.1101/2023.01.18.23284749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Functional disruption of the medial temporal lobe-dependent networks is thought to underlie episodic memory deficits in aging and Alzheimer's disease. Previous studies revealed that the anterior medial temporal lobe is more vulnerable to pathological and neurodegenerative processes in Alzheimer's disease. In contrast, cognitive and structural imaging literature indicates posterior, as opposed to anterior, medial temporal lobe vulnerability in normal aging. However, the extent to which Alzheimer's and aging-related pathological processes relate to functional disruption of the medial temporal lobe-dependent brain networks is poorly understood. To address this knowledge gap, we examined functional connectivity alterations in the medial temporal lobe and its immediate functional neighborhood - the Anterior-Temporal and Posterior-Medial brain networks - in normal agers, individuals with preclinical Alzheimer's disease, and patients with Mild Cognitive Impairment or mild dementia due to Alzheimer's disease. In the Anterior-Temporal network and in the perirhinal cortex, in particular, we observed an inverted 'U-shaped' relationship between functional connectivity and Alzheimer's stage. According to our results, the preclinical phase of Alzheimer's disease is characterized by increased functional connectivity between the perirhinal cortex and other regions of the medial temporal lobe, as well as between the anterior medial temporal lobe and its one-hop neighbors in the Anterior-Temporal system. This effect is no longer present in symptomatic Alzheimer's disease. Instead, patients with symptomatic Alzheimer's disease displayed reduced hippocampal connectivity within the medial temporal lobe as well as hypoconnectivity within the Posterior-Medial system. For normal aging, our results led to three main conclusions: (1) intra-network connectivity of both the Anterior-Temporal and Posterior-Medial networks declines with age; (2) the anterior and posterior segments of the medial temporal lobe become increasingly decoupled from each other with advancing age; and, (3) the posterior subregions of the medial temporal lobe, especially the parahippocampal cortex, are more vulnerable to age-associated loss of function than their anterior counterparts. Together, the current results highlight evolving medial temporal lobe dysfunction in Alzheimer's disease and indicate different neurobiological mechanisms of the medial temporal lobe network disruption in aging vs. Alzheimer's disease.
Collapse
|
8
|
Xiong Y, Ye C, Sun R, Chen Y, Zhong X, Zhang J, Zhong Z, Chen H, Huang M. Disrupted Balance of Gray Matter Volume and Directed Functional Connectivity in Mild Cognitive Impairment and Alzheimer's Disease. Curr Alzheimer Res 2023; 20:161-174. [PMID: 37278043 PMCID: PMC10514512 DOI: 10.2174/1567205020666230602144659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/11/2023] [Accepted: 04/04/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Alterations in functional connectivity have been demonstrated in Alzheimer's disease (AD), an age-progressive neurodegenerative disorder that affects cognitive function; however, directional information flow has never been analyzed. OBJECTIVE This study aimed to determine changes in resting-state directional functional connectivity measured using a novel approach, granger causality density (GCD), in patients with AD, and mild cognitive impairment (MCI) and explore novel neuroimaging biomarkers for cognitive decline detection. METHODS In this study, structural MRI, resting-state functional magnetic resonance imaging, and neuropsychological data of 48 Alzheimer's Disease Neuroimaging Initiative participants were analyzed, comprising 16 patients with AD, 16 with MCI, and 16 normal controls. Volume-based morphometry (VBM) and GCD were used to calculate the voxel-based gray matter (GM) volumes and directed functional connectivity of the brain. We made full use of voxel-based between-group comparisons of VBM and GCD values to identify specific regions with significant alterations. In addition, Pearson's correlation analysis was conducted between directed functional connectivity and several clinical variables. Furthermore, receiver operating characteristic (ROC) analysis related to classification was performed in combination with VBM and GCD. RESULTS In patients with cognitive decline, abnormal VBM and GCD (involving inflow and outflow of GCD) were noted in default mode network (DMN)-related areas and the cerebellum. GCD in the DMN midline core system, hippocampus, and cerebellum was closely correlated with the Mini- Mental State Examination and Functional Activities Questionnaire scores. In the ROC analysis combining VBM with GCD, the neuroimaging biomarker in the cerebellum was optimal for the early detection of MCI, whereas the precuneus was the best in predicting cognitive decline progression and AD diagnosis. CONCLUSION Changes in GM volume and directed functional connectivity may reflect the mechanism of cognitive decline. This discovery could improve our understanding of the pathology of AD and MCI and provide available neuroimaging markers for the early detection, progression, and diagnosis of AD and MCI.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Chenghui Ye
- Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Ruxin Sun
- Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Ying Chen
- Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xiaochun Zhong
- Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaqi Zhang
- Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhanhua Zhong
- Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Hongda Chen
- Department of Traditional Chinese Medicine, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Min Huang
- Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
9
|
Fleury M, Buck S, Binding LP, Caciagli L, Vos SB, Winston GP, Thompson P, Koepp MJ, Duncan JS, Sidhu MK. Episodic memory network connectivity in temporal lobe epilepsy. Epilepsia 2022; 63:2597-2622. [PMID: 35848050 PMCID: PMC9804196 DOI: 10.1111/epi.17370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) affects brain networks and is associated with impairment of episodic memory. Temporal and extratemporal reorganization of memory functions is described in functional magnetic resonance imaging (fMRI) studies. Functional reorganizations have been shown at the local activation level, but network-level alterations have been underinvestigated. We aim to investigate the functional anatomy of memory networks using memory fMRI and determine how this relates to memory function in TLE. METHODS Ninety patients with unilateral TLE (43 left) and 29 controls performed a memory-encoding fMRI paradigm of faces and words with subsequent out-of-scanner recognition test. Subsequent memory event-related contrasts of words and faces remembered were generated. Psychophysiological interaction analysis investigated task-associated changes in functional connectivity seeding from the mesial temporal lobes (MTLs). Correlations between changes in functional connectivity and clinical memory scores, epilepsy duration, age at epilepsy onset, and seizure frequency were investigated, and between connectivity supportive of better memory and disease burden. Connectivity differences between controls and TLE, and between TLE with and without hippocampal sclerosis, were explored using these confounds as regressors of no interest. RESULTS Compared to controls, TLE patients showed widespread decreased connectivity between bilateral MTLs and frontal lobes, and increased local connectivity between the anterior MTLs bilaterally. Increased intrinsic connectivity within the bilateral MTLs correlated with better out-of-scanner memory performance in both left and right TLE. Longer epilepsy duration and higher seizure frequency were associated with decreased connectivity between bilateral MTLs and left/right orbitofrontal cortex (OFC) and insula, connections supportive of memory functions. TLE due to hippocampal sclerosis was associated with greater connectivity disruption within the MTL and extratemporally. SIGNIFICANCE Connectivity analyses showed that TLE is associated with temporal and extratemporal memory network reorganization. Increased bilateral functional connectivity within the MTL and connectivity to OFC and insula are efficient, and are disrupted by greater disease burden.
Collapse
Affiliation(s)
- Marine Fleury
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - Sarah Buck
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - Lawrence P. Binding
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
- Department of Computer Science, Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Lorenzo Caciagli
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sjoerd B. Vos
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
- Neuroradiological Academic Unit, University College London Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Gavin P. Winston
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
- Division of Neurology, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | - Pamela J. Thompson
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - Matthias J. Koepp
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - John S. Duncan
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| | - Meneka K. Sidhu
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
- MRI UnitEpilepsy SocietyBuckinghamshireUK
| |
Collapse
|
10
|
Cheng L, Zhan L, Huang L, Zhang H, Sun J, Huang G, Wang Y, Li M, Li H, Gao Y, Jia X. The atypical functional connectivity of Broca's area at multiple frequency bands in autism spectrum disorder. Brain Imaging Behav 2022; 16:2627-2636. [PMID: 36163448 DOI: 10.1007/s11682-022-00718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
As a developmental disorder, autism spectrum disorder (ASD) has drawn much attention due to its severe impacts on one's language capacity. Broca's area, an important brain region of the language network, is largely involved in language-related functions. Using the Autism Brain Image Data Exchange (ABIDE) dataset, a mega-analysis was performed involving a total of 1454 participants (including 618 individuals with ASD and 836 healthy controls (HCs). To detect the neural pathophysiological mechanism of ASD from the perspective of language, we conducted a functional connectivity (FC) analysis with Broca's area as the seed in multiple frequency bands (conventional: 0.01-0.08 Hz; slow-4: 0.027-0.073 Hz; slow-5: 0.01-0.027 Hz). We found that compared with HC, ASD patients demonstrated increased FC in the left thalamus, left precuneus, left anterior cingulate and paracingulate gyri, and left medial orbital of the superior frontal gyrus in the conventional frequency band (0.01-0.08 Hz). The results of the slow-5 frequency band (0.01-0.027 Hz) presented increased FC values of the left precuneus, left medial orbital of the superior frontal gyrus, right medial orbital of the superior frontal gyrus and right thalamus. No significant cluster was detected in the slow-4 frequency band (0.027-0.073 Hz). In conclusion, the abnormal functional connectivity in patients with ASD has frequency-specific properties. Furthermore, the slow-5 frequency band (0.01-0.027 Hz) mainly contributed to the findings of the conventional frequency band (0.01-0.08 Hz). The current study might shed new light on the neural pathophysiological mechanism of language impairments in people with ASD.
Collapse
Affiliation(s)
- Lulu Cheng
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, 266580, China.,Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Lina Huang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Hongqiang Zhang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Jiawei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Guofeng Huang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Yadan Wang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China.,Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China
| | - Huayun Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China.,Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China
| | - Yanyan Gao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China. .,Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| | - Xize Jia
- School of Teacher Education, Zhejiang Normal University, Jinhua, China. .,Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
11
|
Chino B, Cuesta P, Pacios J, de Frutos-Lucas J, Torres-Simón L, Doval S, Marcos A, Bruña R, Maestú F. Episodic memory dysfunction and hypersynchrony in brain functional networks in cognitively intact subjects and MCI: a study of 379 individuals. GeroScience 2022; 45:477-489. [PMID: 36109436 PMCID: PMC9886758 DOI: 10.1007/s11357-022-00656-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/01/2022] [Indexed: 02/03/2023] Open
Abstract
Delayed recall (DR) impairment is one of the most significant predictive factors in defining the progression to Alzheimer's disease (AD). Changes in brain functional connectivity (FC) could accompany this decline in the DR performance even in a resting state condition from the preclinical stages to the diagnosis of AD itself, so the characterization of the relationship between the two phenomena has attracted increasing interest. Another aspect to contemplate is the potential moderator role of the APOE genotype in this association, considering the evidence about their implication for the disease. 379 subjects (118 mild cognitive impairment (MCI) and 261 cognitively intact (CI) individuals) underwent an extensive evaluation, including MEG recording. Applying cluster-based permutation test, we identified a cluster of differences in FC and studied which connections drove such an effect in DR. The moderation effect of APOE genotype between FC results and delayed recall was evaluated too. Higher FC in beta band in the right occipital region is associated with lower DR scores in both groups. A significant anteroposterior link emerged in the seed-based analysis with higher values in MCI. Moreover, APOE genotype appeared as a moderator between beta FC and DR performance only in the CI group. An increased beta FC in the anteroposterior brain region appears to be associated with lower memory performance in MCI. This finding could help discriminate the pattern of the progression of healthy aging to MCI and the relation between resting state and memory performance.
Collapse
Affiliation(s)
- Brenda Chino
- Institute of Neuroscience, Autonomous University of Barcelona, Barcelona, Spain. .,Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain.
| | - Pablo Cuesta
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Department of Radiology, Rehabilitation, and Physiotherapy, Complutense University of Madrid, Madrid, Spain ,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Javier Pacios
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain ,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Jaisalmer de Frutos-Lucas
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain ,Centre for Precision Health, Edith Cowan University, Joondalup, WA 6027 Australia ,Centro de Investigación Nebrija en Cognición (CINC), Universidad de Nebrija, Madrid, Spain
| | - Lucía Torres-Simón
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Sandra Doval
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Alberto Marcos
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain ,Neurology Department, Hospital Clinico San Carlos, Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Department of Radiology, Rehabilitation, and Physiotherapy, Complutense University of Madrid, Madrid, Spain ,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain ,Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain ,Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
12
|
Maleki Balajoo S, Rahmani F, Khosrowabadi R, Meng C, Eickhoff SB, Grimmer T, Zarei M, Drzezga A, Sorg C, Tahmasian M. Decoupling of regional neural activity and inter-regional functional connectivity in Alzheimer's disease: a simultaneous PET/MR study. Eur J Nucl Med Mol Imaging 2022; 49:3173-3185. [PMID: 35199225 PMCID: PMC9250470 DOI: 10.1007/s00259-022-05692-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/13/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Alzheimer's disease (AD) and mild cognitive impairment (MCI) are characterized by both aberrant regional neural activity and disrupted inter-regional functional connectivity (FC). However, the effect of AD/MCI on the coupling between regional neural activity (measured by regional fluorodeoxyglucose imaging (rFDG)) and inter-regional FC (measured by resting-state functional magnetic resonance imaging (rs-fMRI)) is poorly understood. METHODS We scanned 19 patients with MCI, 33 patients with AD, and 26 healthy individuals by simultaneous FDG-PET/rs-fMRI and assessed rFDG and inter-regional FC metrics (i.e., clustering coefficient and degree centrality). Next, we examined the potential moderating effect of disease status (MCI or AD) on the link between rFDG and inter-regional FC metrics using hierarchical moderated multiple regression analysis. We also tested this effect by considering interaction between disease status and inter-regional FC metrics, as well as interaction between disease status and rFDG. RESULTS Our findings revealed that both rFDG and inter-regional FC metrics were disrupted in MCI and AD. Moreover, AD altered the relationship between rFDG and inter-regional FC metrics. In particular, we found that AD moderated the effect of inter-regional FC metrics of the caudate, parahippocampal gyrus, angular gyrus, supramarginal gyrus, frontal pole, inferior temporal gyrus, middle frontal, lateral occipital, supramarginal gyrus, precuneus, and thalamus on predicting their rFDG. On the other hand, AD moderated the effect of rFDG of the parietal operculum on predicting its inter-regional FC metric. CONCLUSION Our findings demonstrated that AD decoupled the link between regional neural activity and functional segregation and global connectivity across particular brain regions.
Collapse
Affiliation(s)
- Somayeh Maleki Balajoo
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Farzaneh Rahmani
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Chun Meng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
- Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Forschungszentrum Jülich, Jülich, Germany
| | - Christian Sorg
- Department of Psychiatry and Psychotherapy, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
- Klinikum Rechts Der Isar, TUM-Neuroimaging Center (TUM-NIC), TechnischeUniversitätMünchen, Munich, Germany
| | - Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran.
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
13
|
Zhao C, Huang WJ, Feng F, Zhou B, Yao HX, Guo YE, Wang P, Wang LN, Shu N, Zhang X. Abnormal characterization of dynamic functional connectivity in Alzheimer's disease. Neural Regen Res 2022; 17:2014-2021. [PMID: 35142691 PMCID: PMC8848607 DOI: 10.4103/1673-5374.332161] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Numerous studies have shown abnormal brain functional connectivity in individuals with Alzheimer's disease (AD) or amnestic mild cognitive impairment (aMCI). However, most studies examined traditional resting state functional connections, ignoring the instantaneous connection mode of the whole brain. In this case-control study, we used a new method called dynamic functional connectivity (DFC) to look for abnormalities in patients with AD and aMCI. We calculated dynamic functional connectivity strength from functional magnetic resonance imaging data for each participant, and then used a support vector machine to classify AD patients and normal controls. Finally, we highlighted brain regions and brain networks that made the largest contributions to the classification. We found differences in dynamic function connectivity strength in the left precuneus, default mode network, and dorsal attention network among normal controls, aMCI patients, and AD patients. These abnormalities are potential imaging markers for the early diagnosis of AD.
Collapse
Affiliation(s)
- Cui Zhao
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing; Department of Geriatrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, China
| | - Wei-Jie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning; Center for Collaboration and Innovation in Brain and Learning Sciences; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Feng Feng
- Department of Neurology, First Medical Center, Chinese PLA General Hospital; Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Bo Zhou
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Hong-Xiang Yao
- Department of Radiology, Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan-E Guo
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Lu-Ning Wang
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning; Center for Collaboration and Innovation in Brain and Learning Sciences; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Xi Zhang
- Department of Neurology, Second Medical Center, National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
14
|
Li P, Huang Q, Ban S, Qiao Y, Wu J, Zhai Y, Du X, Hua F, Su J. Altered Default Mode Network Is Associated With Cognitive Impairment in CADASIL as Revealed by Multimodal Neu roimaging. Front Neurol 2021; 12:735033. [PMID: 34938255 PMCID: PMC8685443 DOI: 10.3389/fneur.2021.735033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy caused by mutations in the NOTCH3 gene is a hereditary cerebral small vessel disease, manifesting with stroke, cognitive impairment, and mood disturbances. Functional or structural changes in the default mode network (DMN), which plays important role in cognitive and mental maintenance, have been found in several neurological and mental diseases. However, it remains unclear whether DMN is altered in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Methods: Multimodal imaging methods, including MRI and positron emission tomography (PET), were applied to evaluate the functional, structural, and metabolic characteristics of DMN in 25 patients with CADASIL and 42 healthy controls. Results: Compared with controls, patients with CADASIL had decreased nodal efficiency and degree centrality of the dorsal medial pre-frontal cortex and hippocampal formation within DMN. Structural MRI and diffusion tensor imaging (DTI) showed decreased gray matter volume and fiber tracks presented in the bilateral hippocampal formation. Meanwhile, PET imaging showed decreased metabolism within the whole DMN in CADASIL. Furthermore, correlation analyses showed that these nodal characteristics, gray matter volume, and metabolic signals of DMN were related to cognitive scores in CADASIL. Conclusions: Our results suggested that altered network characteristics of DMN might play important roles in cognitive deficits of CADASIL.
Collapse
Affiliation(s)
- Panlong Li
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Qi Huang
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Shiyu Ban
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, China
| | - Yuan Qiao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhai
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxia Du
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai, China
| | - Fengchun Hua
- Department of Nuclear Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Su
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Li X, Fischer H, Manzouri A, Månsson KNT, Li TQ. A Quantitative Data-Driven Analysis Framework for Resting-State Functional Magnetic Resonance Imaging: A Study of the Impact of Adult Age. Front Neurosci 2021; 15:768418. [PMID: 34744623 PMCID: PMC8565286 DOI: 10.3389/fnins.2021.768418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
The objective of this study is to introduce a new quantitative data-driven analysis (QDA) framework for the analysis of resting-state fMRI (R-fMRI) and use it to investigate the effect of adult age on resting-state functional connectivity (RFC). Whole-brain R-fMRI measurements were conducted on a 3T clinical MRI scanner in 227 healthy adult volunteers (N = 227, aged 18-76 years old, male/female = 99/128). With the proposed QDA framework we derived two types of voxel-wise RFC metrics: the connectivity strength index and connectivity density index utilizing the convolutions of the cross-correlation histogram with different kernels. Furthermore, we assessed the negative and positive portions of these metrics separately. With the QDA framework we found age-related declines of RFC metrics in the superior and middle frontal gyri, posterior cingulate cortex (PCC), right insula and inferior parietal lobule of the default mode network (DMN), which resembles previously reported results using other types of RFC data processing methods. Importantly, our new findings complement previously undocumented results in the following aspects: (1) the PCC and right insula are anti-correlated and tend to manifest simultaneously declines of both the negative and positive connectivity strength with subjects' age; (2) separate assessment of the negative and positive RFC metrics provides enhanced sensitivity to the aging effect; and (3) the sensorimotor network depicts enhanced negative connectivity strength with the adult age. The proposed QDA framework can produce threshold-free and voxel-wise RFC metrics from R-fMRI data. The detected adult age effect is largely consistent with previously reported studies using different R-fMRI analysis approaches. Moreover, the separate assessment of the negative and positive contributions to the RFC metrics can enhance the RFC sensitivity and clarify some of the mixed results in the literature regarding to the DMN and sensorimotor network involvement in adult aging.
Collapse
Affiliation(s)
- Xia Li
- Institute of Informatics Engineering, China Jiliang University, Hangzhou, China
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Stockholm, Sweden.,Stockholm University Brain Imaging Centre, Stockholm, Sweden
| | | | - Kristoffer N T Månsson
- Department of Psychology, Stockholm University, Stockholm, Sweden.,Centre of Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tie-Qiang Li
- Institute of Informatics Engineering, China Jiliang University, Hangzhou, China.,Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Solna, Sweden.,Department of Medical Radiation and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
16
|
Kure AJ, Savas H, Hijaz TA, Hussaini SF, Korutz AW. Advancements in Positron Emission Tomography/Magnetic Resonance Imaging and Applications to Diagnostic Challenges in Neuroradiology. Semin Ultrasound CT MR 2021; 42:434-451. [PMID: 34537113 DOI: 10.1053/j.sult.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Since the clinical adoption of magnetic resonance (MR) in medical imaging, MR has proven to be a workhorse in diagnostic neuroradiology, with the ability to provide superb anatomic detail as well as additional functional and physiologic data, depending on the techniques utilized. Positron emission tomography/computed tomography has also shown irreplaceable diagnostic value in certain disease processes of the central nervous system by providing molecular and metabolic information through the development of numerous disease-specific PET tracers, many of which can be utilized as a diagnostic technique in and of themselves or can provide a valuable adjunct to information derived from MR. Despite these advances, many challenges still remain in neuroradiology, particularly in malignancy, neurodegenerative disease, epilepsy, and cerebrovascular disease. Through improvements in attenuation correction, motion correction, and PET detectors, combining the 2 modalities of PET and MR through simultaneous imaging has proven feasible and allows for improved spatial and temporal resolution without compromising either of the 2 individual modalities. The complementary information offered by both technologies has provided increased diagnostic accuracy in both research and many clinical applications in neuroradiology.
Collapse
Affiliation(s)
- Andrew J Kure
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Hatice Savas
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Tarek A Hijaz
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Syed F Hussaini
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| | - Alexander W Korutz
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, IL.
| |
Collapse
|
17
|
Dautricourt S, de Flores R, Landeau B, Poisnel G, Vanhoutte M, Delcroix N, Eustache F, Vivien D, de la Sayette V, Chételat G. Longitudinal Changes in Hippocampal Network Connectivity in Alzheimer's Disease. Ann Neurol 2021; 90:391-406. [PMID: 34279043 PMCID: PMC9291910 DOI: 10.1002/ana.26168] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/05/2022]
Abstract
Objective The hippocampus is connected to 2 distinct cortical brain networks, the posterior–medial and the anterior–temporal networks, involving different medial temporal lobe (MTL) subregions. The aim of this study was to assess the functional alterations of these 2 networks, their changes over time, and links to cognition in Alzheimer's disease. Methods We assessed MTL connectivity in 53 amyloid‐β–positive patients with mild cognitive impairment and AD dementia and 68 healthy elderly controls, using resting‐state functional magnetic resonance imaging, cross‐sectionally and longitudinally. First, we compared the functional connectivity of the posterior–medial and anterior–temporal networks within the control group to highlight their specificities. Second, we compared the connectivity of these networks between groups, and between baseline and 18‐month follow‐up in patients. Third, we assessed the association in the connectivity changes between the 2 networks, and with cognitive performance. Results We found decreased connectivity in patients specifically between the hippocampus and the posterior–medial network, together with increased connectivity between several MTL subregions and the anterior–temporal network. Moreover, changes in the posterior–medial and anterior–temporal networks were interrelated such that decreased MTL–posterior–medial connectivity was associated with increased MTL–anterior–temporal connectivity. Finally, both MTL–posterior–medial decrease and MTL–anterior–temporal increase predicted cognitive decline. Interpretation Our findings demonstrate that longitudinal connectivity changes in the posterior–medial and anterior–temporal hippocampal networks are linked together and that they both contribute to cognitive decline in Alzheimer's disease. These results shed light on the critical role of the posterior–medial and anterior–temporal networks in Alzheimer's disease pathophysiology and clinical symptoms. ANN NEUROL 2021;90:391–406
Collapse
Affiliation(s)
- Sophie Dautricourt
- Normandie Univ, UNICAEN, INSERM, PhIND.,Neurology Department, Caen-Normandie University Hospital, Caen, France
| | | | | | | | | | - Nicolas Delcroix
- CNRS, Unité Mixte de Service-3408, GIP CYCERON, Bd Henri Becquerel, BP5229, 14074 Caen cedex, France
| | - Francis Eustache
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, PhIND.,Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Vincent de la Sayette
- Neurology Department, Caen-Normandie University Hospital, Caen, France.,Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | | |
Collapse
|
18
|
Interactive effects of the APOE and BDNF polymorphisms on functional brain connectivity: the Tasmanian Healthy Brain Project. Sci Rep 2021; 11:14514. [PMID: 34267235 PMCID: PMC8282840 DOI: 10.1038/s41598-021-93610-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/24/2021] [Indexed: 11/27/2022] Open
Abstract
Resting-state functional magnetic resonance imaging measures pathological alterations in neurodegenerative diseases, including Alzheimer’s disease. Disruption in functional connectivity may be a potential biomarker of ageing and early brain changes associated with AD-related genes, such as APOE and BDNF. The objective of this study was to identify group differences in resting-state networks between individuals with BDNF Val66Met and APOE polymorphisms in cognitively healthy older persons. Dual regression following Independent Components Analysis were performed to examine differences associated with these polymorphisms. APOE ε3 homozygotes showed stronger functional connectivity than APOE ε4 carriers. Males showed stronger functional connectivity between the Default Mode Network (DMN) and grey matter premotor cortex, while females showed stronger functional connectivity between the executive network and lateral occipital cortex and parahippocampal gyrus. Additionally, we found that with increasing cognitive reserve, functional connectivity increased within the Dorsal Attention Network (DAN), but decreased within the DMN. Interaction effects indicated stronger functional connectivity in Met/ε3 carriers than in Met/ε4 and Val/ε4 within both the DMN and DAN. APOE/BDNF interactions may therefore influence the integrity of functional brain connections in older adults, and may underlie a vulnerable phenotype for subsequent Alzheimer’s-type dementia.
Collapse
|
19
|
Tracking whole-brain connectivity dynamics in the resting-state fMRI with post-facial paralysis synkinesis. Brain Res Bull 2021; 173:108-115. [PMID: 33933525 DOI: 10.1016/j.brainresbull.2021.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/26/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Resting-state functional magnetic resonance imaging (rs-fMRI) is widely applied to explore abnormal functional connectivity (FC) in patients with post-facial paralysis synkinesis (PFPS). However, most studies considered steady spatial-temporal signal interactions between distinct brain regions during the period of scanning. OBJECTIVE In this study, we aim to investigate abnormal dynamic functional connectivity (dFC) in PFPS patients. METHODS We enrolled 31 PFPS patients and 19 healthy controls. All participants underwent rs-fMRI. Sliding windows approach was applied to construct dFC matrices. Next, these matrices were clustered into distinct states using the k-means clustering algorithm. RESULTS We found that it was not the dFC patterns, but rather the temporal properties including the mean dwell time (MDT) and occurrence frequencies, that showed a significant difference between PFPS patients and healthy controls. Two randomly clustered dFC states were recognized for both groups. Among them, State 1 showed significantly lower connectivity compared to State 2 in patients group. Compared to healthy controls, the duration spent by the PFPS patients in the state with lower connectivity significantly increased and is positively correlated with the better facial function. CONCLUSIONS In conclusion, aberrant dFC is a fundamental feature of brain dysfunction in PFPS patients, which is associated with the facial nerve function. These findings may contribute to a better understanding of the abnormal brain reorganization mechanisms in PFPS patients.
Collapse
|
20
|
Ma ZZ, Lu YC, Wu JJ, Li SS, Ding W, Xu JG. Alteration of spatial patterns at the network-level in facial synkinesis: an independent component and connectome analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:240. [PMID: 33708867 PMCID: PMC7940883 DOI: 10.21037/atm-20-4865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background The treatment of post-facial palsy synkinesis (PFPS) remains inadequate. Previous studies have confirmed that brain plasticity is involved in the process of functional restoration. Isolated activation has been well studied, however, the brain works as an integrity of several isolated regions. This study aimed to assess the alteration of the brain network topology with overall and local characteristics of information dissemination. Understanding the neural mechanisms of PFPS could help to improve therapy options and prognosis. Methods Patients with facial synkinesis and healthy controls (HCs) were estimated using functional magnetic resonance imaging (fMRI) of resting-state. Subsequently, an independent component analysis (ICA) was used to extract four subnets from the whole brain. Then we used the measurements of graph theory and calculated in the whole-brain network and each sub-network. Results We found no significant difference between the patient group and the HCs on the whole-brain scale. Then we identified four subnetworks from the resting-state data. In the sub-network property analysis, patients' locally distributed properties in the sensorimotor network (SMN) and ventral default mode network (vDMN) were reduced. It revealed that γ (10,000 permutations, P=0.048) and S (10,000 permutations, P=0.022) within the SMN progressively decreased in patients with PFPS. For the analysis of vDMN, significant differences were found in γ (10,000 permutations, P=0.019), Elocal (10,000 permutations, P=0.008), and β (10,000 permutations, P=0.011) between the groups. Conclusions Our results demonstrated a reduction in local network processing efficiency in patients with PFPS. Therefore, we speculate that decreased characteristics in the intra-vDMN and intra-SMN, rather than the whole-brain network, may serve distinct symptoms such as facial nerve damage or more synkinetic movements. This finding of the alteration of network properties is a small step forward to help uncover the underlying mechanism.
Collapse
Affiliation(s)
- Zhen-Zhen Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye-Chen Lu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si-Si Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Ding
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Abnormal cortical regions and subsystems in whole brain functional connectivity of mild cognitive impairment and Alzheimer's disease: a preliminary study. Aging Clin Exp Res 2021; 33:367-381. [PMID: 32277436 DOI: 10.1007/s40520-020-01539-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
The disease roots of Alzheimer's disease (AD) are unknown. Functional connection (FC) methodology based on functional MRI data is an effective lever to investigate macroscopic neural activity patterns. However, regional properties of brain architecture have been less investigated by special markers of graph indexes in general mental disorders. In terms of the set of the abnormal edges in the FCs matrix, this paper introduces the strength index (S-scores) of region centrality on the principle of holism. Then, the important process is to investigate the S-scores of regions and subsystems in 36 healthy controls, 38 mild cognitive impairment (MCI) patients and 34 AD patients. At the edge level, abnormal FCs is numerically increasing progressively from MCI to AD brains. At the region level, the CUN.L, PAL.R, THA.L, and TPOsup.R regions are highlighted with abnormal S-scores in MCI patients. By comparison, more regions are abnormal in AD patients, which are PreCG.L, INS.R, DCG.L, AMYG.R, IOG.R, FFG.L, PoCG.L, PCUN.R, TPOsup.L, MTG.L, and TPOmid.L. Importantly, the regions in DMN have abnormal S-scores in AD groups. At the module level, the S-scores of frontal, parietal, occipital lobe, and cerebellum are found in MCI and AD patients. Meanwhile, the abnormal lateralization is inferred because of the S-scores of left and top hemisphere in the AD group. Though this is strictly a contrastive study, the S-score may be a meaningful imaging marker for excavating AD psychopathology.
Collapse
|
22
|
Zhang Y, Chen X, Liang X, Wang Z, Xie T, Wang X, Shi Y, Zeng W, Wang H. Altered Weibull Degree Distribution in Resting-State Functional Brain Networks Is Associated With Cognitive Decline in Mild Cognitive Impairment. Front Aging Neurosci 2021; 12:599112. [PMID: 33469428 PMCID: PMC7814317 DOI: 10.3389/fnagi.2020.599112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/24/2020] [Indexed: 11/28/2022] Open
Abstract
The topological organization of human brain networks can be mathematically characterized by the connectivity degree distribution of network nodes. However, there is no clear consensus on whether the topological structure of brain networks follows a power law or other probability distributions, and whether it is altered in Alzheimer's disease (AD). Here we employed resting-state functional MRI and graph theory approaches to investigate the fitting of degree distributions of the whole-brain functional networks and seven subnetworks in healthy subjects and individuals with amnestic mild cognitive impairment (aMCI), i.e., the prodromal stage of AD, and whether they are altered and correlated with cognitive performance in patients. Forty-one elderly cognitively healthy controls and 30 aMCI subjects were included. We constructed functional connectivity matrices among brain voxels and examined nodal degree distributions that were fitted by maximum likelihood estimation. In the whole-brain networks and all functional subnetworks, the connectivity degree distributions were fitted better by the Weibull distribution [f(x)~x(β−1)e(−λxβ)] than power law or power law with exponential cutoff. Compared with the healthy control group, the aMCI group showed lower Weibull β parameters (shape factor) in both the whole-brain networks and all seven subnetworks (false-discovery rate-corrected, p < 0.05). These decreases of the Weibull β parameters in the whole-brain networks and all subnetworks except for ventral attention were associated with reduced cognitive performance in individuals with aMCI. Thus, we provided a short-tailed model to capture intrinsic connectivity structure of the human brain functional networks in health and disease.
Collapse
Affiliation(s)
- Yifei Zhang
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Xiaodan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Xinyuan Liang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Zhijiang Wang
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Teng Xie
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiao Wang
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yuhu Shi
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Weiming Zeng
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Huali Wang
- Dementia Care and Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,Beijing Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China.,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
23
|
Sinha N, Berg CN, Yassa MA, Gluck MA. Increased dynamic flexibility in the medial temporal lobe network following an exercise intervention mediates generalization of prior learning. Neurobiol Learn Mem 2021; 177:107340. [PMID: 33186745 PMCID: PMC7861122 DOI: 10.1016/j.nlm.2020.107340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/29/2020] [Accepted: 11/01/2020] [Indexed: 11/28/2022]
Abstract
Recent work has conceptualized the brain as a network comprised of groups of sub-networks or modules. "Flexibility" of brain network(s) indexes the dynamic reconfiguration of comprising modules. Using novel techniques from dynamic network neuroscience applied to high-resolution resting-state functional magnetic resonance imaging (fMRI), the present study investigated the effects of an aerobic exercise intervention on the dynamic rearrangement of modular community structure-a measure of neural flexibility-within the medial temporal lobe (MTL) network. The MTL is one of the earliest brain regions impacted by Alzheimer's disease. It is also a major site of neuroplasticity that is sensitive to the effects of exercise. In a two-group non-randomized, repeated measures and matched control design with 34 healthy older adults, we observed an exercise-related increase in flexibility within the MTL network. Furthermore, MTL network flexibility mediated the beneficial effect aerobic exercise had on mnemonic flexibility, as measured by the ability to generalize past learning to novel task demands. Our results suggest that exercise exerts a rehabilitative and protective effect on MTL function, resulting in dynamically evolving networks of regions that interact in complex communication patterns. These reconfigurations may underlie exercise-induced improvements on cognitive measures of generalization, which are sensitive to subtle changes in the MTL.
Collapse
Affiliation(s)
- Neha Sinha
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, NJ, USA.
| | - Chelsie N Berg
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, NJ, USA.
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
| | - Mark A Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, NJ, USA.
| |
Collapse
|
24
|
Franzmeier N, Ren J, Damm A, Monté-Rubio G, Boada M, Ruiz A, Ramirez A, Jessen F, Düzel E, Rodríguez Gómez O, Benzinger T, Goate A, Karch CM, Fagan AM, McDade E, Buerger K, Levin J, Duering M, Dichgans M, Suárez-Calvet M, Haass C, Gordon BA, Lim YY, Masters CL, Janowitz D, Catak C, Wolfsgruber S, Wagner M, Milz E, Moreno-Grau S, Teipel S, Grothe MJ, Kilimann I, Rossor M, Fox N, Laske C, Chhatwal J, Falkai P, Perneczky R, Lee JH, Spottke A, Boecker H, Brosseron F, Fliessbach K, Heneka MT, Nestor P, Peters O, Fuentes M, Menne F, Priller J, Spruth EJ, Franke C, Schneider A, Westerteicher C, Speck O, Wiltfang J, Bartels C, Araque Caballero MÁ, Metzger C, Bittner D, Salloway S, Danek A, Hassenstab J, Yakushev I, Schofield PR, Morris JC, Bateman RJ, Ewers M. The BDNF Val66Met SNP modulates the association between beta-amyloid and hippocampal disconnection in Alzheimer's disease. Mol Psychiatry 2021; 26:614-628. [PMID: 30899092 PMCID: PMC6754794 DOI: 10.1038/s41380-019-0404-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/19/2019] [Accepted: 02/14/2019] [Indexed: 01/29/2023]
Abstract
In Alzheimer's disease (AD), a single-nucleotide polymorphism in the gene encoding brain-derived neurotrophic factor (BDNFVal66Met) is associated with worse impact of primary AD pathology (beta-amyloid, Aβ) on neurodegeneration and cognitive decline, rendering BDNFVal66Met an important modulating factor of cognitive impairment in AD. However, the effect of BDNFVal66Met on functional networks that may underlie cognitive impairment in AD is poorly understood. Using a cross-validation approach, we first explored in subjects with autosomal dominant AD (ADAD) from the Dominantly Inherited Alzheimer Network (DIAN) the effect of BDNFVal66Met on resting-state fMRI assessed functional networks. In seed-based connectivity analysis of six major large-scale networks, we found a stronger decrease of hippocampus (seed) to medial-frontal connectivity in the BDNFVal66Met carriers compared to BDNFVal homozogytes. BDNFVal66Met was not associated with connectivity in any other networks. Next, we tested whether the finding of more pronounced decrease in hippocampal-medial-frontal connectivity in BDNFVal66Met could be also found in elderly subjects with sporadically occurring Aβ, including a group with subjective cognitive decline (N = 149, FACEHBI study) and a group ranging from preclinical to AD dementia (N = 114, DELCODE study). In both of these independently recruited groups, BDNFVal66Met was associated with a stronger effect of more abnormal Aβ-levels (assessed by biofluid-assay or amyloid-PET) on hippocampal-medial-frontal connectivity decreases, controlled for hippocampus volume and other confounds. Lower hippocampal-medial-frontal connectivity was associated with lower global cognitive performance in the DIAN and DELCODE studies. Together these results suggest that BDNFVal66Met is selectively associated with a higher vulnerability of hippocampus-frontal connectivity to primary AD pathology, resulting in greater AD-related cognitive impairment.
Collapse
Affiliation(s)
- Nicolai Franzmeier
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Jinyi Ren
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Alexander Damm
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Gemma Monté-Rubio
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain
| | - Mercè Boada
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Agustín Ruiz
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Alfredo Ramirez
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany ,grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Frank Jessen
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Emrah Düzel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Octavio Rodríguez Gómez
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Tammie Benzinger
- grid.4367.60000 0001 2355 7002Department of Radiology, Washington University in St Louis, St Louis, MO USA ,grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA
| | - Alison Goate
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Ronald M. Loeb Center for Alzheimer’s Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Celeste M. Karch
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University in St Louis, St Louis, MO USA
| | - Anne M. Fagan
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Eric McDade
- grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Katharina Buerger
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Johannes Levin
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XDepartment of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Duering
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Martin Dichgans
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marc Suárez-Calvet
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.430077.7Barcelonabeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Catalonia Spain ,grid.5252.00000 0004 1936 973XFaculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Haass
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XFaculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Brian A. Gordon
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Psychological and Brain Sciences, Washington University, St. Louis, MO USA
| | - Yen Ying Lim
- grid.1008.90000 0001 2179 088XThe Florey Institute, The University of Melbourne, Parkville, VIC Australia
| | - Colin L. Masters
- grid.1008.90000 0001 2179 088XThe Florey Institute, The University of Melbourne, Parkville, VIC Australia
| | - Daniel Janowitz
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Cihan Catak
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Steffen Wolfsgruber
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Wagner
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Esther Milz
- grid.6190.e0000 0000 8580 3777Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Sonia Moreno-Grau
- grid.477255.60000 0004 1765 5601Fundació ACE, Alzheimer Treatment and Research Center, Barcelona, Spain ,grid.451322.30000 0004 1770 9462CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Stefan Teipel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany ,grid.413108.f0000 0000 9737 0454Department of Psychosomatic Medicine, University Hospital Rostock, Rostock, Germany
| | - Michel J Grothe
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Ingo Kilimann
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Martin Rossor
- grid.83440.3b0000000121901201Dementia Research Centre, University College London, Queen Square, London, UK
| | - Nick Fox
- grid.83440.3b0000000121901201Dementia Research Centre, University College London, Queen Square, London, UK
| | - Christoph Laske
- grid.428620.aHertie Institute for Clinical Brain Research, Tübingen, Germany ,grid.424247.30000 0004 0438 0426Germany and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jasmeer Chhatwal
- grid.38142.3c000000041936754XMassachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, MA USA
| | - Peter Falkai
- grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Robert Perneczky
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany ,grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany ,grid.7445.20000 0001 2113 8111Neuroepidemiology and Ageing Research Unit, School of Public Health, The Imperial College of Science, Technology and Medicine, London, UK
| | - Jae-Hong Lee
- grid.413967.e0000 0001 0842 2126Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Annika Spottke
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ,grid.10388.320000 0001 2240 3300Department of Neurology, University of Bonn, Bonn, Germany
| | - Henning Boecker
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ,grid.10388.320000 0001 2240 3300Department of Radiology, University of Bonn, Bonn, Germany
| | - Frederic Brosseron
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Fliessbach
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T. Heneka
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Peter Nestor
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.1003.20000 0000 9320 7537Queensland Brain Institute, University of Queensland, Brisbane, QLD Australia
| | - Oliver Peters
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Manuel Fuentes
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Felix Menne
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Josef Priller
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropsychiatry, Charité, Berlin, Germany
| | - Eike J. Spruth
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropsychiatry, Charité, Berlin, Germany
| | - Christiana Franke
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany ,grid.6363.00000 0001 2218 4662Department of Neuropsychiatry, Charité, Berlin, Germany
| | - Anja Schneider
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Christine Westerteicher
- grid.10388.320000 0001 2240 3300Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Oliver Speck
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Leibniz Institute for Neurobiology, Magdeburg, Germany ,grid.452320.20000 0004 0404 7236Center for Behavioral Brain Sciences, Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Department for Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke University, Magdeburg, Germany
| | - Jens Wiltfang
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany ,grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany ,grid.7311.40000000123236065iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Claudia Bartels
- grid.7450.60000 0001 2364 4210Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Miguel Ángel Araque Caballero
- grid.5252.00000 0004 1936 973XInstitute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Coraline Metzger
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Daniel Bittner
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Stephen Salloway
- grid.40263.330000 0004 1936 9094Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI USA
| | - Adrian Danek
- grid.5252.00000 0004 1936 973XDepartment of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jason Hassenstab
- grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Igor Yakushev
- grid.6936.a0000000123222966Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Peter R. Schofield
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Barker Street Randwick, Sydney, NSW 2031 Australia ,grid.1005.40000 0004 4902 0432School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - John C. Morris
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University in St Louis, St Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Randall J. Bateman
- grid.4367.60000 0001 2355 7002Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Neurology, Washington University in St. Louis, St. Louis, MO USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.
| |
Collapse
|
25
|
Horvath AA, Csernus EA, Lality S, Kaminski RM, Kamondi A. Inhibiting Epileptiform Activity in Cognitive Disorders: Possibilities for a Novel Therapeutic Approach. Front Neurosci 2020; 14:557416. [PMID: 33177974 PMCID: PMC7593384 DOI: 10.3389/fnins.2020.557416] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Cognitive impairment is a common and seriously debilitating symptom of various mental and neurological disorders including autism, attention deficit hyperactivity disorder, multiple sclerosis, epilepsy, and neurodegenerative diseases, like Alzheimer's disease. In these conditions, high prevalence of epileptiform activity emerges as a common pathophysiological hallmark. Growing body of evidence suggests that this discrete but abnormal activity might have a long-term negative impact on cognitive performance due to neuronal circuitries' remodeling, altered sleep structure, pathological hippocampo-cortical coupling, and even progressive neuronal loss. In animal models, epileptiform activity was shown to enhance the formation of pathological amyloid and tau proteins that in turn trigger network hyperexcitability. Abolishing epileptiform discharges might slow down the cognitive deterioration. These findings might provide basis for therapeutic use of antiepileptic drugs in neurodegenerative cognitive disorders. The aim of our review is to describe the data on the prevalence of epileptiform activity in various cognitive disorders, to summarize the current knowledge of the mechanisms of epileptic activity in relation to cognitive impairment, and to explore the utility of antiepileptic drugs in the therapy of cognitive disorders. We also propose future directions for drug development and novel therapeutic interventions targeting epileptiform discharges in these disorders.
Collapse
Affiliation(s)
- Andras Attila Horvath
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Department of Neurology, National Institute of Clinical Neurosciences, Budapest, Hungary
| | | | - Sara Lality
- Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Rafal M. Kaminski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Anita Kamondi
- Department of Neurology, National Institute of Clinical Neurosciences, Budapest, Hungary
- Department of Neurology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
26
|
Pasquini L, Nana AL, Toller G, Brown JA, Deng J, Staffaroni A, Kim EJ, Hwang JHL, Li L, Park Y, Gaus SE, Allen I, Sturm VE, Spina S, Grinberg LT, Rankin KP, Kramer JH, Rosen HJ, Miller BL, Seeley WW. Salience Network Atrophy Links Neuron Type-Specific Pathobiology to Loss of Empathy in Frontotemporal Dementia. Cereb Cortex 2020; 30:5387-5399. [PMID: 32500143 PMCID: PMC7566683 DOI: 10.1093/cercor/bhaa119] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/21/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Each neurodegenerative syndrome reflects a stereotyped pattern of cellular, regional, and large-scale brain network degeneration. In behavioral variant of frontotemporal dementia (bvFTD), a disorder of social-emotional function, von Economo neurons (VENs), and fork cells are among the initial neuronal targets. These large layer 5 projection neurons are concentrated in the anterior cingulate and frontoinsular (FI) cortices, regions that anchor the salience network, a large-scale system linked to social-emotional function. Here, we studied patients with bvFTD, amyotrophic lateral sclerosis (ALS), or both, given that these syndromes share common pathobiological and genetic factors. Our goal was to determine how neuron type-specific TAR DNA-binding protein of 43 kDa (TDP-43) pathobiology relates to atrophy in specific brain structures and to loss of emotional empathy, a cardinal feature of bvFTD. We combined questionnaire-based empathy assessments, in vivo structural MR imaging, and quantitative histopathological data from 16 patients across the bvFTD/ALS spectrum. We show that TDP-43 pathobiology within right FI VENs and fork cells is associated with salience network atrophy spanning insular, medial frontal, and thalamic regions. Gray matter degeneration within these structures mediated loss of emotional empathy, suggesting a chain of influence linking the cellular, regional/network, and behavioral levels in producing signature bvFTD clinical features.
Collapse
Affiliation(s)
- Lorenzo Pasquini
- Department of Neurology, Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Alissa L Nana
- Department of Neurology, Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Gianina Toller
- Department of Neurology, Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Jesse A Brown
- Department of Neurology, Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Jersey Deng
- Department of Neurology, Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Adam Staffaroni
- Department of Neurology, Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Eun-Joo Kim
- Department of Neurology, Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Ji-Hye L Hwang
- Department of Neurology, Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Libo Li
- Department of Neurology, Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
- Department of Psychopharmacology, Qiqihar Medical University, 333 Bukui N St, Qiqihar 161006, China
| | - Youngsoon Park
- Department of Neurology, Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Stephanie E Gaus
- Department of Neurology, Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Isabel Allen
- Department of Neurology, Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Virginia E Sturm
- Department of Neurology, Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Salvatore Spina
- Department of Neurology, Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Lea T Grinberg
- Department of Neurology, Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
- Department of Pathology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Katherine P Rankin
- Department of Neurology, Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Joel H Kramer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
- Department of Pathology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| |
Collapse
|
27
|
Irimia A, Maher AS, Chaudhari NN, Chowdhury NF, Jacobs EB. Acute cognitive deficits after traumatic brain injury predict Alzheimer's disease-like degradation of the human default mode network. GeroScience 2020; 42:1411-1429. [PMID: 32743786 DOI: 10.1007/s11357-020-00245-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) and Alzheimer's disease (AD) are prominent neurological conditions whose neural and cognitive commonalities are poorly understood. The extent of TBI-related neurophysiological abnormalities has been hypothesized to reflect AD-like neurodegeneration because TBI can increase vulnerability to AD. However, it remains challenging to prognosticate AD risk partly because the functional relationship between acute posttraumatic sequelae and chronic AD-like degradation remains elusive. Here, functional magnetic resonance imaging (fMRI), network theory, and machine learning (ML) are leveraged to study the extent to which geriatric mild TBI (mTBI) can lead to AD-like alteration of resting-state activity in the default mode network (DMN). This network is found to contain modules whose extent of AD-like, posttraumatic degradation can be accurately prognosticated based on the acute cognitive deficits of geriatric mTBI patients with cerebral microbleeds. Aside from establishing a predictive physiological association between geriatric mTBI, cognitive impairment, and AD-like functional degradation, these findings advance the goal of acutely forecasting mTBI patients' chronic deviations from normality along AD-like functional trajectories. The association of geriatric mTBI with AD-like changes in functional brain connectivity as early as ~6 months post-injury carries substantial implications for public health because TBI has relatively high prevalence in the elderly.
Collapse
Affiliation(s)
- Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA. .,Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| | - Alexander S Maher
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Nikhil N Chaudhari
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Nahian F Chowdhury
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Elliot B Jacobs
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
28
|
Ren P, Ma M, Xie G, Wu Z, Wu D. Altered complexity of resting-state BOLD activity in Alzheimer's disease-related neurodegeneration: a multiscale entropy analysis. Aging (Albany NY) 2020; 12:13571-13582. [PMID: 32649309 PMCID: PMC7377896 DOI: 10.18632/aging.103463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/27/2020] [Indexed: 11/25/2022]
Abstract
Brain complexity, which reflects the ability of the brain to adapt to a changing environment, has been found to be significantly changed with age. However, there is less evidence on the alterations of brain complexity in neurodegenerative disorders such as Alzheimer's disease (AD). Here we investigated the altered complexity of resting-state blood oxygen level-dependent signals in AD-related neurodegeneration using multiscale entropy (MSE) analysis. All participants were recruited from the Alzheimer's Disease Neuroimaging Initiative, including healthy controls (HC, n=62), amnestic mild cognitive impairment (aMCI, n =81) patients, and Alzheimer's disease (AD, n=25) patients. Our results showed time scale-dependent MSE differences across the three groups. In scale=1, significantly changed MSE patterns (HC>aMCI>AD) were found in four brain regions, including the hippocampus, middle frontal gyrus, intraparietal lobe, and superior frontal gyrus. In scale=4, reversed MSE patterns (HC<aMCI<AD) were found in the middle frontal gyrus and middle occipital gyrus. Furthermore, the values of regional entropy were significantly associated with cognitive functions positively on the short time scale, while negatively on the longer time scale. Our findings suggest that MSE could be a reliable measure for characterizing brain deterioration in AD, and may provide insights into the neural mechanism of AD-related neurodegeneration.
Collapse
Affiliation(s)
- Ping Ren
- Shenzhen Mental Health Center, Shenzhen, Guangdong, China.,Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Manxiu Ma
- Center for Neurobiology Research, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA
| | - Guohua Xie
- Shenzhen Mental Health Center, Shenzhen, Guangdong, China.,Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Zhiwei Wu
- Shenzhen Mental Health Center, Shenzhen, Guangdong, China.,Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Donghui Wu
- Shenzhen Mental Health Center, Shenzhen, Guangdong, China.,Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | | |
Collapse
|
29
|
Pasquini L, Palhano-Fontes F, Araujo DB. Subacute effects of the psychedelic ayahuasca on the salience and default mode networks. J Psychopharmacol 2020; 34:623-635. [PMID: 32255395 DOI: 10.1177/0269881120909409] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Neuroimaging studies have just begun to explore the acute effects of psychedelics on large-scale brain networks' functional organization. Even less is known about the neural correlates of subacute effects taking place days after the psychedelic experience. This study explores the subacute changes of primary sensory brain networks and networks supporting higher-order affective and self-referential functions 24 hours after a single session with the psychedelic ayahuasca. METHODS We leveraged task-free functional magnetic resonance imaging data 1 day before and 1 day after a randomized placebo-controlled trial exploring the effects of ayahuasca in naïve healthy participants (21 placebo/22 ayahuasca). We derived intra- and inter-network functional connectivity of the salience, default mode, visual, and sensorimotor networks, and assessed post-session connectivity changes between the ayahuasca and placebo groups. Connectivity changes were associated with Hallucinogen Rating Scale scores assessed during the acute effects. RESULTS Our findings revealed increased anterior cingulate cortex connectivity within the salience network, decreased posterior cingulate cortex connectivity within the default mode network, and increased connectivity between the salience and default mode networks 1 day after the session in the ayahuasca group compared to placebo. Connectivity of primary sensory networks did not differ between groups. Salience network connectivity increases correlated with altered somesthesia scores, decreased default mode network connectivity correlated with altered volition scores, and increased salience default mode network connectivity correlated with altered affect scores. CONCLUSION These findings provide preliminary evidence for subacute functional changes induced by the psychedelic ayahuasca on higher-order cognitive brain networks that support interoceptive, affective, and self-referential functions.
Collapse
Affiliation(s)
- Lorenzo Pasquini
- Memory and Aging Center, University of California, San Francisco, United States of America
| | | | - Draulio B Araujo
- Brain Institute, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| |
Collapse
|
30
|
Berron D, van Westen D, Ossenkoppele R, Strandberg O, Hansson O. Medial temporal lobe connectivity and its associations with cognition in early Alzheimer's disease. Brain 2020; 143:1233-1248. [PMID: 32252068 PMCID: PMC7174043 DOI: 10.1093/brain/awaa068] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/15/2020] [Accepted: 01/26/2020] [Indexed: 12/12/2022] Open
Abstract
Human episodic memory critically depends on subregions of the medial temporal lobe, which are part of functional brain systems such as the anterior-temporal and the posterior-medial system. Here we analysed how Alzheimer's pathology affects functional connectivity within these systems. Data from 256 amyloid-β-negative cognitively unimpaired, 103 amyloid-β-positive cognitively unimpaired, and 83 amyloid-β-positive individuals with mild cognitive impairment were analysed. Amyloid-β and tau pathology were measured using the CSF amyloid-β42/40 ratio and phosphorylated tau, respectively. We found that amyloid-β-positive cognitively unimpaired individuals were mainly characterized by decreased functional connectivity between the medial temporal lobe and regions in the anterior-temporal system, most prominently between left perirhinal/entorhinal cortices and medial prefrontal cortex. Furthermore, correlation analysis in this group revealed decreasing functional connectivity between bilateral perirhinal/entorhinal cortices, anterior hippocampus and posterior-medial regions with increasing levels of phosphorylated tau. The amyloid-β-positive individuals with mild cognitive impairment mostly exhibited reduced connectivity between the medial temporal lobe and posterior-medial regions, predominantly between the anterior hippocampus and posterior cingulate cortex. In addition, they showed hyperconnectivity within the medial temporal lobe and its immediate proximity. Lower medial temporal-cortical functional connectivity networks resulting from the group comparisons of cognitively unimpaired individuals were associated with reduced memory performance and more rapid longitudinal memory decline as shown by linear mixed-effects regression analysis. Finally, we found that reduced medial temporal-cortical connectivity in mildly cognitively impaired individuals was related to reduced entorhinal thickness and white matter integrity of the parahippocampal cingulum and the fornix. No such relationships were found in cognitively unimpaired individuals. In conclusion, our findings show that the earliest changes in preclinical Alzheimer's disease might involve decreased connectivity within the anterior-temporal system, and early changes in connectivity might be related to memory impairment, but not to structural changes. With disease progression and increased tau pathology, medial temporal functional connectivity with posterior-medial regions seems to be increasingly impaired. In individuals with mild cognitive impairment, reduced functional connectivity is associated with structural brain changes as well as the emergence of locally increased connectivity patterns. Thus, functional connectivity between the medial temporal lobe and the anterior-temporal and posterior-medial system could serve as stage-specific functional markers in early Alzheimer's disease.
Collapse
Affiliation(s)
- David Berron
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Danielle van Westen
- Diagnostic Radiology, Lund University, Lund, Sweden
- Image and Function, Skane University Hospital, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
31
|
Multiparametric imaging hippocampal neurodegeneration and functional connectivity with simultaneous PET/MRI in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2020; 47:2440-2452. [PMID: 32157432 PMCID: PMC7396401 DOI: 10.1007/s00259-020-04752-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Purpose The objective of this study is to investigate the hippocampal neurodegeneration and its associated aberrant functions in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) patients using simultaneous PET/MRI. Methods Forty-two cognitively normal controls (NC), 38 MCI, and 22 AD patients were enrolled in this study. All subjects underwent 18F-FDG PET/functional MRI (fMRI) and high-resolution T1-weighted MRI scans on a hybrid GE Signa PET/MRI scanner. Neurodegeneration in hippocampus and its subregions was quantified by regional gray matter volume and 18F-FDG standardized uptake value ratio (SUVR) relative to cerebellum. An iterative reblurred Van Cittert iteration method was used for voxelwise partial volume correction on 18F-FDG PET images. Regional gray matter volume was estimated from voxel-based morphometric analysis with MRI. fMRI data were analyzed after slice time correction and head motion correction using statistical parametric mapping (SPM12) with DPARSF toolbox. The regions of interest including hippocampus, cornu ammonis (CA1), CA2/3/dentate gyrus (DG), and subiculum were defined in the standard MNI space. Results Patient groups had reduced SUVR, gray matter volume, and functional connectivity compared to NC in CA1, CA2/3/DG, and subiculum (AD < MCI < NC). There was a linear correlation between the left CA2/3DG gray matter volume and 18F-FDG SUVR in AD patients (P < 0.001, r = 0.737). Significant correlation was also found between left CA2/3/DG-superior medial frontal gyrus functional connectivity and left CA2/3/DG hypometabolism in patients with AD. The functional connectivity of right CA1-precuneus in patients with MCI and right subiculum-superior frontal gyrus in patients with AD was positively correlated with mini mental status examination scores (P < 0.05). Conclusion Our findings demonstrate that the associations existed at subregional hippocampal level between the functional connectivity measured by fMRI and neurodegeneration measured by structural MRI and 18F-FDG PET. Our results may provide a basis for precision neuroimaging of hippocampus in AD.
Collapse
|
32
|
Roger E, Pichat C, Torlay L, David O, Renard F, Banjac S, Attyé A, Minotti L, Lamalle L, Kahane P, Baciu M. Hubs disruption in mesial temporal lobe epilepsy. A resting-state fMRI study on a language-and-memory network. Hum Brain Mapp 2019; 41:779-796. [PMID: 31721361 PMCID: PMC7268007 DOI: 10.1002/hbm.24839] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/23/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) affects the brain networks at several levels and patients suffering from mTLE experience cognitive impairment for language and memory. Considering the importance of language and memory reorganization in this condition, the present study explores changes of the embedded language‐and‐memory network (LMN) in terms of functional connectivity (FC) at rest, as measured with functional MRI. We also evaluate the cognitive efficiency of the reorganization, that is, whether or not the reorganizations support or allow the maintenance of optimal cognitive functioning despite the seizure‐related damage. Data from 37 patients presenting unifocal mTLE were analyzed and compared to 48 healthy volunteers in terms of LMN‐FC using two methods: pairwise correlations (region of interest [ROI]‐to‐ROI) and graph theory. The cognitive efficiency of the LMN‐FC reorganization was measured using correlations between FC parameters and language and memory scores. Our findings revealed a large perturbation of the LMN hubs in patients. We observed a hyperconnectivity of limbic areas near the dysfunctional hippocampus and mainly a hypoconnectivity for several cortical regions remote from the dysfunctional hippocampus. The loss of FC was more important in left mTLE (L‐mTLE) than in right (R‐mTLE) patients. The LMN‐FC reorganization may not be always compensatory and not always useful for patients as it may be associated with lower cognitive performance. We discuss the different connectivity patterns obtained and conclude that interpretation of FC changes in relation to neuropsychological scores is important to determine cognitive efficiency, suggesting the concept of “connectome” would gain to be associated with a “cognitome” concept.
Collapse
Affiliation(s)
- Elise Roger
- LPNC, CNRS, UMR 5105, University Grenoble Alpes, Grenoble, France
| | - Cedric Pichat
- LPNC, CNRS, UMR 5105, University Grenoble Alpes, Grenoble, France
| | - Laurent Torlay
- LPNC, CNRS, UMR 5105, University Grenoble Alpes, Grenoble, France
| | - Olivier David
- Grenoble Institute of Neuroscience, INSERM, Brain Stimulation and System Neuroscience, University Grenoble Alpes, Grenoble, France
| | | | - Sonja Banjac
- LPNC, CNRS, UMR 5105, University Grenoble Alpes, Grenoble, France
| | | | - Lorella Minotti
- Grenoble Institute of Neuroscience, Synchronisation et Modulation des Réseaux Neuronaux dans l'Epilepsie and Neurology Department, University Grenoble Alpes, Grenoble, France
| | | | - Philippe Kahane
- Grenoble Institute of Neuroscience, Synchronisation et Modulation des Réseaux Neuronaux dans l'Epilepsie and Neurology Department, University Grenoble Alpes, Grenoble, France
| | - Monica Baciu
- LPNC, CNRS, UMR 5105, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
33
|
Berg CN, Sinha N, Gluck MA. The Effects of APOE and ABCA7 on Cognitive Function and Alzheimer's Disease Risk in African Americans: A Focused Mini Review. Front Hum Neurosci 2019; 13:387. [PMID: 31749691 PMCID: PMC6848225 DOI: 10.3389/fnhum.2019.00387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/16/2019] [Indexed: 01/12/2023] Open
Abstract
African Americans have double the prevalence of Alzheimer's disease (AD), as compared to European Americans. However, the underlying causes of this health disparity are due to a multitude of environmental, lifestyle, and genetic factors that are not yet fully understood. Here, we review the effects of the two largest genetic risk factors for AD in African Americans: Apolipoprotein E (APOE) and ABCA7. We will describe the direct effects of genetic variation on neural correlates of cognitive function and report the indirect modulating effects of genetic variation on modifiable AD risk factors, such as aerobic fitness. As a means of integrating previous findings, we present a novel schematic diagram to illustrate the many factors that contribute to AD risk and impaired cognitive function in older African Americans. Finally, we discuss areas that require further inquiry, and stress the importance of racially diverse and representative study populations.
Collapse
Affiliation(s)
- Chelsie N. Berg
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, United States
| | | | - Mark A. Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, United States
| |
Collapse
|
34
|
Tau deposition is associated with functional isolation of the hippocampus in aging. Nat Commun 2019; 10:4900. [PMID: 31653847 PMCID: PMC6814780 DOI: 10.1038/s41467-019-12921-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/03/2019] [Indexed: 01/06/2023] Open
Abstract
The tau protein aggregates in aging and Alzheimer disease and may lead to memory loss through disruption of medial temporal lobe (MTL)-dependent memory systems. Here, we investigated tau-mediated mechanisms of hippocampal dysfunction that underlie the expression of episodic memory decline using fMRI measures of hippocampal local coherence (regional homogeneity; ReHo), distant functional connectivity and tau-PET. We show that age and tau pathology are related to higher hippocampal ReHo. Functional disconnection between the hippocampus and other components of the MTL memory system, particularly an anterior-temporal network specialized for object memory, is also associated with higher hippocampal ReHo and greater tau burden in anterior-temporal regions. These associations are not observed in the posteromedial network, specialized for context/spatial information. Higher hippocampal ReHo predicts worse memory performance. These findings suggest that tau pathology plays a role in disconnecting the hippocampus from specific MTL memory systems leading to increased local coherence and memory decline. Deposition of tau protein aggregates occurs during aging and Alzheimer disease. Here, the authors show that tau burden in the anterior-temporal memory network is associated with disrupted fMRI connectivity and functional isolation of the hippocampus from other memory network components.
Collapse
|
35
|
Li J, Jin D, Li A, Liu B, Song C, Wang P, Wang D, Xu K, Yang H, Yao H, Zhou B, Bejanin A, Chetelat G, Han T, Lu J, Wang Q, Yu C, Zhang X, Zhou Y, Zhang X, Jiang T, Liu Y, Han Y. ASAF: altered spontaneous activity fingerprinting in Alzheimer's disease based on multisite fMRI. Sci Bull (Beijing) 2019; 64:998-1010. [PMID: 36659811 DOI: 10.1016/j.scib.2019.04.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 01/21/2023]
Abstract
Several monocentric studies have noted alterations in spontaneous brain activity in Alzheimer's disease (AD), although there is no consensus on the altered amplitude of low-frequency fluctuations in AD patients. The main aim of the present study was to identify a reliable and reproducible abnormal brain activity pattern in AD. The amplitude of local brain activity (AM), which can provide fast mapping of spontaneous brain activity across the whole brain, was evaluated based on multisite rs-fMRI data for 688 subjects (215 normal controls (NCs), 221 amnestic mild cognitive impairment (aMCI) 252 AD). Two-sample t-tests were used to detect group differences between AD patients and NCs from the same site. Differences in the AM maps were statistically analyzed via the Stouffer's meta-analysis. Consistent regions of lower spontaneous brain activity in the default mode network and increased activity in the bilateral hippocampus/parahippocampus, thalamus, caudate nucleus, orbital part of the middle frontal gyrus and left fusiform were observed in the AD patients compared with those in NCs. Significant correlations (P < 0.05, Bonferroni corrected) between the normalized amplitude index and Mini-Mental State Examination scores were found in the identified brain regions, which indicates that the altered brain activity was associated with cognitive decline in the patients. Multivariate analysis and leave-one-site-out cross-validation led to a 78.49% prediction accuracy for single-patient classification. The altered activity patterns of the identified brain regions were largely correlated with the FDG-PET results from another independent study. These results emphasized the impaired brain activity to provide a robust and reproducible imaging signature of AD.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Dan Jin
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ang Li
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Liu
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Chengyuan Song
- Department of Neurology, Qilu Hospital of Shandong University, Ji'nan 250012, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China; Institute of Geriatrics and Gerontology, Chinese PLA General Hospital, Beijing 100853, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital, Ji'nan 250012, China
| | - Kaibin Xu
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongwei Yang
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Hongxiang Yao
- Department of Radiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Bo Zhou
- Institute of Geriatrics and Gerontology, Chinese PLA General Hospital, Beijing 100853, China
| | - Alexandre Bejanin
- Université Normandie, Inserm, Université de Caen-Normandie, Inserm UMR-S U1237, GIP Cyceron, Caen 14000, France
| | - Gael Chetelat
- Université Normandie, Inserm, Université de Caen-Normandie, Inserm UMR-S U1237, GIP Cyceron, Caen 14000, France
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Qing Wang
- Department of Radiology, Qilu Hospital, Ji'nan 250012, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xinqing Zhang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Xi Zhang
- Institute of Geriatrics and Gerontology, Chinese PLA General Hospital, Beijing 100853, China
| | - Tianzi Jiang
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yong Liu
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100053, China; Beijing Institute of Geriatrics, Beijing 100053, China; National Clinical Research Center for Geriatric Disorders, Beijing 100053, China.
| |
Collapse
|
36
|
Rostral-Caudal Hippocampal Functional Convergence Is Reduced Across the Alzheimer's Disease Spectrum. Mol Neurobiol 2019; 56:8336-8344. [PMID: 31230260 DOI: 10.1007/s12035-019-01671-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
Beginning in the early stages of Alzheimer's disease (AD), the hippocampus reduces its functional connections to other cortical regions due to synaptic depletion. However, little is known regarding connectivity abnormalities within the hippocampus. Here, we describe rostral-caudal hippocampal convergence (rcHC), a metric of the overlap between the rostral and caudal hippocampal functional networks, across the clinical spectrum of AD. We predicted a decline in rostral-caudal hippocampal convergence in the early stages of the disease. Using fMRI, we generated resting-state hippocampal functional networks across 56 controls, 48 early MCI (EMCI), 35 late MCI (LMCI), and 31 AD patients from the Alzheimer's Disease Neuroimaging Initiative cohort. For each diagnostic group, we performed a conjunction analysis and compared the rostral and caudal hippocampal network changes using a mixed effects linear model to estimate the convergence and differences between these networks, respectively. The conjunction analysis showed a reduction of rostral-caudal hippocampal convergence strength from early MCI to AD, independent of hippocampal atrophy. Our results demonstrate a parallel between the functional convergence within the hippocampus and disease stage, which is independent of brain atrophy. These findings support the concept that network convergence might contribute as a biomarker for connectivity dysfunction in early stages of AD.
Collapse
|
37
|
Pasquini L, Rahmani F, Maleki-Balajoo S, La Joie R, Zarei M, Sorg C, Drzezga A, Tahmasian M. Medial Temporal Lobe Disconnection and Hyperexcitability Across Alzheimer's Disease Stages. J Alzheimers Dis Rep 2019; 3:103-112. [PMID: 31259307 PMCID: PMC6597961 DOI: 10.3233/adr-190121] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The posteromedial cortex (PMC) and medial temporal lobes (MTL) are two brain regions particularly vulnerable in Alzheimer’s disease (AD). We have reviewed the spatiotemporal patterns of amyloid-β and tau accumulation, local MTL functional alterations and MTL-PMC network reconfiguration, and propose a model to relate these elements to each other. Functional and structural MTL-PMC disconnection happen concomitant with amyloid-β plaques and neurofibrillary tau accumulation within these same regions. Ongoing disconnection is accompanied by dysfunctional intrinsic local MTL circuit hyperexcitability, which exacerbates across distinct clinical stages of AD. Our overarching model proposes a sequence of events relating the spatiotemporal patterns of amyloid-β and tau accumulation to MTL-PMC disconnection and local MTL hyperexcitability. We hypothesize that cortical PMC amyloid-β pathology induces long-range information processing deficits through functional and structural MTL-PMC dysconnectivity at early disease stages, which in turn drives local MTL circuit hyperexcitability. Intrinsic local MTL circuit hyperexcitability subsequently accelerates local age-related tau deposition, facilitating tau spread from the MTL to the PMC, eventually resulting in extensive structural degeneration of white and grey matter as the disease advances. We hope that the present model may inform future longitudinal studies needed to test the proposed sequence of events.
Collapse
Affiliation(s)
- Lorenzo Pasquini
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Farzaneh Rahmani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Maleki-Balajoo
- Department of Biomedical Engineering, Electrical Engineering Faculty, K.N. Toosi University of Technology, Tehran, Iran.,Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Renaud La Joie
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Christian Sorg
- Departments of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Departments of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center (TUM-NIC), Technische Universität München, Munich, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital of Cologne, Cologne, Germany
| | - Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
38
|
Scherr M, Utz L, Tahmasian M, Pasquini L, Grothe MJ, Rauschecker JP, Grimmer T, Drzezga A, Sorg C, Riedl V. Effective connectivity in the default mode network is distinctively disrupted in Alzheimer's disease-A simultaneous resting-state FDG-PET/fMRI study. Hum Brain Mapp 2019; 42:4134-4143. [PMID: 30697878 DOI: 10.1002/hbm.24517] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/08/2018] [Accepted: 12/28/2018] [Indexed: 02/02/2023] Open
Abstract
A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting-state functional MRI and FDG-PET data from patients with early AD (n = 35) and healthy subjects (n = 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex (p < 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures (F4,25 = 5.63, p = 0.002, r2 = 0.47), we found that EC (β = 0.45, p = 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD.
Collapse
Affiliation(s)
- Martin Scherr
- Department of Psychiatry and Psychotherapy, Technische Universität München (TUM), München, Germany.,TUM-Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, München, Germany.,Department of Neurology, Christian Doppler Medical Centre, Paracelsus Medical University Salzburg and Centre for Cognitive Neurosciences, Salzburg, Austria
| | - Lukas Utz
- TUM-Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, München, Germany.,Department of Neuroradiology, Technische Universität München (TUM), München, Germany.,Institute for Advanced Study, Technische Universität München (TUM), München, Germany
| | - Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Lorenzo Pasquini
- TUM-Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, München, Germany.,Department of Neuroradiology, Technische Universität München (TUM), München, Germany.,Memory and Aging Center, Department of Neurology, University of California, San Francisco, California
| | - Michel J Grothe
- Department for Clinical Research, German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Josef P Rauschecker
- Institute for Advanced Study, Technische Universität München (TUM), München, Germany.,Laboratory of Integrative Neuroscience and Cognition, Georgetown University Medical Center, Washington, District of Columbia
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Technische Universität München (TUM), München, Germany.,TUM-Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, München, Germany
| | | | - Christian Sorg
- Department of Psychiatry and Psychotherapy, Technische Universität München (TUM), München, Germany.,TUM-Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, München, Germany.,Department of Neuroradiology, Technische Universität München (TUM), München, Germany
| | - Valentin Riedl
- TUM-Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, München, Germany.,Department of Neuroradiology, Technische Universität München (TUM), München, Germany.,Department of Nuclear Medicine, Technische Universität München (TUM), München, Germany
| |
Collapse
|
39
|
Eyler LT, Elman JA, Hatton SN, Gough S, Mischel AK, Hagler DJ, Franz CE, Docherty A, Fennema-Notestine C, Gillespie N, Gustavson D, Lyons MJ, Neale MC, Panizzon MS, Dale AM, Kremen WS. Resting State Abnormalities of the Default Mode Network in Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2019; 70:107-120. [PMID: 31177210 PMCID: PMC6697380 DOI: 10.3233/jad-180847] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Large-scale brain networks such as the default mode network (DMN) are often disrupted in Alzheimer's disease (AD). Numerous studies have examined DMN functional connectivity in those with mild cognitive impairment (MCI), a presumed AD precursor, to discover a biomarker of AD risk. Prior reviews were qualitative or limited in scope or approach. OBJECTIVE We aimed to systematically and quantitatively review DMN resting state fMRI studies comparing MCI and healthy comparison (HC) groups. METHODS PubMed was searched for relevant articles. Study characteristics were abstracted and the number of studies showing no group difference or hyper- versus hypo-connnectivity in MCI was tallied. A voxel-wise (ES-SDM) meta-analysis was conducted to identify regional group differences. RESULTS Qualitatively, our review of 57 MCI versus HC comparisons suggests substantial inconsistency; 9 showed no group difference, 8 showed MCI > HC and 22 showed HC > MCI across the brain, and 18 showed regionally-mixed directions of effect. The meta-analysis of 31 studies revealed areas of significant hypo- and hyper-connectivity in MCI, including hypoconnectivity in the posterior cingulate cortex/precuneus (z = -3.1, p < 0.0001). Very few individual studies, however, showed patterns resembling the meta-analytic results. Methodological differences did not appear to explain inconsistencies. CONCLUSIONS The pattern of altered resting DMN function or connectivity in MCI is complex and variable across studies. To date, no index of DMN connectivity qualifies as a useful biomarker of MCI or risk for AD. Refinements to MCI diagnosis, including other biological markers, or longitudinal studies of progression to AD, might identify DMN alterations predictive of AD risk.
Collapse
Affiliation(s)
- Lisa T. Eyler
- Department of Psychiatry, University of California San Diego
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System
| | - Jeremy A. Elman
- Department of Psychiatry, University of California San Diego
| | - Sean N Hatton
- Department of Psychiatry, University of California San Diego
- Department of Neurosciences, University of California San Diego
| | - Sarah Gough
- Department of Psychiatry, University of California San Diego
| | - Anna K. Mischel
- Department of Psychiatry, University of California San Diego
| | | | - Carol E. Franz
- Department of Psychiatry, University of California San Diego
| | - Anna Docherty
- Departments of Psychiatry & Human Genetics, University of Utah School of Medicine
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego
- Department of Radiology, University of California San Diego
| | - Nathan Gillespie
- Departments of Psychiatry and Human and Molecular Genetics, Virginia Commonwealth University
| | | | | | - Michael C. Neale
- Departments of Psychiatry and Human and Molecular Genetics, Virginia Commonwealth University
| | | | - Anders M. Dale
- Department of Neurosciences, University of California San Diego
- Department of Radiology, University of California San Diego
| | - William S. Kremen
- Department of Psychiatry, University of California San Diego
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System
| |
Collapse
|
40
|
Sinha N, Reagh ZM, Tustison NJ, Berg CN, Shaw A, Myers CE, Hill D, Yassa MA, Gluck MA. ABCA7 risk variant in healthy older African Americans is associated with a functionally isolated entorhinal cortex mediating deficient generalization of prior discrimination training. Hippocampus 2018; 29:527-538. [PMID: 30318785 DOI: 10.1002/hipo.23042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/06/2018] [Accepted: 10/02/2018] [Indexed: 11/06/2022]
Abstract
Using high-resolution resting state functional magnetic resonance imaging (fMRI), the present study tested the hypothesis that ABCA7 genetic risk differentially affects intra-medial temporal lobe (MTL) functional connectivity between MTL subfields, versus internetwork connectivity of the MTL with the medial prefrontal cortex (mPFC), in nondemented older African Americans. Although the association of ABCA7 risk variants with Alzheimer's disease (AD) has been confirmed worldwide, its effect size on the relative odds of being diagnosed with AD is significantly higher in African Americans. However, little is known about the neural correlates of cognitive function in older African Americans and how they relate to AD risk conferred by ABCA7. In a case-control fMRI study of 36 healthy African Americans, we observed ABCA7 related impairments in behavioral generalization that was mediated by dissociation in entorhinal cortex (EC) resting state functional connectivity. Specifically, ABCA7 risk variant was associated with EC-hippocampus hyper-synchronization and EC-mPFC hypo-synchronization. Carriers of the risk genotype also had a significantly smaller anterolateral EC, despite our finding no group differences on standardized neuropsychological tests. Our findings suggest a model where impaired cortical connectivity leads to a more functionally isolated EC at rest, which translates into aberrant EC-hippocampus hyper-synchronization resulting in generalization deficits. While we cannot identify the exact mechanism underlying the observed alterations in EC structure and network function, considering the relevance of Aβ in ABCA7 related AD pathogenesis, the results of our study may reflect the synergistic reinforcement between amyloid and tau pathology in the EC, which significantly increases tau-induced neuronal loss and accelerates synaptic alterations. Finally, our results add to a growing literature suggesting that generalization of learning may be a useful tool for assessing the mild cognitive deficits seen in the earliest phases of prodromal AD, even before the more commonly reported deficits in episodic memory arise.
Collapse
Affiliation(s)
- Neha Sinha
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Zachariah M Reagh
- Department of Neurology, Center for Neuroscience, University of California, Davis, California
| | - Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia.,Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, Psychiatry and Neurology, University of California, Irvine, California
| | - Chelsie N Berg
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Ashlee Shaw
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Catherine E Myers
- Neurobiology Research Laboratory VA New Jersey Health Care System East Orange, NJ.,Pharmacology Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, New Jersey
| | - Diane Hill
- Office of University-Community Partnerships, Rutgers University-Newark, Newark, New Jersey
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, Psychiatry and Neurology, University of California, Irvine, California
| | - Mark A Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| |
Collapse
|
41
|
Delli Pizzi S, Punzi M, Sensi SL. Functional signature of conversion of patients with mild cognitive impairment. Neurobiol Aging 2018; 74:21-37. [PMID: 30408719 DOI: 10.1016/j.neurobiolaging.2018.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/24/2018] [Accepted: 10/04/2018] [Indexed: 02/05/2023]
Abstract
The entorhinal-hippocampal circuit is a strategic hub for cognition and the first site affected by Alzheimer's disease (AD). We investigated magnetic resonance imaging patterns of brain atrophy and functional connectivity in an Alzheimer's Disease Neuroimaging Initiative data set that included healthy controls, mild cognitive impairment (MCI), and patients with AD. Individuals with MCI were clinically evaluated 24 months after the first magnetic resonance imaging scan, and the cohort subdivided into sets of individuals who either did or did not convert to AD. The MCI group was also divided into patients who did show or not the presence of AD-related alterations in the cerebrospinal fluid. Patients with AD exhibited the collapse of the long-range hippocampal/entorhinal connectivity, pronounced cortical/subcortical atrophy, and a dramatic decline in cognitive performances. Patients with MCI who converted to AD or patients with MCI who showed the presence of AD-related alterations in the cerebrospinal fluid showed memory deficits, entorhinal/hippocampal hypoconnectivity, and concomitant atrophy of the two regions. Patients with MCI who did not convert to AD or patients with MCI who did not show the presence of AD-related alterations in the cerebrospinal fluid had no atrophy but showed hippocampal/entorhinal hyperconnectivity with selected neocortical/subcortical regions involved in memory processing and brain metastability. This hyperconnectivity may represent a compensatory strategy against the progression of cognitive impairment.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy; Center for excellence on Aging and Translational Medicine - Ce.S.I. - Me.T., "G. d'Annunzio" University, Chieti, Italy
| | - Miriam Punzi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy; Center for excellence on Aging and Translational Medicine - Ce.S.I. - Me.T., "G. d'Annunzio" University, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy; Center for excellence on Aging and Translational Medicine - Ce.S.I. - Me.T., "G. d'Annunzio" University, Chieti, Italy; Departments of Neurology and Pharmacology, Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
42
|
Mandelli ML, Welch AE, Vilaplana E, Watson C, Battistella G, Brown JA, Possin KL, Hubbard HI, Miller ZA, Henry ML, Marx GA, Santos-Santos MA, Bajorek LP, Fortea J, Boxer A, Rabinovici G, Lee S, Deleon J, Rosen HJ, Miller BL, Seeley WW, Gorno-Tempini ML. Altered topology of the functional speech production network in non-fluent/agrammatic variant of PPA. Cortex 2018; 108:252-264. [PMID: 30292076 DOI: 10.1016/j.cortex.2018.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/07/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
Non-fluent/agrammatic primary progressive aphasia (nfvPPA) is caused by neurodegeneration within the left fronto-insular speech and language production network (SPN). Graph theory is a branch of mathematics that studies network architecture (topology) by quantifying features based on its elements (nodes and connections). This approach has been recently applied to neuroimaging data to explore the complex architecture of the brain connectome, though few studies have exploited this technique in PPA. Here, we used graph theory on functional MRI resting state data from a group of 20 nfvPPA patients and 20 matched controls to investigate topological changes in response to focal neurodegeneration. We hypothesized that changes in the network architecture would be specific to the affected SPN in nfvPPA, while preserved in the spared default mode network (DMN). Topological configuration was quantified by hub location and global network metrics. Our findings showed a less efficiently wired and less optimally clustered SPN, while no changes were detected in the DMN. The SPN in the nfvPPA group showed a loss of hubs in the left fronto-parietal-temporal area and new critical nodes in the anterior left inferior-frontal and right frontal regions. Behaviorally, speech production score and rule violation errors correlated with the strength of functional connectivity of the left (lost) and right (new) regions respectively. This study shows that focal neurodegeneration within the SPN in nfvPPA is associated with network-specific topological alterations, with the loss and gain of crucial hubs and decreased global efficiency that were better accounted for through functional rather than structural changes. These findings support the hypothesis of selective network vulnerability in nfvPPA and may offer biomarkers for future behavioral intervention.
Collapse
Affiliation(s)
- Maria Luisa Mandelli
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA.
| | - Ariane E Welch
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Eduard Vilaplana
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau - Universitat Autonoma de Barcelona, Spain; Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas - CIBERNED, Spain
| | - Christa Watson
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Giovanni Battistella
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Jesse A Brown
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Katherine L Possin
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Honey I Hubbard
- Department of Communication Science and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Zachary A Miller
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Maya L Henry
- Department of Communication Sciences and Disorders, University of Texas, Austin, USA
| | - Gabe A Marx
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Miguel A Santos-Santos
- Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute-IDIBELL], L'Hospitalet de Llobregat, Barcelona, Spain; Fundació ACE Memory Clinic and Research Center, Institut Catalá de Neurociències Aplicades, Barcelona, Spain
| | - Lynn P Bajorek
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau - Universitat Autonoma de Barcelona, Spain
| | - Adam Boxer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Gil Rabinovici
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Suzee Lee
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Jessica Deleon
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California San Francisco, CA, USA; Department of Pathology, University of California San Francisco, CA, USA
| | | |
Collapse
|
43
|
Bayram E, Caldwell JZK, Banks SJ. Current understanding of magnetic resonance imaging biomarkers and memory in Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2018; 4:395-413. [PMID: 30229130 PMCID: PMC6140335 DOI: 10.1016/j.trci.2018.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Alzheimer's disease (AD) is caused by a cascade of changes to brain integrity. Neuroimaging biomarkers are important in diagnosis and monitoring the effects of interventions. As memory impairments are among the first symptoms of AD, the relationship between imaging findings and memory deficits is important in biomarker research. The most established magnetic resonance imaging (MRI) finding is hippocampal atrophy, which is related to memory decline and currently used as a diagnostic criterion for AD. While the medial temporal lobes are impacted early by the spread of neurofibrillary tangles, other networks and regional changes can be found quite early in the progression. Atrophy in several frontal and parietal regions, cortical thinning, and white matter alterations correlate with memory deficits in early AD. Changes in activation and connectivity have been detected by functional MRI (fMRI). Task-based fMRI studies have revealed medial temporal lobe hypoactivation, parietal hyperactivation, and frontal hyperactivation in AD during memory tasks, and activation patterns of these regions are also altered in preclinical and prodromal AD. Resting state fMRI has revealed alterations in default mode network activity related to memory in early AD. These studies are limited in part due to the historic inclusion of patients who had suspected AD but likely did not have the disorder. Modern biomarkers allow for more diagnostic certainty, allowing better understanding of neuroimaging markers in true AD, even in the preclinical stage. Larger patient cohorts, comparison of candidate imaging biomarkers to more established biomarkers, and inclusion of more detailed neuropsychological batteries to assess multiple aspects of memory are needed to better understand the memory deficit in AD and help develop new biomarkers. This article reviews MRI findings related to episodic memory impairments in AD and introduces a new study with multimodal imaging and comprehensive neuropsychiatric evaluation to overcome current limitations.
Collapse
Affiliation(s)
- Ece Bayram
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Jessica Z K Caldwell
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Sarah J Banks
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| |
Collapse
|
44
|
Hypermetabolism in the hippocampal formation of cognitively impaired patients indicates detrimental maladaptation. Neurobiol Aging 2018; 65:41-50. [DOI: 10.1016/j.neurobiolaging.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/27/2017] [Accepted: 01/07/2018] [Indexed: 11/22/2022]
|
45
|
Wang C, Pan Y, Liu Y, Xu K, Hao L, Huang F, Ke J, Sheng L, Ma H, Guo W. Aberrant default mode network in amnestic mild cognitive impairment: a meta-analysis of independent component analysis studies. Neurol Sci 2018; 39:919-931. [DOI: 10.1007/s10072-018-3306-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/23/2018] [Indexed: 12/24/2022]
|
46
|
Bai F, Xie C, Yuan Y, Shi Y, Zhang Z. Promoter haplotypes of interleukin-10 gene linked to cortex plasticity in subjects with risk of Alzheimer's disease. NEUROIMAGE-CLINICAL 2017; 17:587-595. [PMID: 29201645 PMCID: PMC5702877 DOI: 10.1016/j.nicl.2017.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 12/12/2022]
Abstract
The Alzheimer's disease (AD) aetiologic event is associated with brain inflammatory processes. In this study, we consider a haplotype of the IL-10 gene promoter region, − 1082A/− 819 T/− 592A (ATA haplotype), which is an additive and independent genetic risk factor for AD. Episodic memory change is the most striking cognitive alteration in AD. It remains unclear whether episodic memory networks can be affected by the ATA haplotype variant in amnestic mild cognitive impairment (aMCI), and if so, how this occurs. Thirty-nine aMCI patients and 30 healthy controls underwent resting-state functional magnetic resonance imaging. An imaging genetics approach was then utilized to investigate disease-related differences in episodic memory networks between the groups based on ATA haplotype-by-aMCI interactions. Gene-brain-behaviour relationships were then further examined. This study found that the ATA haplotype risk variant was associated with abnormal functional communications in the hippocampus-frontoparietal cortices, especially in the left hippocampal network. Moreover, these ATA haplotype carriers showed a distinct phase of hyperactivity in normal aging, with rapid declines of brain function in aMCI subjects when compared to non-ATA haplotype carriers. These findings added to the accumulating evidence that promoter haplotypes of IL-10 may be important modulators of the development of aMCI. The inflammatory factor affects the cortex-networks system in subjects with cognitive impairment The rapid declines of functional communications in cognitive impairment with ATA haplotype carriers Promoter haplotypes of interleukin-10 gene linked to cortex plasticity in cognitive impairment
Collapse
Affiliation(s)
- Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yonggui Yuan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yongmei Shi
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
47
|
de Flores R, Mutlu J, Bejanin A, Gonneaud J, Landeau B, Tomadesso C, Mézenge F, de La Sayette V, Eustache F, Chételat G. Intrinsic connectivity of hippocampal subfields in normal elderly and mild cognitive impairment patients. Hum Brain Mapp 2017; 38:4922-4932. [PMID: 28653793 PMCID: PMC6866942 DOI: 10.1002/hbm.23704] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022] Open
Abstract
Hippocampal connectivity has been widely described but connectivity specificities of hippocampal subfields and their changes in early AD are poorly known. The aim of this study was to highlight hippocampal subfield networks in healthy elderly (HE) and their changes in amnestic patients with mild cognitive impairment (aMCI). Thirty-six HE and 27 aMCI patients underwent resting-state functional MRI scans. Specific intrinsic connectivity of bilateral CA1, SUB (subiculum), and CA2/3/4/DG was identified in HE (using seeds derived from manually delineation on high-resolution scans) and compared between HE and aMCI. Compared to the other subfields, CA1 was more strongly connected to the amygdala and occipital regions, CA2/3/4/DG to the left anterior cingulate cortex, temporal, and occipital regions, and SUB to the angular, precuneus, putamen, posterior cingulate, and frontal regions. aMCI patients showed reduced connectivity within the SUB network (with frontal and posterior cingulate regions). Our study highlighted for the first time three specific and distinct hippocampal subfield functional networks in HE, and their alterations in aMCI. These findings are important to understand AD specificities in both cognitive deficits and lesion topography, given the role of functional connectivity in these processes. Hum Brain Mapp 38:4922-4932, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robin de Flores
- INSERMCaenU1077France
- Université de Caen Normandie, UMR‐S1077CaenFrance
- Ecole Pratique des Hautes Etudes, UMR‐S1077CaenFrance
- CHU de CaenCaenU1077France
| | - Justine Mutlu
- INSERMCaenU1077France
- Université de Caen Normandie, UMR‐S1077CaenFrance
- Ecole Pratique des Hautes Etudes, UMR‐S1077CaenFrance
- CHU de CaenCaenU1077France
| | - Alexandre Bejanin
- INSERMCaenU1077France
- Université de Caen Normandie, UMR‐S1077CaenFrance
- Ecole Pratique des Hautes Etudes, UMR‐S1077CaenFrance
- CHU de CaenCaenU1077France
| | - Julie Gonneaud
- INSERMCaenU1077France
- Université de Caen Normandie, UMR‐S1077CaenFrance
- Ecole Pratique des Hautes Etudes, UMR‐S1077CaenFrance
- CHU de CaenCaenU1077France
| | - Brigitte Landeau
- INSERMCaenU1077France
- Université de Caen Normandie, UMR‐S1077CaenFrance
- Ecole Pratique des Hautes Etudes, UMR‐S1077CaenFrance
- CHU de CaenCaenU1077France
| | - Clémence Tomadesso
- INSERMCaenU1077France
- Université de Caen Normandie, UMR‐S1077CaenFrance
- Ecole Pratique des Hautes Etudes, UMR‐S1077CaenFrance
- CHU de CaenCaenU1077France
| | - Florence Mézenge
- INSERMCaenU1077France
- Université de Caen Normandie, UMR‐S1077CaenFrance
- Ecole Pratique des Hautes Etudes, UMR‐S1077CaenFrance
- CHU de CaenCaenU1077France
| | - Vincent de La Sayette
- INSERMCaenU1077France
- Université de Caen Normandie, UMR‐S1077CaenFrance
- Ecole Pratique des Hautes Etudes, UMR‐S1077CaenFrance
- CHU de Caen, Service de NeurologieCaenFrance
| | - Francis Eustache
- INSERMCaenU1077France
- Université de Caen Normandie, UMR‐S1077CaenFrance
- Ecole Pratique des Hautes Etudes, UMR‐S1077CaenFrance
- CHU de CaenCaenU1077France
| | - Gaël Chételat
- INSERMCaenU1077France
- Université de Caen Normandie, UMR‐S1077CaenFrance
- Ecole Pratique des Hautes Etudes, UMR‐S1077CaenFrance
- CHU de CaenCaenU1077France
| |
Collapse
|
48
|
Sheng C, Xia M, Yu H, Huang Y, Lu Y, Liu F, He Y, Han Y. Abnormal global functional network connectivity and its relationship to medial temporal atrophy in patients with amnestic mild cognitive impairment. PLoS One 2017. [PMID: 28650994 PMCID: PMC5484500 DOI: 10.1371/journal.pone.0179823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background Amnestic mild cognitive impairment (aMCI), which is recently considered as a high risk status for developing Alzheimer’s disease (AD), manifests with gray matter atrophy and increased focal functional activity in the medial temporal lobe (MTL). However, the abnormalities of whole-brain functional network connectivity in aMCI and its relationship to medial temporal atrophy (MTA) remain unknown. Methods In this study, thirty-six aMCI patients and thirty-five healthy controls (HCs) were recruited. Neuropsychological assessments and MTA visual rating scaling were carried out on all participants. Furthermore, whole brain functional network was constructed at voxel level, and functional connectivity strength (FCS) was computed as the sum of the connections for each node to capture its global integrity. General linear model was used to analyze the FCS values differences between aMCI and HCs. Then, the regions showing significant FCS differences were adopted as the imaging markers for discriminative analysis. Finally, the relationship between FCS values and clinical cognitive scores was correlated in patients with aMCI. Results Comparing to HCs, aMCI exhibited significant atrophy in the MTL, while higher FCS values within the bilateral MTL regions and orbitofrontal cortices. Notably, the right hippocampus had the highest classification power, with the area under receiver operating characteristics (ROC) curve (AUC) of 0.790 (confidence interval: 0.678, 0.901). Moreover, FCS values of the right hippocampus and the left temporal pole were positively correlated with the cognitive performance in aMCI. Conclusion This study demonstrated significantly structural atrophy and raised global functional integrity in the MTL, suggesting simultaneous disruption and compensation in prodromal AD. Increased intrinsic functional connectivity in the MTL may have the potential to discriminate subjects with tendency to develop AD.
Collapse
Affiliation(s)
- Can Sheng
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, P. R. China
- Department of Neurology, the First Hospital of Tsinghua University, Beijing, P. R. China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, P. R. China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, P. R. China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P. R. China
| | - Haikuo Yu
- Department of Rehabilitation, XuanWu Hospital of Capital Medical University, Beijing, P. R. China
| | - Yue Huang
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, New South Wales, Australia
| | - Yan Lu
- Department of Ophthalmology, XuanWu Hospital of Capital Medical University, Beijing, P. R. China
| | - Fang Liu
- Department of Neurology, the First Hospital of Tsinghua University, Beijing, P. R. China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, P. R. China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, P. R. China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P. R. China
| | - Ying Han
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, P. R. China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, P. R. China
- Beijing Institute of Geriatrics, Beijing, P. R. China
- National Clinical Research Center for Geriatric Disorders, Beijing, P. R. China
- PKU Care Rehabilitation Hospital, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
49
|
Pasquini L, Benson G, Grothe MJ, Utz L, Myers NE, Yakushev I, Grimmer T, Scherr M, Sorg C. Individual Correspondence of Amyloid-β and Intrinsic Connectivity in the Posterior Default Mode Network Across Stages of Alzheimer’s Disease. J Alzheimers Dis 2017; 58:763-773. [DOI: 10.3233/jad-170096] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lorenzo Pasquini
- Memory and Aging Center, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
- TUM-Neuroimaging Center, Technische Universität München, Munich, Germany
| | - Gloria Benson
- Department of Neurology and NeuroCure Clinical Research Center, Charité Universitätsmedizin, Berlin, Germany
- TUM-Neuroimaging Center, Technische Universität München, Munich, Germany
| | - Michel J. Grothe
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Lukas Utz
- Department of Neuroradiology of Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- TUM-Neuroimaging Center, Technische Universität München, Munich, Germany
| | - Nicholas E. Myers
- Department of Experimental Psychology, Oxford University, Oxford, UK
- TUM-Neuroimaging Center, Technische Universität München, Munich, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany
- TUM-Neuroimaging Center, Technische Universität München, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany
- TUM-Neuroimaging Center, Technische Universität München, Munich, Germany
| | - Martin Scherr
- Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany
- Department of Neurology, Paracelsus Medical University Salzburg, and Christian Doppler Medical Centre, Salzburg, Austria
- TUM-Neuroimaging Center, Technische Universität München, Munich, Germany
| | - Christian Sorg
- Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany
- Department of Neuroradiology of Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- TUM-Neuroimaging Center, Technische Universität München, Munich, Germany
| | | |
Collapse
|
50
|
Badhwar A, Tam A, Dansereau C, Orban P, Hoffstaedter F, Bellec P. Resting-state network dysfunction in Alzheimer's disease: A systematic review and meta-analysis. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2017; 8:73-85. [PMID: 28560308 PMCID: PMC5436069 DOI: 10.1016/j.dadm.2017.03.007] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction We performed a systematic review and meta-analysis of the Alzheimer's disease (AD) literature to examine consistency of functional connectivity alterations in AD dementia and mild cognitive impairment, using resting-state functional magnetic resonance imaging. Methods Studies were screened using a standardized procedure. Multiresolution statistics were performed to assess the spatial consistency of findings across studies. Results Thirty-four studies were included (1363 participants, average 40 per study). Consistent alterations in connectivity were found in the default mode, salience, and limbic networks in patients with AD dementia, mild cognitive impairment, or in both groups. We also identified a strong tendency in the literature toward specific examination of the default mode network. Discussion Convergent evidence across the literature supports the use of resting-state connectivity as a biomarker of AD. The locations of consistent alterations suggest that highly connected hub regions in the brain might be an early target of AD.
Collapse
Affiliation(s)
- AmanPreet Badhwar
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
- Corresponding author. Tel.: +1-514-340-3540x3367; Fax: +1-514-340-2802.
| | - Angela Tam
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
- McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute Research Centre, Montreal, Quebec, Canada
| | - Christian Dansereau
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
| | - Pierre Orban
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
- Douglas Mental Health University Institute Research Centre, Montreal, Quebec, Canada
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-1, INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Pierre Bellec
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
- Corresponding author. Tel.: +1-514-340-3540x4782; Fax: +1-514-340-2802.
| |
Collapse
|