1
|
Correction. J Am Coll Surg 2025; 240:842. [PMID: 39704426 DOI: 10.1097/xcs.0000000000001265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
|
2
|
Uddin IA, Stec E, Papadantonakis GA. Ionization Patterns and Chemical Reactivity of Cytosine-Guanine Watson-Crick Pairs. Chemphyschem 2024; 25:e202300946. [PMID: 38381922 DOI: 10.1002/cphc.202300946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Gas-phase and aqueous vertical ionization potentials, vIPgas and vIPaq respectively and measurements of the molecular electrostatic and local ionization maps calculated at the DFT/B3LYP-D3/ 6-311+G** level of theory and the C-PCM reaction field model for single- and double-stranded CpG and 5MeCpG pairs show that the vIPaq for single- and double-stranded pairs of C-G and 5MeC-G are practically the same, in the range of 5.79 to 5.81 eV. The aqueous adiabatic ionization potentials for single-stranded CpG and 5MeCpG are 5.52 eV and 5.51 eV respectively and they reflect the nuclear reorganization that takes place after the abstraction of the electron. The aqueous adiabatic ionization energy values that correspond to the CpG+. radical cation and the hydrated electron, e-,, being at infinite distance, adIPaq+Vo, are 3.92 eV and 3.91 eV respectively with (Vo=-1.6 eV) Analysis of data suggest that the HOMO-LUMO energy gap in the hard/soft-acid/base (HSAB) concept cannot be used a priori to determine the effect of cytosine methylation on the guanine enhanced oxidative damage in DNA.
Collapse
Affiliation(s)
- Ismihan A Uddin
- University of Illinois Chicago, Department of Chemistry, 845 W. Taylor St. Room 4506 SES, Chicago, IL. 60607
- Midwestern University Chicago, College of Osteopathic Medicine and formerly at University of Illinois Chicago, Department of Chemistry, 555 31st St., Downers Grove, IL 60515
- Midwestern University Chicago, College of Osteopathic Medicine and formerly at University of Illinois Chicago, Department of Chemistry, 555 31st St., Downers Grove, IL 60515
| | - Ewa Stec
- University of Illinois Chicago, Department of Chemistry, 845 W. Taylor St. Room 4506 SES, Chicago, IL. 60607
- Midwestern University Chicago, College of Osteopathic Medicine and formerly at University of Illinois Chicago, Department of Chemistry, 555 31st St., Downers Grove, IL 60515
| | - George A Papadantonakis
- University of Illinois Chicago, Department of Chemistry, 845 W. Taylor St. Room 4506 SES, Chicago, IL. 60607
- Midwestern University Chicago, College of Osteopathic Medicine and formerly at University of Illinois Chicago, Department of Chemistry, 555 31st St., Downers Grove, IL 60515
| |
Collapse
|
3
|
Zhen Y, Pavez M, Li X. The role of Pcdh10 in neurological disease and cancer. J Cancer Res Clin Oncol 2023; 149:8153-8164. [PMID: 37058252 PMCID: PMC10374755 DOI: 10.1007/s00432-023-04743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Protocadherin 10 (PCDH 10), a member of the superfamily of protocadherins, is a Ca2+-dependent homophilic cell-cell adhesion molecule expressed on the surface of cell membranes. Protocadherin 10 plays a critical role in the central nervous system including in cell adhesion, formation and maintenance of neural circuits and synapses, regulation of actin assembly, cognitive function and tumor suppression. Additionally, Pcdh10 can serve as a non-invasive diagnostic and prognostic indicator for various cancers. METHODS This paper collects and reviews relevant literature in Pubmed. CONCLUSION This review describes the latest research understanding the role of Pcdh10 in neurological disease and human cancer, highlighting the importance of scrutinizing its properties for the development of targeted therapies and identifying a need for further research to explore Pcdh10 functions in other pathways, cell types and human pathologies.
Collapse
Affiliation(s)
- Yilan Zhen
- Menzies Institute for Medical Research, University of Tasmania, Liverpool street, Hobart, 7000, Australia
| | - Macarena Pavez
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand.
| | - Xinying Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
- School of Life Sciences, Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
4
|
Zhang N, Gao X, Yuan Q, Fu X, Wang P, Cai F, Liu H, Zhang J, Liang H, Nie Y, Deng J. E3 ubiquitin ligase RNF180 prevents excessive PCDH10 methylation to suppress the proliferation and metastasis of gastric cancer cells by promoting ubiquitination of DNMT1. Clin Epigenetics 2023; 15:77. [PMID: 37147733 PMCID: PMC10163782 DOI: 10.1186/s13148-023-01492-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Downregulation of certain tumor-suppressor genes (TSGs) by aberrant methylation of CpG islands in the promoter region contributes a great deal to the oncogenesis and progression of several cancers, including gastric cancer (GC). Protocadherin 10 (PCDH10) is a newly identified TSG in various cancers and is downregulated in GC; however, the specific mechanisms of PCDH10 in GC remain elusive. Here, we elucidated a novel epigenetic regulatory signaling pathway involving the E3 ubiquitin ligase RNF180 and DNA methyltransferase 1 (DNMT1), responsible for modulating PCDH10 expression by affecting its promoter methylation. RESULTS We revealed that PCDH10 was downregulated in GC cells and tissues, and low PCDH10 expression was correlated with lymph node metastasis and poor prognosis in patients with GC. Additionally, PCDH10 overexpression suppressed GC cell proliferation and metastasis. Mechanistically, DNMT1-mediated promoter hypermethylation resulted in decreased expression of PCDH10 in GC tissues and cells. Further analysis revealed that RNF180 can bind directly to DNMT1 and was involved in DNMT1 degradation via ubiquitination. Additionally, a positive correlation was found between RNF180 and PCDH10 expression and an inverse association between DNMT1 and PCDH10 expression showed considerable prognostic significance. CONCLUSION Our data showed that RNF180 overexpression upregulated PCDH10 expression via ubiquitin-dependent degradation of DNMT1, thus suppressing GC cell proliferation, indicating that the RNF180/DNMT1/PCDH10 axis could be a potential therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Nannan Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Xiaoliang Gao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Qiangqiang Yuan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Fu
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Pengliang Wang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Fenglin Cai
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Hui Liu
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jing Zhang
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Han Liang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jingyu Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| |
Collapse
|
5
|
Kleinberger I, Sanders E, Staes K, Van Troys M, Hirano S, Hochepied T, Lemeire K, Martens L, Ampe C, van Roy F. Innovative mouse models for the tumor suppressor activity of Protocadherin-10 isoforms. BMC Cancer 2022; 22:451. [PMID: 35468745 PMCID: PMC9040349 DOI: 10.1186/s12885-022-09381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/02/2022] [Indexed: 11/12/2022] Open
Abstract
Background Nonclustered mouse protocadherin genes (Pcdh) encode proteins with a typical single ectodomain and a cytoplasmic domain with conserved motifs completely different from those of classic cadherins. Alternative splice isoforms differ in the size of these cytoplasmic domains. In view of the compelling evidence for gene silencing of protocadherins in human tumors, we started investigations on Pcdh functions in mouse cancer models. Methods For Pcdh10, we generated two mouse lines: one with floxed exon 1, leading to complete Pcdh10 ablation upon Cre action, and one with floxed exons 2 and 3, leading to ablation of only the long isoforms of Pcdh10. In a mouse medulloblastoma model, we used GFAP-Cre action to locally ablate Pcdh10 in combination with Trp53 and Rb1 ablation. From auricular tumors, that also arose, we obtained tumor-derived cell lines, which were analyzed for malignancy in vitro and in vivo. By lentiviral transduction, we re-expressed Pcdh10 cDNAs. RNA-Seq analyses were performed on these cell families. Results Surprisingly, not only medulloblastomas were generated in our model but also tumors of tagged auricles (pinnae). For both tumor types, ablation of either all or only long isoforms of Pcdh10 aggravated the disease. We argued that the perichondrial stem cell compartment is at the origin of the pinnal tumors. Immunohistochemical analysis of these tumors revealed different subtypes. We obtained several pinnal-tumor derived (PTD) cell lines and analyzed these for anchorage-independent growth, invasion into collagen matrices, tumorigenicity in athymic mice. Re-expression of either the short or a long isoform of Pcdh10 in two PTD lines counteracted malignancy in all assays. RNA-Seq analyses of these two PTD lines and their respective Pcdh10-rescued cell lines allowed to identify many interesting differentially expressed genes, which were largely different in the two cell families. Conclusions A new mouse model was generated allowing for the first time to examine the remarkable tumor suppression activity of protocadherin-10 in vivo. Despite lacking several conserved motifs, the short isoform of Pcdh10 was fully active as tumor suppressor. Our model contributes to scrutinizing the complex molecular mechanisms of tumor initiation and progression upon PCDH10 silencing in many human cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09381-y.
Collapse
Affiliation(s)
- Irene Kleinberger
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Ellen Sanders
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Katrien Staes
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Marleen Van Troys
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9052, Ghent, Belgium
| | - Shinji Hirano
- Department of Cell Biology, Kansai Medical University, Hirakata City, Osaka, 573-1010, Japan
| | - Tino Hochepied
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Kelly Lemeire
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Liesbet Martens
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Christophe Ampe
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9052, Ghent, Belgium
| | - Frans van Roy
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium. .,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), 9052, Ghent, Belgium.
| |
Collapse
|
6
|
Zhou J, Wang L, Sun Q, Chen R, Zhang C, Yang P, Tan Y, Peng C, Wang T, Jin C, Ji J, Jin K, Sun Y. Hsa_circ_0001666 suppresses the progression of colorectal cancer through the miR-576-5p/PCDH10 axis. Clin Transl Med 2021; 11:e565. [PMID: 34841662 PMCID: PMC8567033 DOI: 10.1002/ctm2.565] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Though circular RNAs, new non-coding RNA classes have demonstrated that they have an essential role in the initiation as well as development of CRC (colorectal cancer), whereas in CRC the function and mechanism of hsa_circ_0001666 are less known. METHODS Hsa_circ_0001666 was identified by bioinformatics analysis of a circRNA microarray from the GEO database, and its expression in both CRC cell lines and tissues was analysed. A series of in vitro along with in vivo experiments were carried out for exploring the hsa_circ_0001666 functions, including transwell, wound healing, flow cytometry, colony formation, Edu, CCK-8, soft agar colony formation, tumor xenografts and lung/liver metastasis in mice. RNA pull-down, RIP (RNA immunoprecipitation), luciferase reporter assay, FISH (fluorescence in situ hybridization) and rescue experiments were used for determining the correlation among hsa_circ_0001666, miR-576-5p and PCDH10. RESULTS Hsa_circ_0001666 was downregulated in both CRC cell lines along with tumour tissues. A higher expression level of hsa_circ_0001666 indicated a better clinical prognosis in patients with CRC. Hsa_circ_0001666 knockdown significantly supported CRC cell proliferation along with invasion and inhibited cell apoptosis in vitro. Hsa_circ_0001666 knockdown accelerated the CRC growth and metastasis in vivo. Moreover, the mechanistic study showed that hsa_circ_0001666, acting as 'ceRNA' of miR-576-5p, prevented PCDH10 downregulation, as well as suppressed EMT and stemness of CRC cells, and the Wnt/β-catenin signalling pathway. Inhibiting miR-576-5p or overexpressing PCDH10 could reverse phenotypic changes caused by knocking down of hsa_circ_0001666. CONCLUSIONS Hsa_circ_0001666 suppresses CRC progression through the miR-576-5p/PCDH10 axis and may provide a new insight for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Jiahui Zhou
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lu Wang
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Qingyang Sun
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ranran Chen
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chuan Zhang
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Peng Yang
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yuqian Tan
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chaofan Peng
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Tuo Wang
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chi Jin
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jiangzhou Ji
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kangpeng Jin
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yueming Sun
- The First School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
7
|
Dutra TTB, Bezerra TMM, Luna ECM, Carvalho FSR, Chaves FN, Barros Silva PGD, Costa FWG, Pereira KMA. Do Protocadherins Show Prognostic Value in the Carcinogenesis of Human Malignant Neoplasms? Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev 2020; 21:3677-3688. [PMID: 33369468 PMCID: PMC8046292 DOI: 10.31557/apjcp.2020.21.12.3677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Protocadherins (PCDHs) have been reported as tumor suppressor genes, implying that these genes may be involved in tumor suppression in a variety of cancers. However, a thorough understanding of the functions and mechanisms of PCDHs remains limited. Our aim was to investigate the methylation profile of PCDHs in human malignant neoplasms. Methods: This systematic review has been recorded in PROSPERO (#42019117844) and conducted according to PRISMA’s checklist; search was conducted in LILACS, PubMed, Science Direct, Scopus, and Web of Science databases, manually, with search queries and without date or language restrictions. Results: We found 91 articles, of which 26 were used for this meta-analysis and categorized according to the origin of the neoplasia. In total, 3,377 cases were compiled, with PCDH10, PCDH17, and PCDH8 being the most studied; males were 2.22 times more affected than females. Studies have shown significant heterogeneity (p <0.001), with the odds ratio varying between cases and controls [2.20 (95% CI = 1.11– 4.35) to 209.05 (95% CI = 12.64– 2,457.18)], and the value of association between methylation and cancers studied was 26.08 (95% CI = 15.42–44.13). Conclusion: In this systematic review, we have demonstrated using meta-analysis that PCDHs could emerge as potential tumor suppressor genes and that a significant increase in methylation may be useful for early detection of different cancers. This work may help in the identification of new prognostic biomarkers in malignant neoplasms.
Collapse
Affiliation(s)
- Thaís Torres Barros Dutra
- Department of Clinical Dentistry, Faculty of Pharmacy and Dentistry and Nursing, Federal University of Ceara, Fortaleza, Brazil
| | - Thâmara Manoela Marinho Bezerra
- Department of Clinical Dentistry, Faculty of Pharmacy and Dentistry and Nursing, Federal University of Ceara, Fortaleza, Brazil
| | - Ealber Carvalho Macêdo Luna
- Department of Clinical Dentistry, Faculty of Pharmacy and Dentistry and Nursing, Federal University of Ceara, Fortaleza, Brazil
| | | | - Filipe Nobre Chaves
- School of Dentistry, Federal University of Ceara, Campus Sobral, Sobral, Brazil
| | | | - Fábio Wildson Gurgel Costa
- Department of Clinical Dentistry, Faculty of Pharmacy and Dentistry and Nursing, Federal University of Ceara, Fortaleza, Brazil
| | | |
Collapse
|
8
|
Dong Y, Qiu Y, Deng J, Wang W, Sun Z, Wang Z, Zhou Z, Xu H, Liang H. Insufficient examined lymph node count underestimates staging in pN3a patients after curative gastrectomy: a multicenter study with external validation. J Cancer Res Clin Oncol 2020; 146:515-528. [PMID: 31813005 DOI: 10.1007/s00432-019-03081-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/08/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE The present study aims to validate possible stage migration of lymph node metastasis related to the insufficient examined lymph node (ELN) count in pN3a gastric cancer (GC) patients. METHODS 1976 pN3 patients who underwent the R0 surgery in three high-capacity institutions in China were enrolled to explore the stage migration of nodal involvement, and 3146 pN3 cases from the Surveillance, Epidemiology, and End Results (SEER) Program Registry were used as an external validation cohort. RESULTS After the propensity score matching of the Chinese cohort, the ELN count, as an independent predictor for GC outcome, was confirmed to be associated with the stage migration of lymph node metastasis in pN3a patients based on the univariate and multivariate survival analyses. Logistic regress was adopted to elucidate that the ELN count was an independent factor related to the long-term survival status of GC patients after curative surgery. Likelihood ratio test showed that the ELN count had the smallest Bayesian information criterion value among the clinicopathologic variables, corresponding to an efficient model to predict outcomes. Subsequently, stage migration of lymph node metastasis was predominantly detected in pN3a patient sub-group with insufficient (less than 16) ELN count, who presented with similar prognosis as the pN3b patients (P = 0.463) as per the stratum analysis with Kaplan-Meier. These methods were further validated using data from the SEER cohort, and the similar promising results were obtained. CONCLUSION pN3a patients with insufficient ELN count should be considered as pN3b cases to achieve accurate prognostic evaluation after curative gastrectomy.
Collapse
Affiliation(s)
- Yinping Dong
- Department of Gastric Cancer Surgery, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China
| | - Yiran Qiu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jingyu Deng
- Department of Gastric Cancer Surgery, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China.
| | - Wei Wang
- Department of Gastric and Pancreatic Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhe Sun
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenning Wang
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiwei Zhou
- Department of Gastric and Pancreatic Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Huimian Xu
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Han Liang
- Department of Gastric Cancer Surgery, Tianjin Medical University Cancer Hospital, City Key Laboratory of Tianjin Cancer Center and National Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
9
|
Deng J, Liu J, Wang W, Sun Z, Wang Z, Zhou Z, Xu H, Liang H. Validation of clinical significance of examined lymph node count for accurate prognostic evaluation of gastric cancer for the eighth edition of the American Joint Committee on Cancer (AJCC) TNM staging system. Chin J Cancer Res 2018; 30:477-491. [PMID: 30510359 PMCID: PMC6232365 DOI: 10.21147/j.issn.1000-9604.2018.05.01] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To validate the necessity of increasing the examined lymph node (ELN) count for enhancing the accuracy of prognostic evaluation of gastric cancer (GC) patients after curative gastrectomy in multiple medical centers of China. METHODS The clinicopathological data of 7,620 patients who underwent the curative resection for GC between 2001 and 2011 were included to demonstrate whether the ELN count is indispensable for enhancing the accuracy of prognostic evaluation of GC patients after surgery. After a meticulous stratification by using the cut-point survival analysis, all included 7,620 patients were allocated into three groups as: less than 16 (<16), between 16 and 30 (16-30), and more than 30 (>30) ELNs. Survival differences among various subgroups of GC patients were analyzed to assess the impact of the ELN count on the stage migration in accordance with the overall survival (OS) of GC patients. RESULTS Survival analyses revealed that the ELN count was positively correlated with the OS (P=0.001) and was an independent prognostic predictor (P<0.01) of 7,620 GC patients. Stratum analysis showed that the accuracy of prognostic evaluation could be enhanced when the ELN count was no less than 16 (≥16) for node-negative patients and >30 for node-positive patients. Stage migrations were mainly detected in the various subgroups of patients with specific pN stages as follows: pN0 with 16-30 ELNs (pN016-30) and pN0 with >30 ELNs (pN0 >30), pN0 with <16 ELNs (pN0 <16) and pN1>30, pN1<16 and pN216-30, pN116-30 and pN2>30, pN3a<16 and pN3b16-30, and pN3a<16 and pN3b>30. These findings indicate that increasing the ELN count is a prerequisite to guarantee precisely prognostic evaluation of GC patients. CONCLUSIONS The ELN count should be proposed to be >30 for acquiring the accurate prognostic evaluation for GC patients, especially for node-positive patients.
Collapse
Affiliation(s)
- Jingyu Deng
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Cancer for Cancer, Tianjin 300060, China
| | - Jinyuan Liu
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Cancer for Cancer, Tianjin 300060, China
| | - Wei Wang
- Department of Gastric and Pancreatic Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zhe Sun
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Zhenning Wang
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Zhiwei Zhou
- Department of Gastric and Pancreatic Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Huimian Xu
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Han Liang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Cancer for Cancer, Tianjin 300060, China
| |
Collapse
|
10
|
Wong CC, Li W, Chan B, Yu J. Epigenomic biomarkers for prognostication and diagnosis of gastrointestinal cancers. Semin Cancer Biol 2018; 55:90-105. [PMID: 29665409 DOI: 10.1016/j.semcancer.2018.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
Altered epigenetic regulation is central to many human diseases, including cancer. Over the past two decade, major advances have been made in our understanding of the role of epigenetic alterations in carcinogenesis, particularly for DNA methylation, histone modifications and non-coding RNAs. Aberrant hypermethylation of DNA at CpG islands is a well-established phenomenon that mediates transcriptional silencing of tumor suppressor genes, and it is an early event integral to gastrointestinal cancer development. As such, detection of aberrant DNA methylation is being developed as biomarkers for prognostic and diagnostic purposes in gastrointestinal cancers. Diverse tissue types are suitable for the analyses of methylated DNA, such as tumor tissues, blood, plasma, and stool, and some of these markers are already utilized in the clinical setting. Recent advances in the genome-wide epigenomic approaches are enabling the comprehensive mapping of the cancer methylome, thus providing new avenues for mining novel biomarkers for disease prognosis and diagnosis. Here, we review the current knowledge on DNA methylation biomarkers for the prognostication and non-invasive diagnosis of gastrointestinal cancers and highlight their clinical application.
Collapse
Affiliation(s)
- Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| | - Weilin Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Bertina Chan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
11
|
LeBlanc VG, Firme M, Song J, Chan SY, Lee MH, Yip S, Chittaranjan S, Marra MA. Comparative transcriptome analysis of isogenic cell line models and primary cancers links capicua (CIC) loss to activation of the MAPK signalling cascade. J Pathol 2017; 242:206-220. [PMID: 28295365 PMCID: PMC5485162 DOI: 10.1002/path.4894] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 02/27/2017] [Accepted: 03/09/2017] [Indexed: 01/30/2023]
Abstract
CIC encodes a transcriptional repressor, capicua (CIC), whose disrupted activity appears to be involved in several cancer types, including type I low‐grade gliomas (LGGs) and stomach adenocarcinomas (STADs). To explore human CIC's transcriptional network in an isogenic background, we developed novel isogenic CIC knockout cell lines as model systems, and used these in transcriptome analyses to study the consequences of CIC loss. We also compared our results with analyses of transcriptome data from TCGA for type I LGGs and STADs. We identified 39 candidate targets of CIC transcriptional regulation, and confirmed seven of these as direct targets. We showed that, although many CIC targets appear to be context‐specific, the effects of CIC loss converge on the dysregulation of similar biological processes in different cancer types. For example, we found that CIC deficiency was associated with disruptions in the expression of genes involved in cell–cell adhesion, and in the development of several cell and tissue types. We also showed that loss of CIC leads to overexpression of downstream members of the mitogen‐activated protein kinase (MAPK) signalling cascade, indicating that CIC deficiency may present a novel mechanism for activation of this oncogenic pathway. © 2017 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Veronique G LeBlanc
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada.,Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
| | - Marlo Firme
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Jungeun Song
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Susanna Y Chan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Min Hye Lee
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, BC, Canada
| | - Suganthi Chittaranjan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Zhu C, Feng X, Ye G, Huang T. Meta-analysis of possible role of cadherin gene methylation in evolution and prognosis of hepatocellular carcinoma with a PRISMA guideline. Medicine (Baltimore) 2017; 96:e6650. [PMID: 28422868 PMCID: PMC5406084 DOI: 10.1097/md.0000000000006650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cadherins (CDHs) have been reported to be associated with cancer. However, the clinical significance of CDH gene methylation in hepatocellular carcinoma (HCC) remains unclear. METHODS Based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement criteria, available studies were identified from online electronic database. The overall odds ratio (OR) and the corresponding 95% confidence interval (95% CI) were calculated and analyzed. RESULTS A total of 29 eligible studies with 2562 HCC samples and 1685 controls were included. E-cadherin (CDH1) hypermethylation was observed to be significantly higher in HCC than in benign, adjacent, or normal samples. Moreover, CDH1 hypermethylation was not associated with gender, tumor grade, clinical stage, hepatitis B virus (HBV), or hepatitis C virus (HCV) infection in HCC patients. H-cadherin (CDH13), protocadherin-10 (PCDH10), P-cadherin (CDH3), and M-cadherin (CDH15) methylation may have an increased risk of HCC in fewer than 4 studies, and methylated cadherin 8, type 2 (CDH8) and OB-cadherin (CDH11) had a similar OR in HCC and adjacent samples. When HCC samples were compared with normal samples, the analysis of sample type revealed a significantly higher OR in normal blood samples than in normal tissues for hypermethylated CDH1 (50.82 vs 4.44). CONCLUSION CDH1 hypermethylation may play a key role in the carcinogenesis of HCC. However, CDH1 hypermethylation was not correlated with clinicopathological features. Methylated CDH13, PCDH10, CDH3, and CDH15, but not methylated CDH8 or CDH11, may lead to an increased risk of HCC. Hypermethylated CDH1 may become a noninvasive blood biomarker. Further studies with more data are necessary.
Collapse
|
13
|
Tombolan L, Poli E, Martini P, Zin A, Millino C, Pacchioni B, Celegato B, Bisogno G, Romualdi C, Rosolen A, Lanfranchi G. Global DNA methylation profiling uncovers distinct methylation patterns of protocadherin alpha4 in metastatic and non-metastatic rhabdomyosarcoma. BMC Cancer 2016; 16:886. [PMID: 27842508 PMCID: PMC5109816 DOI: 10.1186/s12885-016-2936-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022] Open
Abstract
Background Rhabdomyosarcoma (RMS), which can be classified as embryonal RMS (ERMS) and alveolar RMS (ARMS), represents the most frequent soft tissue sarcoma in the pediatric population; the latter shows greater aggressiveness and metastatic potential with respect to the former. Epigenetic alterations in cancer include DNA methylation changes and histone modifications that influence overall gene expression patterns. Different tumor subtypes are characterized by distinct methylation signatures that could facilitate early disease detection and greater prognostic accuracy. Methods A genome-wide approach was used to examine methylation patterns associated with different prognoses, and DNA methylome analysis was carried out using the Agilent Human DNA Methylation platform. The results were validated using bisulfite sequencing and 5-aza-2′deoxycytidine treatment in RMS cell lines. Some in vitro functional studies were also performed to explore the involvement of a target gene in RMS tumor cells. Results In accordance with the Intergroup Rhabdomyosarcoma Study (IRS) grouping, study results showed that distinct methylation patterns distinguish RMS subgroups and that a cluster of protocadherin genes are hypermethylated in metastatic RMS. Among these, PCDHA4, whose expression was decreased by DNA methylation, emerged as a down-regulated gene in the metastatic samples. As PCDHA4-silenced cells have a significantly higher cell proliferation rate paralleled by higher cell invasiveness, PCDHA4 seems to behave as a tumor suppressor in metastatic RMS. Conclusion Study results demonstrated that DNA methylation patterns distinguish between metastatic and non-metastatic RMS and suggest that epigenetic regulation of specific genes could represent a novel therapeutic target that could enhance the efficiency of RMS treatments. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2936-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- L Tombolan
- Department of Biology, University of Padova, Padova, Italy. .,Department of Women's and Children's Health, University of Padova, Padova, Italy.
| | - E Poli
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - P Martini
- Department of Biology, University of Padova, Padova, Italy
| | - A Zin
- Institute of Pediatric Research, IRP, Padova, Italy
| | - C Millino
- C.R.I.B.I.-Biotechnology Centre, University of Padova, Padova, Italy
| | - B Pacchioni
- C.R.I.B.I.-Biotechnology Centre, University of Padova, Padova, Italy
| | - B Celegato
- C.R.I.B.I.-Biotechnology Centre, University of Padova, Padova, Italy
| | - G Bisogno
- Department of Women's and Children's Health, Hematology Oncology Division, University of Padova, Padova, Italy
| | - C Romualdi
- Department of Biology, University of Padova, Padova, Italy
| | - A Rosolen
- Department of Women's and Children's Health, Hematology Oncology Division, University of Padova, Padova, Italy
| | - G Lanfranchi
- Department of Biology, University of Padova, Padova, Italy. .,C.R.I.B.I.-Biotechnology Centre, University of Padova, Padova, Italy.
| |
Collapse
|
14
|
Shan M, Su Y, Kang W, Gao R, Li X, Zhang G. Aberrant expression and functions of protocadherins in human malignant tumors. Tumour Biol 2016; 37:12969-12981. [PMID: 27449047 DOI: 10.1007/s13277-016-5169-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
Protocadherins (PCDHs) are a group of transmembrane proteins belonging to the cadherin superfamily and are subdivided into "clustered" and "non-clustered" groups. PCDHs vary in both structure and interaction partners and thus regulate multiple biological responses in complex and versatile patterns. Previous researches showed that PCDHs regulated the development of brain and were involved in some neuronal diseases. Recently, studies have revealed aberrant expression of PCDHs in various human malignant tumors. The down-regulation or absence of PCDHs in malignant cells has been associated with cancer progression. Further researches suggest that PCDHs may play major functions as tumor suppressor by inhibiting the proliferation and metastasis of cancer cells. In this review, we focus on the altered expression of PCDHs and their roles in the development of cancer progression. We also discuss the potential mechanisms, by which PCDHs are aberrantly expressed, and its implications in regulating cancers.
Collapse
Affiliation(s)
- Ming Shan
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Yonghui Su
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Wenli Kang
- Department of Oncology, General Hospital of Hei Longjiang Province Land Reclamation Headquarter, Harbin, China
| | - Ruixin Gao
- Department of Breast Surgery, The First Hospital of Qiqihaer City, Qiqihaer, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China.
| | - Guoqiang Zhang
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
15
|
Li Z, Guo X, Tang L, Peng L, Chen M, Luo X, Wang S, Xiao Z, Deng Z, Dai L, Xia K, Wang J. Methylation analysis of plasma cell-free DNA for breast cancer early detection using bisulfite next-generation sequencing. Tumour Biol 2016; 37:13111-13119. [PMID: 27449045 DOI: 10.1007/s13277-016-5190-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/13/2016] [Indexed: 12/15/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) has been considered as a potential biomarker for non-invasive cancer detection. To evaluate the methylation levels of six candidate genes (EGFR, GREM1, PDGFRB, PPM1E, SOX17, and WRN) in plasma cfDNA as biomarkers for breast cancer early detection, quantitative analysis of the promoter methylation of these genes from 86 breast cancer patients and 67 healthy controls was performed by using microfluidic-PCR-based target enrichment and next-generation bisulfite sequencing technology. The predictive performance of different logistic models based on methylation status of candidate genes was investigated by means of the area under the ROC curve (AUC) and odds ratio (OR) analysis. Results revealed that EGFR, PPM1E, and 8 gene-specific CpG sites showed significantly hypermethylation in cancer patients' plasma and significantly associated with breast cancer (OR ranging from 2.51 to 9.88). The AUC values for these biomarkers were ranging from 0.66 to 0.75. Combinations of multiple hypermethylated genes or CpG sites substantially improved the predictive performance for breast cancer detection. Our study demonstrated the feasibility of quantitative measurement of candidate gene methylation in cfDNA by using microfluidic-PCR-based target enrichment and bisulfite next-generation sequencing, which is worthy of further validation and potentially benefits a broad range of applications in clinical oncology practice. Quantitative analysis of methylation pattern of plasma cfDNA by next-generation sequencing might be a valuable non-invasive tool for early detection of breast cancer.
Collapse
Affiliation(s)
- Zibo Li
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Xinwu Guo
- Sanway Gene Technology Inc., Changsha, Hunan, 410205, China
| | - Lili Tang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Limin Peng
- Sanway Gene Technology Inc., Changsha, Hunan, 410205, China
| | - Ming Chen
- Sanway Gene Technology Inc., Changsha, Hunan, 410205, China
| | - Xipeng Luo
- Sanway Gene Technology Inc., Changsha, Hunan, 410205, China
| | - Shouman Wang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhi Xiao
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhongping Deng
- Sanway Gene Technology Inc., Changsha, Hunan, 410205, China
- Research Center for Technologies in Nucleic Acid-Based Diagnostics, Changsha, Hunan, 410205, China
- Research Center for Technologies in Nucleic Acid-Based Diagnostics and Therapeutics, Changsha, Hunan, 410205, China
| | - Lizhong Dai
- Sanway Gene Technology Inc., Changsha, Hunan, 410205, China
- Research Center for Technologies in Nucleic Acid-Based Diagnostics, Changsha, Hunan, 410205, China
- Research Center for Technologies in Nucleic Acid-Based Diagnostics and Therapeutics, Changsha, Hunan, 410205, China
| | - Kun Xia
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jun Wang
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan, 410013, China.
| |
Collapse
|
16
|
Pimson C, Ekalaksananan T, Pientong C, Promthet S, Putthanachote N, Suwanrungruang K, Wiangnon S. Aberrant methylation of PCDH10 and RASSF1A genes in blood samples for non-invasive diagnosis and prognostic assessment of gastric cancer. PeerJ 2016; 4:e2112. [PMID: 27330867 PMCID: PMC4906662 DOI: 10.7717/peerj.2112] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/17/2016] [Indexed: 12/15/2022] Open
Abstract
Background. Assessment of DNA methylation of specific genes is one approach to the diagnosis of cancer worldwide. Early stage detection is necessary to reduce the mortality rate of cancers, including those occurring in the stomach. For this purpose, tumor cells in circulating blood offer promising candidates for non-invasive diagnosis. Transcriptional inactivation of tumor suppressor genes, like PCDH10 and RASSF1A, by methylation is associated with progression of gastric cancer, and such methylation can therefore be utilized as a biomarker. Methods. The present research was conducted to evaluate DNA methylation in these two genes using blood samples of gastric cancer cases. Clinicopathological data were also analyzed and cumulative survival rates generated for comparison. Results. High frequencies of PCDH10 and RASSF1A methylations in the gastric cancer group were noted (94.1% and 83.2%, respectively, as compared to 2.97% and 5.45% in 202 matched controls). Most patients (53.4%) were in severe stage of the disease, with a median survival time of 8.4 months after diagnosis. Likewise, the patients with metastases, or RASSF1A and PCDH10 methylations, had median survival times of 7.3, 7.8, and 8.4 months, respectively. A Kaplan–Meier analysis showed that cumulative survival was significantly lower in those cases positive for methylation of RASSF1A than in their negative counterparts. Similarly, whereas almost 100% of patients positive for PCDH10 methylation had died after five years, none of the negative cases died over this period. Notably, the methylations of RASSF1A and PCDH10 were found to be higher in the late-stage patients and were also significantly correlated with metastasis and histology. Conclusions.PCDH10 and RASSF1A methylations in blood samples can serve as potential non-invasive diagnostic indicators in blood for gastric cancer. In addition to RASSF1A methylation, tumor stage proved to be a major prognostic factor in terms of survival rates.
Collapse
Affiliation(s)
- Charinya Pimson
- Biomedical Science Programme, Graduate School, Khon Kaen University, Khon Kaen, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University,Khon Kaen,Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University,Khon Kaen,Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University,Khon Kaen,Thailand; HPV & EBV and Carcinogenesis Research Group, Khon Kaen University,Khon Kaen,Thailand
| | - Supannee Promthet
- Department of Epidemiology, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Nuntiput Putthanachote
- Department of Epidemiology, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Krittika Suwanrungruang
- Cancer Unit, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Surapon Wiangnon
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
17
|
PCDH10 inhibits cell proliferation of multiple myeloma via the negative regulation of the Wnt/β-catenin/BCL-9 signaling pathway. Oncol Rep 2015; 34:747-54. [PMID: 26081897 DOI: 10.3892/or.2015.4056] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/04/2015] [Indexed: 11/05/2022] Open
Abstract
The tumor suppressor protocadherin-10 (PCDH10) gene is important in cell proliferation, survival, apoptosis and migration. Inactivation of PCDH10 by promoter methylation is a frequent pathogenetic event in multiple myeloma (MM). The Wnt/β-catenin pathway is known to be involved in the cell growth of various types of cancer, including MM. However, the relationship between PCDH10 and Wnt signaling in MM remains unclear. In this study, we found that PCDH10 deficiency highly enhanced MM cell proliferation, Wnt signaling and the expression of BCL-9, an essential coactivator of Wnt transcriptional activity that is correlated with cell growth, survival and drug resistance. Restoration of PCDH10 suppressed nuclear localization of β-catenin, the activity of LEF/TCF, the expression of BCL-9 and AKT, whereas the expression of GSK3β was increased. The antagonistic effect of PCDH10 was associated with G1-phase blockage. Collectively, PCDH10 antagonized MM cell proliferation via the downregulation of Wnt/β-catenin/BCL-9 signaling, whereas PCDH10 repressed the expression of AKT to promote the expression of GSK3β and then to restrain the activation of β-catenin. Thus, the results offer a novel preclinical rationale in order to explore PCDH10 as an effective and selective therapeutic strategy to eradicate MM cells.
Collapse
|