1
|
Silva V, Oliveira I, Pereira JA, Gonçalves B. Almond By-Products: A Comprehensive Review of Composition, Bioactivities, and Influencing Factors. Foods 2025; 14:1042. [PMID: 40232093 PMCID: PMC11941897 DOI: 10.3390/foods14061042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/05/2025] [Accepted: 03/16/2025] [Indexed: 04/16/2025] Open
Abstract
One of today's major environmental and economic challenges is the fight against both agro- and industrial-waste. Almond production and industrial processing exemplifies this issue, as it generates tons of waste and by-products, with hulls and shells accounting for about 70% of the total fruit's weight while skins represent about 6% of the shelled kernel. Since the edible kernel, about 23% of the total fruit weight, holds the highest commercial value, there has been growing interest within the scientific community in exploring the potential of these by-products. However, almond by-products contain a wide range of phytochemicals, mainly phenolic compounds (flavonoids and non-flavonoids), and triterpenoids, with great potential as antioxidant, antimicrobial, anti-inflammatory, and prebiotic properties. Although these by-products are being explored as alternative sources in the textile, pharmaceutical/cosmetic, and food industries, their primary use remains in livestock feed or bedding, or as biofuel. This review compiles recent scientific data on almond by-products' phytochemical composition and bioactivities aiming to support sustainable and holistic agricultural practices.
Collapse
Affiliation(s)
- Vânia Silva
- Center for the Research and Technology of Agroenvironmental and Biological Sciences, CITAB, Inov4Agro, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (V.S.); (B.G.)
| | - Ivo Oliveira
- Center for the Research and Technology of Agroenvironmental and Biological Sciences, CITAB, Inov4Agro, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (V.S.); (B.G.)
| | - José Alberto Pereira
- Centro de Investigação de Montanha, CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Berta Gonçalves
- Center for the Research and Technology of Agroenvironmental and Biological Sciences, CITAB, Inov4Agro, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (V.S.); (B.G.)
| |
Collapse
|
2
|
Cremasco G, Sutton AT, Funari CS, Arrua DR, Dussan KJ, Hilder EF, Bolzani VS, Rinaldo D. Sustainable and Biomimetic Methodology for Extraction of High-Value-Added Compounds in Almond Hulls. Molecules 2024; 29:3034. [PMID: 38998984 PMCID: PMC11243185 DOI: 10.3390/molecules29133034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 07/14/2024] Open
Abstract
Almond trees are the most cultivated nut tree in the world. The production of almonds generates large amounts of by-products, much of which goes unused. Herein, this study aimed to develop a green chemistry approach to identify and extract potentially valuable compounds from almond by-products. Initially, a screening was performed with 10 different Natural Deep Eutectic Solvents (NADESs). The mixture lactic acid/glycerol, with a molar ratio 1:1 (1:50 plant material to NADES (w/v) with 20% v/v of water) was identified as the best extraction solvent for catechin, caffeoylquinic acid, and condensed tannins in almond hulls. Subsequently, a method was optimized by a Design of Experiment (DoE) protocol using a miniaturized extraction technique, Microwave-Assisted Extraction (MAE), in conjunction with the chosen NADESs. The optimal conditions were found to be 70 °C with 15 min irradiation time. The optimal extraction conditions determined by the DoE were confirmed experimentally and compared to methods already established in the literature. With these conditions, the extraction of metabolites was 2.4 times higher, according to the increase in total peak area, than the established literature methods used. Additionally, by applying the multiparameter Analytical Greenness Metric (AGREE) and Green Analytical Process Index (GAPI) metrics, it was possible to conclude that the developed method was greener than the established literature methods as it includes various principles of green analytical chemistry.
Collapse
Affiliation(s)
- Gabriela Cremasco
- Institute of Chemistry, São Paulo State University (UNESP), R. Prof. Francisco Degni 55, Araraquara 14800-900, SP, Brazil
| | - Adam T Sutton
- Future Industries Institute, Mawson Lakes Campus, University of South Australia, Adelaide, SA 5095, Australia
| | - Cristiano S Funari
- Green Biotech Network, School of Agricultural Sciences, São Paulo State University (UNESP), Av. Universitária, nº 3780-Altos do Paraíso, Botucatu 18610-034, SP, Brazil
| | - Dario R Arrua
- Future Industries Institute, Mawson Lakes Campus, University of South Australia, Adelaide, SA 5095, Australia
| | - Kelly J Dussan
- Institute of Chemistry, São Paulo State University (UNESP), R. Prof. Francisco Degni 55, Araraquara 14800-900, SP, Brazil
| | - Emily F Hilder
- Future Industries Institute, Mawson Lakes Campus, University of South Australia, Adelaide, SA 5095, Australia
| | - Vanderlan S Bolzani
- Institute of Chemistry, São Paulo State University (UNESP), R. Prof. Francisco Degni 55, Araraquara 14800-900, SP, Brazil
| | - Daniel Rinaldo
- Institute of Chemistry, São Paulo State University (UNESP), R. Prof. Francisco Degni 55, Araraquara 14800-900, SP, Brazil
- Green Biotech Network, School of Sciences, São Paulo State University (UNESP), Av. Eng. Luiz Edmundo Carrijo Coube 14-01, Bauru 17033-360, SP, Brazil
| |
Collapse
|
3
|
Rincón E, Bautista JM, Espinosa E, Serrano L. Biopolymer‐based sachets enriched with acorn shell extracts produced by ultrasound‐assisted extraction for active packaging. J Appl Polym Sci 2022. [DOI: 10.1002/app.53102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Esther Rincón
- Biopren Group, Inorganic Chemistry and Chemical Engineering Department Nanochemistry University Institute (IUNAN), Universidad de Córdoba Córdoba Spain
| | - Juana M. Bautista
- Biopren Group, Inorganic Chemistry and Chemical Engineering Department Nanochemistry University Institute (IUNAN), Universidad de Córdoba Córdoba Spain
| | - Eduardo Espinosa
- Biopren Group, Inorganic Chemistry and Chemical Engineering Department Nanochemistry University Institute (IUNAN), Universidad de Córdoba Córdoba Spain
| | - Luis Serrano
- Biopren Group, Inorganic Chemistry and Chemical Engineering Department Nanochemistry University Institute (IUNAN), Universidad de Córdoba Córdoba Spain
| |
Collapse
|
4
|
Najari Z, Khodaiyan F, Yarmand MS, Hosseini SS. Almond hulls waste valorization towards sustainable agricultural development: Production of pectin, phenolics, pullulan, and single cell protein. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 141:208-219. [PMID: 35149477 DOI: 10.1016/j.wasman.2022.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/16/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
This research aimed to valorize almond hulls based on a zero-waste strategy towards sustainable agricultural developments for the recovery and production of valuable compounds. For this purpose, the potential to produce four products, including pectin (AHP), phenolic compounds (AHPC), pullulan (PUL), and single-cell protein (SCP), was examined. The acidic extraction factors were optimized using a Box-Behnken design for the simultaneous extraction of AHP and AHPC, and the obtained results showed that the maximum AHP (26.32% w/w) and AHPC (6.97% w/w) yields were achieved at 90 °C, pH of 1.4, 58.65 min, and liquid-solid ratio (LSR) of 20.13 v/w as the optimum point. In the next step, the solid residues that remained from the AHP and AHPC extraction process (PESR) were treated with cellulase enzyme and ultrasound and were used for simultaneous microbial production of PUL (34.29-24.56 g/L) and biomass containing SCP (19.31-13.44% w/w). Furthermore, the obtained results showed that AHP was low methylated (26.40%), rich in galacturonic acid (67.88%), and high in molecular weight (595.299 kDa). Also, the investigations of structural properties of AHP and PUL confirmed the presence of chemical structures of these polysaccharides in the formed supernatants. In addition, the AHPC showed considerable antioxidant activity compared with ascorbic acid (ASC) and BHA.
Collapse
Affiliation(s)
- Zahra Najari
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran.
| | - Mohammad Saeid Yarmand
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Seyed Saeid Hosseini
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| |
Collapse
|
5
|
β-Cyclodextrin-PANI decorated pencil graphite electrode for the electrochemical sensing of morin in almonds and mulberry leaves. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03540-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
6
|
Oualcadi Y, Aityoub A, Berrekhis F. Investigation of different antioxidant capacity measurements suitable for bioactive compounds applied to medicinal plants. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00613-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Meydan İ, Kizil G, Demir H, Ceken Toptanci B, Kizil M. In vitro DNA damage, protein oxidation protective activity and antioxidant potentials of almond fruit (Amygdalus trichamygdalus) parts (hull and drupe) using soxhlet ethanol extraction. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00491-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Inhibition effect of thiol-type antioxidants on protein oxidative aggregation caused by free radicals. Biophys Chem 2020; 260:106367. [PMID: 32200213 DOI: 10.1016/j.bpc.2020.106367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/22/2020] [Accepted: 03/09/2020] [Indexed: 01/13/2023]
Abstract
This study was aimed to investigate the inhibition effect of thiol-type antioxidants on protein oxidative aggregation caused by free radicals and the underlying mechanisms using six different thiol-type antioxidants (N-acetyl-L-cysteine, methionine, taurine, alpha-lipoic acid, glutathione and thioproline), Cu2+-H2O2 as a free radical generator (mainly a hydroxyl radical generator) and bovine serum albumin as the model protein. The inhibition effect of these antioxidants on protein oxidative aggregation and protective effect against oxidative damage in mouse brain tissues were investigated using SDS-PAGE, intrinsic fluorescence, simultaneous fluorescence, thioflavin T fluorescence, Congo red absorbance and inverted microscope. The results showed that all six antioxidants could inhibit protein oxidative aggregation by scavenging free radicals. In addition, alpha-lipoic acid could also bind to proteins via hydrophobic interactions and thioproline could bind to proteins via hydrogen bonds and van der Waals forces, thereby showing much stronger inhibition effect than others. Moreover, alpha-lipoic acid and thioproline could effectively prevent oxidative damage of mouse brain tissues. These results suggest that alpha-lipoic acid and thioproline can effectively inhibit free radical-induced protein aggregation and brain damage, which are worth testing for further anti-Alzheimer properties.
Collapse
|
9
|
Chemical and Pharmacological Evaluation of Hulls of Prunus dulcis Nuts. Int J Anal Chem 2019; 2019:5861692. [PMID: 31885592 PMCID: PMC6893272 DOI: 10.1155/2019/5861692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 11/17/2022] Open
Abstract
Researchers have shown that the almond hulls, normally wasted after utilization of nuts, contain a number of biologically active compounds based on which the present study has been carried out. Focus is placed on the mass spectrometric determination of the analytes along with the estimation of total polyphenolic and total flavonoid contents in the 70% ethanol extract. After partitioning the 70% ethanol extract in hexane, chloroform, ethyl acetate, n-butanol, and water, all the extracts were evaluated for their antioxidant, antidiabetic, and antimicrobial activities. The results delivered total polyphenolic compounds as gallic acid equivalents (1% w/w) of the dried extract and total flavonoid contents as quercetin equivalents (0.2% w/w) of the dried extract. Mass spectrometric analysis resulted in the identification of 15 compounds containing various derivatives of (epi)catechin, chlorogenic acid, kaempferol, isorhamnetin and their glycosides, ursolic acid, amygdalactone, and benzoic acid derivatives. Antioxidant activity experiments showed that highest activity was found in n-butanol extract among the studied samples with IC50 value as 76.04 μg/ml, while hexane and chloroform extracts were active against the PTP1B enzyme with IC50 values 9.66 μg/ml and 37.95 μg/ml, respectively. Hexane and chloroform fractions were active against Staphylococcus aureus with the zone of inhibition diameter 9 mm and 12 mm, respectively.
Collapse
|
10
|
Kahlaoui M, Borotto Dalla Vecchia S, Giovine F, Ben Haj Kbaier H, Bouzouita N, Barbosa Pereira L, Zeppa G. Characterization of Polyphenolic Compounds Extracted from Different Varieties of Almond Hulls ( Prunus dulcis L.). Antioxidants (Basel) 2019; 8:antiox8120647. [PMID: 31888206 PMCID: PMC6943675 DOI: 10.3390/antiox8120647] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 11/24/2022] Open
Abstract
Ultrasound-assisted extraction (UAE) was applied as a pretreatment technique to improve the recovery of polyphenols from the almond hulls of four Tunisian and three Italian almond varieties, followed by the characterization with HPLC-DAD. The operating parameters (solid/liquid ratio, extraction time, and ethanol concentrations) were optimized using a Response Surface Methodology. A polynomial equation was calculated to describe the relationship between the operating parameters and dependent variables as total polyphenolic content (TPC) and antioxidant activity (RSA). A desirability function approach was used to determine the optimum conditions for operating parameters: a solid:solvent ratio of 2 g/100 mL, an extraction time of 13 min, and an ethanol concentration of 51.2%. Among the almond varieties, Pizzuta and Fakhfekh showed the highest polyphenol content and antioxidant activity. HPLC-DAD analysis of almond hull extracts confirmed that chlorogenic acid, catechin, and protocatechuic acid were the most important polyphenols in almond hull. The results highlighted that UAE could be an effective technique for the recovery of phenolic compounds from almond hull, thereby making this byproduct a promising source of compounds with potential applications in food and healthcare sectors.
Collapse
Affiliation(s)
- Maher Kahlaoui
- Department of Agriculture, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini, 2, 10095 Torino, Italy; (S.B.D.V.); (F.G.); (L.B.P.)
- Higher School of Food Industries of Tunis (ESIAT), University of Carthage, 1003, 58 Alain Savary, Tunisia; (H.B.H.K.); (N.B.)
- Correspondence: (M.K.); (G.Z.)
| | - Stefania Borotto Dalla Vecchia
- Department of Agriculture, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini, 2, 10095 Torino, Italy; (S.B.D.V.); (F.G.); (L.B.P.)
| | - Francesco Giovine
- Department of Agriculture, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini, 2, 10095 Torino, Italy; (S.B.D.V.); (F.G.); (L.B.P.)
| | - Hayet Ben Haj Kbaier
- Higher School of Food Industries of Tunis (ESIAT), University of Carthage, 1003, 58 Alain Savary, Tunisia; (H.B.H.K.); (N.B.)
| | - Nabiha Bouzouita
- Higher School of Food Industries of Tunis (ESIAT), University of Carthage, 1003, 58 Alain Savary, Tunisia; (H.B.H.K.); (N.B.)
| | - Letricia Barbosa Pereira
- Department of Agriculture, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini, 2, 10095 Torino, Italy; (S.B.D.V.); (F.G.); (L.B.P.)
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Giuseppe Zeppa
- Department of Agriculture, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini, 2, 10095 Torino, Italy; (S.B.D.V.); (F.G.); (L.B.P.)
- Correspondence: (M.K.); (G.Z.)
| |
Collapse
|
11
|
|
12
|
Pharmacological and polyphenolic profiles of Phyllanthus phillyreifolius var. commersonii Müll. Arg: An unexplored endemic species from Mauritius. Food Res Int 2018; 115:425-438. [PMID: 30599961 DOI: 10.1016/j.foodres.2018.10.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022]
Abstract
Phyllanthus phillyreifolius var. commersonii Müll. Arg is an endemic plant of Mauritius. To date, no study has been performed concerning its polyphenolic profile and pharmacological properties. In this study, a decoction (water), ethyl acetate and methanol extracts of the aerial parts of P. phillyreifolius, obtained from different extraction procedures (maceration and Soxhlet), were studied for antibacterial, antioxidant, anticancer, and enzyme inhibitory properties along with their polyphenolic profile. The ethyl acetate macerated extract showed high antibacterial activity against B. cereus (MIC = 0.293 mg/mL) and E. coli (MIC = 0.417 mg/mL) while S. epidermidis was most susceptible to the ethyl acetate-Soxhlet extract (MIC = 0.521 mg/mL). The methanol-Soxhlet extract displayed the most potent cupric and ferric reducing power, and metal chelating effect, while the macerated methanolic extract was the most effective DPPH and ABTS scavenger, and BChE inhibitor. Only the ethyl acetate-Soxhlet extract exhibited α-glucosidase inhibition. All extracts exhibited a strong anti-tyrosinase activity, which was further investigated by molecular docking and molecular dynamic. After 48 h exposure to the extracts for HeLa cell lines, the ethyl acetate-Soxhlet extract showed the highest inhibition (IC50 = 533.1 μg/mL) while the decoction extract was more cytotoxic to MDA-MB-231 cells (IC50 = 337.4 μg/mL). Treatment of cancer cell lines with all P. phillyreifolius extracts resulted in a time-dependent reduction of cell viability for HeLa and dose-and time-dependent reduction for MDA-MB-231. Gene expression ratio of Bcl-2 to Bax was higher for all Soxhlet-extracts. Total phenolics (TPC) and flavonoids (TFC) content were highest in the decoction and methanol-Soxhlet extract, respectively (122.43 mg GAE/g extract and 31.28 mg RE/g extract, respectively). The extracts were abundant in ellagitannins, although phenolic acids and flavonoids were also detected. Granatin B was detected for the first time in Phyllanthus species. Overall, the aerial parts of P. phillyreifolius exemplify a potent reservoir of bioactive phytochemicals for therapeutic applications.
Collapse
|
13
|
Meshkini A, Tahmasbi M. Antiplatelet Aggregation Activity of Walnut Hull Extract via Suppression of Reactive Oxygen Species Generation and Caspase Activation. J Acupunct Meridian Stud 2017; 10:193-203. [PMID: 28712479 DOI: 10.1016/j.jams.2017.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/18/2017] [Accepted: 02/28/2017] [Indexed: 10/20/2022] Open
Abstract
Walnut hull (wal hull) is an agricultural by-product that is widely used in traditional medicine for alleviating pain and treating skin diseases, however, recently it has gained much attention in modern pharmacology due to its antioxidant properties. The current study was aimed to determine the total phenolic, flavonoid, and tannin content of Persian wal hull extract and evaluate its biological effects on platelet function. Experimental data showed that acetone extract of wal hulls has a high content of polyphenolic compounds and antioxidant properties. The analytical study of crude extract by gas chromatography-mass spectrometry demonstrated different types of high- and low-molecular-weight compounds that are basically and biologically important. Moreover, an in vitro study revealed that wal hull extract at a concentration of 50 μg/mL inhibited thrombin-induced platelet aggregation and protein secretion by 50%, without any cytotoxic effects on platelets. The examined extract suppressed reactive oxygen species generation and also caspase activation in thrombin-stimulated platelets. Identically, N-acetylcysteine inhibited the increase of reactive oxygen species level induced by thrombin in platelets, and supported a link between cellular redox status and caspase activation in activated platelets. Presumably, the antiplatelet activity of wal hull extract is related to its polyphenolic compounds and their antioxidant properties. Therefore, wal hulls can be considered as a candidate for thrombotic disorders.
Collapse
Affiliation(s)
- Azadeh Meshkini
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Masoumeh Tahmasbi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
14
|
Training Enhances Immune Cells Mitochondrial Biosynthesis, Fission, Fusion, and Their Antioxidant Capabilities Synergistically with Dietary Docosahexaenoic Supplementation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8950384. [PMID: 27698953 PMCID: PMC5028859 DOI: 10.1155/2016/8950384] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022]
Abstract
Exercise training induces adaptations in mitochondrial metabolism, dynamics, and oxidative protection. Omega-3 fatty acids change membrane lipid composition and modulate mitochondrial function. The aim was to investigate the effect of 8-week training and docosahexaenoic acid (DHA) supplementation (1.14 g/day) on the mitochondria dynamics and antioxidant status in peripheral blood mononuclear cells (PBMCs) from sportsmen. Subjects were assigned to an intervention (N = 9) or placebo groups (N = 7) in a randomized double-blind trial. Nutritional intervention significantly increased the DHA content in erythrocyte membranes from the experimental group. No significant differences were reported in terms of circulating PBMCs, Mn-superoxide dismutase protein levels, and their capability to produce reactive oxygen species. The proteins related to mitochondrial dynamics were, in general, increased after an 8-week training and this increase was enhanced by DHA supplementation. The content in mitofusins Mtf-1 and Mtf-2, optic atrophy protein-1 (Opa-1), and mitochondrial transcription factor A (Tfam) were significantly higher in the DHA-supplemented group after intervention. Cytochrome c oxidase (COX-IV) activity and uncoupling proteins UCP-2 and UCP-3 protein levels were increased after training, with higher UCP-3 levels in the supplemented group. In conclusion, training induced mitochondrial adaptations which may contribute to improved mitochondrial function. This mitochondrial response was modulated by DHA supplementation.
Collapse
|