1
|
Spiga F, Davies AL, Tomlinson E, Moore TH, Dawson S, Breheny K, Savović J, Gao Y, Phillips SM, Hillier-Brown F, Hodder RK, Wolfenden L, Higgins JP, Summerbell CD. Interventions to prevent obesity in children aged 5 to 11 years old. Cochrane Database Syst Rev 2024; 5:CD015328. [PMID: 38763517 PMCID: PMC11102828 DOI: 10.1002/14651858.cd015328.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
BACKGROUND Prevention of obesity in children is an international public health priority given the prevalence of the condition (and its significant impact on health, development and well-being). Interventions that aim to prevent obesity involve behavioural change strategies that promote healthy eating or 'activity' levels (physical activity, sedentary behaviour and/or sleep) or both, and work by reducing energy intake and/or increasing energy expenditure, respectively. There is uncertainty over which approaches are more effective and numerous new studies have been published over the last five years, since the previous version of this Cochrane review. OBJECTIVES To assess the effects of interventions that aim to prevent obesity in children by modifying dietary intake or 'activity' levels, or a combination of both, on changes in BMI, zBMI score and serious adverse events. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search date was February 2023. SELECTION CRITERIA Randomised controlled trials in children (mean age 5 years and above but less than 12 years), comparing diet or 'activity' interventions (or both) to prevent obesity with no intervention, usual care, or with another eligible intervention, in any setting. Studies had to measure outcomes at a minimum of 12 weeks post baseline. We excluded interventions designed primarily to improve sporting performance. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our outcomes were body mass index (BMI), zBMI score and serious adverse events, assessed at short- (12 weeks to < 9 months from baseline), medium- (9 months to < 15 months) and long-term (≥ 15 months) follow-up. We used GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS This review includes 172 studies (189,707 participants); 149 studies (160,267 participants) were included in meta-analyses. One hundred forty-six studies were based in high-income countries. The main setting for intervention delivery was schools (111 studies), followed by the community (15 studies), the home (eight studies) and a clinical setting (seven studies); one intervention was conducted by telehealth and 31 studies were conducted in more than one setting. Eighty-six interventions were implemented for less than nine months; the shortest was conducted over one visit and the longest over four years. Non-industry funding was declared by 132 studies; 24 studies were funded in part or wholly by industry. Dietary interventions versus control Dietary interventions, compared with control, may have little to no effect on BMI at short-term follow-up (mean difference (MD) 0, 95% confidence interval (CI) -0.10 to 0.10; 5 studies, 2107 participants; low-certainty evidence) and at medium-term follow-up (MD -0.01, 95% CI -0.15 to 0.12; 9 studies, 6815 participants; low-certainty evidence) or zBMI at long-term follow-up (MD -0.05, 95% CI -0.10 to 0.01; 7 studies, 5285 participants; low-certainty evidence). Dietary interventions, compared with control, probably have little to no effect on BMI at long-term follow-up (MD -0.17, 95% CI -0.48 to 0.13; 2 studies, 945 participants; moderate-certainty evidence) and zBMI at short- or medium-term follow-up (MD -0.06, 95% CI -0.13 to 0.01; 8 studies, 3695 participants; MD -0.04, 95% CI -0.10 to 0.02; 9 studies, 7048 participants; moderate-certainty evidence). Five studies (1913 participants; very low-certainty evidence) reported data on serious adverse events: one reported serious adverse events (e.g. allergy, behavioural problems and abdominal discomfort) that may have occurred as a result of the intervention; four reported no effect. Activity interventions versus control Activity interventions, compared with control, may have little to no effect on BMI and zBMI at short-term or long-term follow-up (BMI short-term: MD -0.02, 95% CI -0.17 to 0.13; 14 studies, 4069 participants; zBMI short-term: MD -0.02, 95% CI -0.07 to 0.02; 6 studies, 3580 participants; low-certainty evidence; BMI long-term: MD -0.07, 95% CI -0.24 to 0.10; 8 studies, 8302 participants; zBMI long-term: MD -0.02, 95% CI -0.09 to 0.04; 6 studies, 6940 participants; low-certainty evidence). Activity interventions likely result in a slight reduction of BMI and zBMI at medium-term follow-up (BMI: MD -0.11, 95% CI -0.18 to -0.05; 16 studies, 21,286 participants; zBMI: MD -0.05, 95% CI -0.09 to -0.02; 13 studies, 20,600 participants; moderate-certainty evidence). Eleven studies (21,278 participants; low-certainty evidence) reported data on serious adverse events; one study reported two minor ankle sprains and one study reported the incident rate of adverse events (e.g. musculoskeletal injuries) that may have occurred as a result of the intervention; nine studies reported no effect. Dietary and activity interventions versus control Dietary and activity interventions, compared with control, may result in a slight reduction in BMI and zBMI at short-term follow-up (BMI: MD -0.11, 95% CI -0.21 to -0.01; 27 studies, 16,066 participants; zBMI: MD -0.03, 95% CI -0.06 to 0.00; 26 studies, 12,784 participants; low-certainty evidence) and likely result in a reduction of BMI and zBMI at medium-term follow-up (BMI: MD -0.11, 95% CI -0.21 to 0.00; 21 studies, 17,547 participants; zBMI: MD -0.05, 95% CI -0.07 to -0.02; 24 studies, 20,998 participants; moderate-certainty evidence). Dietary and activity interventions compared with control may result in little to no difference in BMI and zBMI at long-term follow-up (BMI: MD 0.03, 95% CI -0.11 to 0.16; 16 studies, 22,098 participants; zBMI: MD -0.02, 95% CI -0.06 to 0.01; 22 studies, 23,594 participants; low-certainty evidence). Nineteen studies (27,882 participants; low-certainty evidence) reported data on serious adverse events: four studies reported occurrence of serious adverse events (e.g. injuries, low levels of extreme dieting behaviour); 15 studies reported no effect. Heterogeneity was apparent in the results for all outcomes at the three follow-up times, which could not be explained by the main setting of the interventions (school, home, school and home, other), country income status (high-income versus non-high-income), participants' socioeconomic status (low versus mixed) and duration of the intervention. Most studies excluded children with a mental or physical disability. AUTHORS' CONCLUSIONS The body of evidence in this review demonstrates that a range of school-based 'activity' interventions, alone or in combination with dietary interventions, may have a modest beneficial effect on obesity in childhood at short- and medium-term, but not at long-term follow-up. Dietary interventions alone may result in little to no difference. Limited evidence of low quality was identified on the effect of dietary and/or activity interventions on severe adverse events and health inequalities; exploratory analyses of these data suggest no meaningful impact. We identified a dearth of evidence for home and community-based settings (e.g. delivered through local youth groups), for children living with disabilities and indicators of health inequities.
Collapse
Affiliation(s)
- Francesca Spiga
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Annabel L Davies
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Eve Tomlinson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Theresa Hm Moore
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Applied Research Collaboration West (ARC West) at University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Sarah Dawson
- NIHR Applied Research Collaboration West (ARC West) at University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Katie Breheny
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jelena Savović
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Applied Research Collaboration West (ARC West) at University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Yang Gao
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Sophie M Phillips
- Department of Sport and Exercise Science, Durham University, Durham, UK
- Fuse - Centre for Translational Research in Public Health, Newcastle upon Tyne, UK
- Child Health and Physical Activity Laboratory, School of Occupational Therapy, Western University, London, Ontario, Canada
| | - Frances Hillier-Brown
- Fuse - Centre for Translational Research in Public Health, Newcastle upon Tyne, UK
- Human Nutrition Research Centre and Population Health Sciences Institute, University of Newcastle, Newcastle, UK
| | - Rebecca K Hodder
- Hunter New England Population Health, Hunter New England Local Health District, Wallsend, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
- Population Health Research Program, Hunter Medical Research Institute, New Lambton, Australia
- National Centre of Implementation Science, The University of Newcastle, Callaghan, Australia
| | - Luke Wolfenden
- Hunter New England Population Health, Hunter New England Local Health District, Wallsend, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| | - Julian Pt Higgins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Applied Research Collaboration West (ARC West) at University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
- NIHR Bristol Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, UK
| | - Carolyn D Summerbell
- Department of Sport and Exercise Science, Durham University, Durham, UK
- Fuse - Centre for Translational Research in Public Health, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Fernandez MA, Maximova K, Fulkerson JA, Raine KD. Associations between cooking skills, cooking with processed foods, and health: a cross-sectional study. Appl Physiol Nutr Metab 2024; 49:330-339. [PMID: 37931241 DOI: 10.1139/apnm-2023-0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
To improve health outcomes, home cooking has been suggested as a solution to reduce intakes of processed foods. However, little is known about how cooking skills or cooking with processed foods influence health. This cross-sectional study examined associations between diet and health outcomes with cooking skills and cooking with processed foods. The dataset included a nationally representative sample of 18 460 adults from Canadian Community Health Survey (CCHS) annual component rapid response modules on food skills. In the CCHS rapid response modules, diet and health outcomes (fruit and vegetable intake, general health, mental health, and obesity) and data related to cooking skills and cooking with processed foods were collected through self-report. Separate logistic regression models were fitted for each outcome, controlling for age, income, and education, and stratified by sex. Adults with poor cooking skills were less likely to have adequate fruit and vegetable intake (≥5 servings per day) (p < 0.001), very good general health (p < 0.001) or mental health (p < 0.001), and obesity (p = 0.02) compared to advanced cooking skills. Adults who cooked with highly processed foods were less likely to have adequate fruit and vegetable intake (p < 0.001), very good general health (p = 0.002) or mental health (p < 0.001), but more likely to have obesity (p = 0.03) compared to cooking with minimally processed foods. Cooking skills alone appear insufficient to protect against obesity. Results suggest that not only are cooking skills important, but the quality of ingredients also matter. Limiting the use of processed foods in addition to improving cooking skills are potential intervention targets to promote better health and diet outcomes.
Collapse
Affiliation(s)
- Melissa A Fernandez
- School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Katerina Maximova
- MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael's Hospital, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | - Kim D Raine
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Robson SM, Alvarado AV, Baker-Smith CM. Family Meals and Cardiometabolic Risk Factors in Young Children. Curr Atheroscler Rep 2023; 25:509-515. [PMID: 37421580 DOI: 10.1007/s11883-023-01123-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
PURPOSE OF THE REVIEW Family meals represent a novel strategy for improving cardiovascular health in youth. The purpose of this paper is to describe the association between family meals, dietary patterns, and weight status in youth. REVIEW FINDINGS According to the American Heart Association's Life's Essential 8, poor diet quality and overweight/obesity status are key contributors to suboptimal cardiovascular health. Current literature highlights a positive correlation between the number of family meals and healthier eating patterns, including greater consumption of fruits and vegetables, and a reduced risk of obesity in youth. However, to date, the role of family meals in improving cardiovascular health in youth has been largely observational and prospective studies are needed to assess causality. Family meals may be an effective strategy for improved dietary patterns and weight status in youth.
Collapse
Affiliation(s)
- Shannon M Robson
- Department of Health Behavior and Nutrition Sciences, University of Delaware, 26 N College Avenue, Newark, DE, 19716, USA.
| | - Adriana Verdezoto Alvarado
- Department of Health Behavior and Nutrition Sciences, University of Delaware, 26 N College Avenue, Newark, DE, 19716, USA
| | - Carissa M Baker-Smith
- Pediatric Preventive Cardiology Program, Nemours Children's Health, Wilmington, DE, 19803, USA
| |
Collapse
|