1
|
Fronza MG, Ferreira BF, Pavan-Silva I, Guimarães FS, Lisboa SF. "NO" Time in Fear Response: Possible Implication of Nitric-Oxide-Related Mechanisms in PTSD. Molecules 2023; 29:89. [PMID: 38202672 PMCID: PMC10779493 DOI: 10.3390/molecules29010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by persistent fear responses and altered neurotransmitter functioning due to traumatic experiences. Stress predominantly affects glutamate, a neurotransmitter crucial for synaptic plasticity and memory formation. Activation of the N-Methyl-D-Aspartate glutamate receptors (NMDAR) can trigger the formation of a complex comprising postsynaptic density protein-95 (PSD95), the neuronal nitric oxide synthase (nNOS), and its adaptor protein (NOS1AP). This complex is pivotal in activating nNOS and nitric oxide (NO) production, which, in turn, activates downstream pathways that modulate neuronal signaling, including synaptic plasticity/transmission, inflammation, and cell death. The involvement of nNOS and NOS1AP in the susceptibility of PTSD and its comorbidities has been widely shown. Therefore, understanding the interplay between stress, fear, and NO is essential for comprehending the maintenance and progression of PTSD, since NO is involved in fear acquisition and extinction processes. Moreover, NO induces post-translational modifications (PTMs), including S-nitrosylation and nitration, which alter protein function and structure for intracellular signaling. Although evidence suggests that NO influences synaptic plasticity and memory processing, the specific role of PTMs in the pathophysiology of PTSD remains unclear. This review highlights pathways modulated by NO that could be relevant to stress and PTSD.
Collapse
Affiliation(s)
- Mariana G. Fronza
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Bruna F. Ferreira
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Isabela Pavan-Silva
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Francisco S. Guimarães
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Sabrina F. Lisboa
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
- Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 14040-903, Brazil
| |
Collapse
|
2
|
Chitrala KN, Nagarkatti P, Nagarkatti M. Computational analysis of deleterious single nucleotide polymorphisms in catechol O-Methyltransferase conferring risk to post-traumatic stress disorder. J Psychiatr Res 2021; 138:207-218. [PMID: 33865170 PMCID: PMC8969201 DOI: 10.1016/j.jpsychires.2021.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Post-traumatic stress disorder (PTSD) is one of the prevalent neurological disorder which is drawing increased attention over the past few decades. Major risk factors for PTSD can be categorized into environmental and genetic factors. Among the genetic risk factors, polymorphisms in the catechol-O-methyltransferase (COMT) gene is known to be associated with the risk for PTSD. In the present study, we analysed the impact of deleterious single nucleotide polymorphisms (SNPs) in the COMT gene conferring risk to PTSD using computational based approaches followed by molecular dynamic simulations. The data on COMT gene associated with PTSD were collected from several databases including Online Mendelian Inheritance in Man (OMIM) search. Datasets related to SNP were downloaded from the dbSNP database. To study the structural and dynamic effects of COMT wild type and mutant forms, we performed molecular dynamics simulations (MD simulations) at a time scale of 300 ns. Results from screening the SNPs using the computational tools SIFT and Polyphen-2 demonstrated that the SNP rs4680 (V158M) in COMT has a deleterious effect with phenotype in PTSD. Results from the MD simulations showed that there is some major fluctuations in the structural features including root mean square deviation (RMSD), radius of gyration (Rg), root mean square fluctuation (RMSF) and secondary structural elements including α-helices, sheets and turns between wild-type (WT) and mutant forms of COMT protein. In conclusion, our study provides novel insights into the deleterious effects and impact of V158M mutation on COMT protein structure which plays a key role in PTSD.
Collapse
Affiliation(s)
- Kumaraswamy Naidu Chitrala
- Dept. of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA; Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Prakash Nagarkatti
- Dept. of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Mitzi Nagarkatti
- Dept. of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| |
Collapse
|
3
|
Chubar V, Van Leeuwen K, Bijttebier P, Van Assche E, Bosmans G, Van den Noortgate W, van Winkel R, Goossens L, Claes S. Gene-environment interaction: New insights into perceived parenting and social anxiety among adolescents. Eur Psychiatry 2020; 63:e64. [PMID: 32507125 PMCID: PMC7355173 DOI: 10.1192/j.eurpsy.2020.62] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background. Social anxiety symptoms (SAS) are among the most common mental health problems during adolescence, and it has been shown that parenting influences the adolescent’s level of social anxiety. In addition, it is now widely assumed that most mental health problems, including social anxiety, originate from a complex interplay between genes and environment. However, to date, gene–environment (G × E) interactions studies in the field of social anxiety remain limited. In this study, we have examined how 274 genes involved in different neurotransmission pathways interact with five aspects of perceived parenting as environmental exposure (i.e., support, proactive control, psychological control, punitive control, and harsh punitive control) to affect SAS during adolescence. Methods. We have applied an analytical technique that allows studying genetic information at the gene level, by aggregating data from multiple single-nucleotide-polymorphisms within the same gene and by taking into account the linkage disequilibrium structure of the gene. All participants were part of the STRATEGIES cohort of 948 Flemish adolescents (mean age = 13.7), a population-based study on the development of problem behaviors in adolescence. Relevant genes were preselected based on prior findings and neurotransmitter-related functional protein networks. Results. The results suggest that genes involved in glutamate (SLC1A1), glutathione neurotransmission (GSTZ1), and oxidative stress (CALCRL), in association with harsh punitive parenting, may contribute to social anxiety in adolescence. Isolated polymorphisms in these genes have been related to anxiety and related disorders in earlier work.Conclusions: Taken together, these findings provide new insights into possible biological pathways and environmental risk factors involved in the etiology of social anxiety symptoms’ development. Conclusions. Taken together, these findings provide new insights into possible biological pathways and environmental risk factors involved in the etiology of social anxiety symptoms’ development.
Collapse
Affiliation(s)
- Viktoria Chubar
- Mind-Body Research Group, Department of Neuroscience, KU Leuven, Leuven, Belgium
| | - Karla Van Leeuwen
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Patricia Bijttebier
- School Psychology and Development in Context, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Evelien Van Assche
- Mind-Body Research Group, Department of Neuroscience, KU Leuven, Leuven, Belgium.,University Psychiatric Center KU Leuven, Leuven, Belgium
| | - Guy Bosmans
- Clinical Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Wim Van den Noortgate
- Department of Methodology of Educational Sciences, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Ruud van Winkel
- University Psychiatric Center KU Leuven, Leuven, Belgium.,Center for Contextual Psychiatry, Department of Neuroscience, KU Leuven, Leuven, Belgium
| | - Luc Goossens
- School Psychology and Child and Adolescent Development Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Stephan Claes
- Mind-Body Research Group, Department of Neuroscience, KU Leuven, Leuven, Belgium.,University Psychiatric Center KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Naß J, Efferth T. Pharmacogenetics and Pharmacotherapy of Military Personnel Suffering from Post-traumatic Stress Disorder. Curr Neuropharmacol 2018; 15:831-860. [PMID: 27834145 PMCID: PMC5652029 DOI: 10.2174/1570159x15666161111113514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/23/2016] [Accepted: 11/08/2016] [Indexed: 12/26/2022] Open
Abstract
Background: Posttraumatic stress disorder (PTSD) is a severe problem among soldiers with combating experience difficult to treat. The pathogenesis is still not fully understood at the psychological level. Therefore, genetic research became a focus of interest. The identification of single nucleotide polymorphisms (SNPs) may help to predict, which persons are at high risk to develop PTSD as a starting point to develop novel targeted drugs for treatment. Methods: We conducted a systematic review on SNPs in genes related to PTSD pathology and development of targeted pharmacological treatment options based on PubMed database searches. We focused on clinical trials with military personnel. Results: SNPs in 22 human genes have been linked to PTSD. These genes encode proteins acting as neurotransmitters and receptors, downstream signal transducers and metabolizing enzymes. Pharmacological inhibitors may serve as drug candidates for PTSD treatment, e.g. β2 adrenoreceptor antagonists, dopamine antagonists, partial dopamine D2 receptor agonists, dopamine β hydroxylase inhibitors, fatty acid amid hydrolase antagonists, glucocorticoid receptor agonists, tropomyosin receptor kinase B agonists, selective serotonin reuptake inhibitors, catechol-O-methyltransferase inhibitors, gamma-amino butyric acid receptor agonists, glutamate receptor inhibitors, monoaminoxidase B inhibitors, N-methyl-d-aspartate receptor antagonists. Conclusion: The combination of genetic and pharmacological research may lead to novel target-based drug developments with improved specificity and efficacy to treat PTSD. Specific SNPs may be identified as reliable biomarkers to assess individual disease risk. Focusing on soldiers suffering from PTSD will not only help to improve treatment options for this specific group, but for all PTSD patients and the general population.
Collapse
Affiliation(s)
- Janine Naß
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz. Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz. Germany
| |
Collapse
|
5
|
Afshari P, Yao WD, Middleton FA. Reduced Slc1a1 expression is associated with neuroinflammation and impaired sensorimotor gating and cognitive performance in mice: Implications for schizophrenia. PLoS One 2017; 12:e0183854. [PMID: 28886095 PMCID: PMC5590851 DOI: 10.1371/journal.pone.0183854] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/11/2017] [Indexed: 12/11/2022] Open
Abstract
We previously reported a 84-Kb hemi-deletion copy number variant at the SLC1A1 gene locus that reduces its expression and appeared causally linked to schizophrenia. In this report, we characterize the in vivo and in vitro consequences of reduced expression of Slc1a1 in mice. Heterozygous (HET) Slc1a1+/- mice, which more closely model the hemi-deletion we found in human subjects, were examined in a series of behavioral, anatomical and biochemical assays. Knockout (KO) mice were also included in the behavioral studies for comparative purposes. Both HET and KO mice exhibited evidence of increased anxiety-like behavior, impaired working memory, decreased exploratory activity and impaired sensorimotor gating, but no changes in overall locomotor activity. The magnitude of changes was approximately equivalent in the HET and KO mice suggesting a dominant effect of the haploinsufficiency. Behavioral changes in the HET mice were accompanied by reduced thickness of the dorsomedial prefrontal cortex. Whole transcriptome RNA-Seq analysis detected expression changes of genes and pathways involved in cytokine signaling and synaptic functions in both brain and blood. Moreover, the brains of Slc1a1+/- mice displayed elevated levels of oxidized glutathione, a trend for increased oxidative DNA damage, and significantly increased levels of cytokines. This latter finding was further supported by SLC1A1 knockdown and overexpression studies in differentiated human neuroblastoma cells, which led to decreased or increased cytokine expression, respectively. Taken together, our results suggest that partial loss of the Slc1a1 gene in mice causes haploinsufficiency associated with behavioral, histological and biochemical changes that reflect an altered redox state and may promote the expression of behavioral features and inflammatory states consistent with those observed in schizophrenia.
Collapse
Affiliation(s)
- Parisa Afshari
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY United States of America
| | - Wei-Dong Yao
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY United States of America.,Department of Psychiatry & Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, United States of America
| | - Frank A Middleton
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY United States of America.,Department of Psychiatry & Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, United States of America.,Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States of America
| |
Collapse
|
6
|
Bountress KE, Wei W, Sheerin C, Chung D, Amstadter AB, Mandel H, Wang Z. Relationships between GAT1 and PTSD, Depression, and Substance Use Disorder. Brain Sci 2017; 7:E6. [PMID: 28067785 PMCID: PMC5297295 DOI: 10.3390/brainsci7010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/18/2016] [Accepted: 12/20/2016] [Indexed: 11/16/2022] Open
Abstract
Post-traumatic stress disorder (PTSD), Major Depressive Disorder (MDD), and Substance Use Disorder (SUD) have large public health impacts. Therefore, researchers have attempted to identify those at greatest risk for these phenotypes. PTSD, MDD, and SUD are in part genetically influenced. Additionally, genes in the glutamate and gamma-aminobutyric acid (GABA) system are implicated in the encoding of emotional and fear memories, and thus may impact these phenotypes. The current study examined the associations of single nucleotide polymorphisms in GAT1 individually, and at the gene level, using a principal components (PC) approach, with PTSD, PTSD comorbid with MDD, and PTSD comorbid with SUD in 486 combat-exposed veterans. Findings indicate that several GAT1 SNPs, as well as one of the GAT1 PCs, was associated with PTSD, with and without MDD and SUD comorbidity. The present study findings provide initial insights into one pathway by which shared genetic risk influences PTSD-MDD and PTSD-SUD comorbidities, and thus identify a high-risk group (based on genotype) on whom prevention and intervention efforts should be focused.
Collapse
Affiliation(s)
- Kaitlin E Bountress
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Wei Wei
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425-8350, USA.
| | - Christina Sheerin
- Virginia Institute for Psychiatry and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23219-1534, USA.
| | - Dongjun Chung
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425-8350, USA.
| | - Ananda B Amstadter
- Virginia Institute for Psychiatry and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23219-1534, USA.
| | - Howard Mandel
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA.
| | - Zhewu Wang
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC 29425, USA.
- Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA.
| |
Collapse
|
7
|
Averill LA, Purohit P, Averill CL, Boesl MA, Krystal JH, Abdallah CG. Glutamate dysregulation and glutamatergic therapeutics for PTSD: Evidence from human studies. Neurosci Lett 2016; 649:147-155. [PMID: 27916636 DOI: 10.1016/j.neulet.2016.11.064] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/18/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a chronic and debilitating psychiatric disorder afflicting millions of individuals across the world. While the availability of robust pharmacologic interventions is quite lacking, our understanding of the putative neurobiological underpinnings of PTSD has significantly increased over the past two decades. Accumulating evidence demonstrates aberrant glutamatergic function in mood, anxiety, and trauma-related disorders and dysfunction in glutamate neurotransmission is increasingly considered a cardinal feature of stress-related psychiatric disorders including PTSD. As part of a PTSD Special Issue, this mini-review provides a concise discussion of (1) evidence of glutamatergic abnormalities in PTSD, with emphasis on human subjects data; (2) glutamate-modulating agents as potential alternative pharmacologic treatments for PTSD; and (3) selected gaps in the literature and related future directions.
Collapse
Affiliation(s)
- Lynnette A Averill
- Clinical Neurosciences Division, United States Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT, 06516, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA.
| | - Prerana Purohit
- Clinical Neurosciences Division, United States Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT, 06516, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Christopher L Averill
- Clinical Neurosciences Division, United States Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT, 06516, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Markus A Boesl
- Clinical Neurosciences Division, United States Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT, 06516, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - John H Krystal
- Clinical Neurosciences Division, United States Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT, 06516, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| | - Chadi G Abdallah
- Clinical Neurosciences Division, United States Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT, 06516, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT, 06511, USA
| |
Collapse
|
8
|
Posttraumatic Stress Disorder (PTSD) Patients Exhibit a Blunted Parasympathetic Response to an Emotional Stressor. Appl Psychophysiol Biofeedback 2016; 41:395-404. [DOI: 10.1007/s10484-016-9341-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Ritter AC, Kammerer CM, Brooks MM, Conley YP, Wagner AK. Genetic variation in neuronal glutamate transport genes and associations with posttraumatic seizure. Epilepsia 2016; 57:984-93. [PMID: 27153812 PMCID: PMC4903934 DOI: 10.1111/epi.13397] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Posttraumatic seizures (PTS) commonly occur following severe traumatic brain injury (sTBI). Risk factors for PTS have been identified, but variability in who develops PTS remains. Excitotoxicity may influence epileptogenesis following sTBI. Glutamate transporters manage glutamate levels and excitatory neurotransmission, and they have been associated with both epilepsy and TBI. Therefore, we aimed to determine if genetic variation in neuronal glutamate transporter genes is associated with accelerated epileptogenesis and increased PTS risk after sTBI. METHODS Individuals (N = 253) 18-75 years of age with sTBI were assessed for genetic relationships with PTS. Single nucleotide polymorphisms (SNPs) within SLC1A1 and SLC1A6 were assayed. Kaplan-Meier estimates and log-rank statistics were used to compare seizure rates from injury to 3 years postinjury for SNPs by genotype. Hazard ratios (HRs) were estimated using Cox proportional hazards regression for SNPs significant in Kaplan-Meier analyses adjusting for known PTS risk factors. RESULTS Thirty-two tagging SNPs were examined (SLC1A1: n = 28, SLC1A6: n = 4). Forty-nine subjects (19.37%) had PTS. Of these, 18 (36.7%) seized within 7 days, and 31 (63.3%) seized between 8 days and 3 years post-TBI. With correction for multiple comparisons, genotypes at SNP rs10974620 (SLC1A1) were significantly associated with time to first seizure across the full 3-year follow-up (seizure rates: 77.1% minor allele homozygotes, 24.8% heterozygotes, 16.6% major allele homozygotes; p = 0.001). When seizure follow-up began day 2 postinjury, genotypes at SNP rs7858819 (SLC1A1) were significantly associated with PTS risk (seizure rates: 52.7% minor allele homozygotes, 11.8% heterozygotes, 21.1% major allele homozygotes; p = 0.002). After adjusting for covariates, we found that rs10974620 remained significant (p = 0.017, minor allele versus major allele homozygotes HR 3.4, 95% confidence interval [CI] 1.3-9.3). rs7858819 also remained significant in adjusted models (p = 0.023, minor allele versus major allele homozygotes HR 3.4, 95%CI 1.1-10.5). SIGNIFICANCE Variations within SLC1A1 are associated with risk of epileptogenesis following sTBI. Future studies need to confirm findings, but variation within neuronal glutamate transporter genes may represent a possible pharmaceutical target for PTS prevention and treatment.
Collapse
Affiliation(s)
- Anne C Ritter
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA
| | | | - Maria M Brooks
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | - Yvette P Conley
- Department of Health Promotion and Human Genetics, University of Pittsburgh, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA
| | - Amy K Wagner
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA
- Center for Neuroscience at University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|