1
|
Asim M, Wang H, Waris A, Qianqian G, Chen X. Cholecystokinin neurotransmission in the central nervous system: Insights into its role in health and disease. Biofactors 2024; 50:1060-1075. [PMID: 38777339 PMCID: PMC11627476 DOI: 10.1002/biof.2081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Cholecystokinin (CCK) plays a key role in various brain functions, including both health and disease states. Despite the extensive research conducted on CCK, there remain several important questions regarding its specific role in the brain. As a result, the existing body of literature on the subject is complex and sometimes conflicting. The primary objective of this review article is to provide a comprehensive overview of recent advancements in understanding the central nervous system role of CCK, with a specific emphasis on elucidating CCK's mechanisms for neuroplasticity, exploring its interactions with other neurotransmitters, and discussing its significant involvement in neurological disorders. Studies demonstrate that CCK mediates both inhibitory long-term potentiation (iLTP) and excitatory long-term potentiation (eLTP) in the brain. Activation of the GPR173 receptor could facilitate iLTP, while the Cholecystokinin B receptor (CCKBR) facilitates eLTP. CCK receptors' expression on different neurons regulates activity, neurotransmitter release, and plasticity, emphasizing CCK's role in modulating brain function. Furthermore, CCK plays a pivotal role in modulating emotional states, Alzheimer's disease, addiction, schizophrenia, and epileptic conditions. Targeting CCK cell types and circuits holds promise as a therapeutic strategy for alleviating these brain disorders.
Collapse
Affiliation(s)
- Muhammad Asim
- Department of NeuroscienceCity University of Hong KongKowloon TongHong Kong
- Department of Biomedical ScienceCity University of Hong KongKowloon TongHong Kong
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of SciencesPak Shek KokHong Kong
| | - Huajie Wang
- Department of NeuroscienceCity University of Hong KongKowloon TongHong Kong
| | - Abdul Waris
- Department of Biomedical ScienceCity University of Hong KongKowloon TongHong Kong
| | - Gao Qianqian
- Department of NeuroscienceCity University of Hong KongKowloon TongHong Kong
| | - Xi Chen
- Department of NeuroscienceCity University of Hong KongKowloon TongHong Kong
- Department of Biomedical ScienceCity University of Hong KongKowloon TongHong Kong
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of SciencesPak Shek KokHong Kong
| |
Collapse
|
2
|
Li P, Liu L, Liu S, Lu Z, Halushka PV, Sidles SJ, LaRue AC, Wang Z, Fan H. FLI1 in PBMCs contributes to elevated inflammation in combat-related posttraumatic stress disorder. Front Psychiatry 2024; 15:1436690. [PMID: 39140108 PMCID: PMC11320135 DOI: 10.3389/fpsyt.2024.1436690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition with significant public health implications that arise following exposure to traumatic events. Recent studies highlight the involvement of immune dysregulation in PTSD, characterized by elevated inflammatory markers. However, the precise mechanisms underlying this immune imbalance remain unclear. Previous research has implicated friend leukemia virus integration 1 (FLI1), an erythroblast transformation-specific (ETS) transcription factor, in inflammatory responses in sepsis and Alzheimer's disease. Elevated FLI1 levels in peripheral blood mononuclear cells (PBMCs) have been linked to lupus severity. Yet, FLI1's role in PTSD-related inflammation remains unexplored. In our study, PBMCs were collected from Veterans with and without PTSD. We found significantly increased FLI1 expression in PBMCs from PTSD-afflicted Veterans, particularly in CD4+ T cells, with no notable changes in CD8+ T cells. Stimulation with LPS led to heightened FLI1 expression and elevated levels of inflammatory cytokines IL-6 and IFNγ in PTSD PBMCs compared to controls. Knockdown of FLI1 using Gapmers in PTSD PBMCs resulted in a marked reduction in inflammatory cytokine levels, restoring them to control group levels. Additionally, co-culturing PBMCs from both control and PTSD Veterans with the human brain microglia cell line HMC3 revealed increased inflammatory mediator levels in HMC3. Remarkably, HMC3 cells co-cultured with PTSD PBMCs treated with FLI1 Gapmers exhibited significantly lower inflammatory mediator levels compared to control Gapmer-treated PTSD PBMCs. These findings suggest that suppressing FLI1 may rebalance immune activity in PBMCs and mitigate microglial activation in the brain. Such insights could provide novel therapeutic strategies for PTSD.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Research Service, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC, United States
| | - Liu Liu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Shufeng Liu
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Zhongyang Lu
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Perry V. Halushka
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Department of Pharmacology, Medical University of South Carolina, Charleston, SC, United States
| | - Sara J. Sidles
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Research Service, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC, United States
| | - Amanda C. LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Research Service, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC, United States
| | - Zhewu Wang
- Research Service, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC, United States
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
3
|
Chitrala KN, Nagarkatti P, Nagarkatti M. Computational analysis of deleterious single nucleotide polymorphisms in catechol O-Methyltransferase conferring risk to post-traumatic stress disorder. J Psychiatr Res 2021; 138:207-218. [PMID: 33865170 PMCID: PMC8969201 DOI: 10.1016/j.jpsychires.2021.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Post-traumatic stress disorder (PTSD) is one of the prevalent neurological disorder which is drawing increased attention over the past few decades. Major risk factors for PTSD can be categorized into environmental and genetic factors. Among the genetic risk factors, polymorphisms in the catechol-O-methyltransferase (COMT) gene is known to be associated with the risk for PTSD. In the present study, we analysed the impact of deleterious single nucleotide polymorphisms (SNPs) in the COMT gene conferring risk to PTSD using computational based approaches followed by molecular dynamic simulations. The data on COMT gene associated with PTSD were collected from several databases including Online Mendelian Inheritance in Man (OMIM) search. Datasets related to SNP were downloaded from the dbSNP database. To study the structural and dynamic effects of COMT wild type and mutant forms, we performed molecular dynamics simulations (MD simulations) at a time scale of 300 ns. Results from screening the SNPs using the computational tools SIFT and Polyphen-2 demonstrated that the SNP rs4680 (V158M) in COMT has a deleterious effect with phenotype in PTSD. Results from the MD simulations showed that there is some major fluctuations in the structural features including root mean square deviation (RMSD), radius of gyration (Rg), root mean square fluctuation (RMSF) and secondary structural elements including α-helices, sheets and turns between wild-type (WT) and mutant forms of COMT protein. In conclusion, our study provides novel insights into the deleterious effects and impact of V158M mutation on COMT protein structure which plays a key role in PTSD.
Collapse
Affiliation(s)
- Kumaraswamy Naidu Chitrala
- Dept. of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA; Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Prakash Nagarkatti
- Dept. of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Mitzi Nagarkatti
- Dept. of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| |
Collapse
|
4
|
Asim M, Wang B, Hao B, Wang X. Ketamine for post-traumatic stress disorders and it's possible therapeutic mechanism. Neurochem Int 2021; 146:105044. [PMID: 33862176 DOI: 10.1016/j.neuint.2021.105044] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a devastating medical illness, for which currently available pharmacotherapies have poor efficacy. Accumulating evidence from clinical and preclinical animal investigations supports that ketamine exhibits a rapid and persistent effect against PTSD, though the underlying molecular mechanism remains to be clarified. In this literature review, we recapitulate the achievements from early ketamine studies to the most up-to-date discoveries, with an effort to discuss an inclusive therapeutic role of ketamine for PTSD treatment and its possible therapeutic mechanism. Ketamine seems to have an inimitable mechanism of action entailing glutamate modulation via actions at the N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors, as well as downstream activation of brain-derived neurotrophic factor (BDNF) and mechanistic target of rapamycin (mTOR) signaling pathways to potentiate synaptic plasticity.
Collapse
Affiliation(s)
- Muhammad Asim
- Key Laboratory of Neuroscience, Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong; Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Bing Wang
- Department of Neurosurgery, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Bo Hao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoguang Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
5
|
Ballaz SJ, Bourin M. Cholecystokinin-Mediated Neuromodulation of Anxiety and Schizophrenia: A "Dimmer-Switch" Hypothesis. Curr Neuropharmacol 2021; 19:925-938. [PMID: 33185164 PMCID: PMC8686311 DOI: 10.2174/1570159x18666201113145143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/08/2020] [Accepted: 11/10/2020] [Indexed: 11/22/2022] Open
Abstract
Cholecystokinin (CCK), the most abundant brain neuropeptide, is involved in relevant behavioral functions like memory, cognition, and reward through its interactions with the opioid and dopaminergic systems in the limbic system. CCK excites neurons by binding two receptors, CCK1 and CCK2, expressed at low and high levels in the brain, respectively. Historically, CCK2 receptors have been related to the induction of panic attacks in humans. Disturbances in brain CCK expression also underlie the physiopathology of schizophrenia, which is attributed to the modulation by CCK1 receptors of the dopamine flux in the basal striatum. Despite this evidence, neither CCK2 receptor antagonists ameliorate human anxiety nor CCK agonists have consistently shown neuroleptic effects in clinical trials. A neglected aspect of the function of brain CCK is its neuromodulatory role in mental disorders. Interestingly, CCK is expressed in pivotal inhibitory interneurons that sculpt cortical dynamics and the flux of nerve impulses across corticolimbic areas and the excitatory projections to mesolimbic pathways. At the basal striatum, CCK modulates the excitability of glutamate, the release of inhibitory GABA, and the discharge of dopamine. Here we focus on how CCK may reduce rather than trigger anxiety by regulating its cognitive component. Adequate levels of CCK release in the basal striatum may control the interplay between cognition and reward circuitry, which is critical in schizophrenia. Hence, it is proposed that disturbances in the excitatory/ inhibitory interplay modulated by CCK may contribute to the imbalanced interaction between corticolimbic and mesolimbic neural activity found in anxiety and schizophrenia.
Collapse
Affiliation(s)
- Santiago J. Ballaz
- Address correspondence to this author at the School of Biological Sciences & Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí, Ecuador; Tel: 593 (06) 299 9100, ext. 2626; E-mail:
| | | |
Collapse
|
6
|
Duque-Quintero M, Martínez-Garro J, Guzmán-González PA, Sierra-Hincapié GM, Torres-de Galvis Y. SNP-SNP interactions in the BDNF, COMT, CBR1 and CCK genes, associated with post-traumatic stress disorder in urban residents of Itagüí, Colombia. REVISTA DE LA FACULTAD DE MEDICINA 2020. [DOI: 10.15446/revfacmed.v68n4.77723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción. Los polimorfismos de un solo nucleótido (SNP, por su sigla en inglés) en los genes BDNF, COMT, CBR1 y CCK han sido asociados con el proceso de extinción del miedo en humanos. Dado que la extinción del miedo es clave para la recuperación del trauma psicológico, es posible que estos genes modulen el riesgo de desarrollar trastorno de estrés postraumático (TEPT).Objetivo. Evaluar las asociaciones unilocus y multilocus entre los SNP en los genes BDNF, COMT, CBR1 y CCK y el riesgo de desarrollar TEPT.Materiales y métodos. 129 habitantes del municipio de Itagüí, Colombia, que habían experimentado trauma psicológico al menos una vez, fueron genotipificados para estos polimorfismos (38 casos de TEPT y 91 controles). Se realizaron pruebas de asociación unilocus y multilocus por regresión logística para SNP únicos y las combinaciones genotípicas SNP-SNP existentes.Resultados. No se encontraron asociaciones unilocus, pero se observaron interacciones entre BDNF y CBR1, y CCK y COMT. De estas interacciones, las combinaciones genotípicas que se comportaron como factores de riesgo fueron AG-AA (OR=13.52, p<0.05) de BDNF-CBR1 y TC-AA (OR=13.70, p<0.05) de CCK-COMT.Conclusiones: Los dos pares de polimorfismos en interacción encontrados en el presente estudio podrían actuar de forma aditiva y generar un mayor riesgo de desarrollar TEPT después de sufrir trauma psicológico. Quienes portan un solo alelo tienen un menor riesgo de desarrollar el trastorno que quienes portan dos alelos en genes que interactúan entre sí.
Collapse
|
7
|
Young G. PTSD in Court II: Risk factors, endophenotypes, and biological underpinnings in PTSD. INTERNATIONAL JOURNAL OF LAW AND PSYCHIATRY 2017; 51:1-21. [PMID: 28262266 DOI: 10.1016/j.ijlp.2017.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
The second article in the series of three for the journal on "PTSD in Court" especially concerns the biological bases that have been found to be associated with PTSD (posttraumatic stress disorder). The cohering concepts in this section relate to risk factors; candidate genes; polygenetics; "gene×environment" interactions; epigenetics; endophenotypes; biomarkers; and connective networks both structurally and functionally (in terms of intrinsic connectivity networks, ICNs, including the DMN, SN, and CEN; that is, default mode, salience, and central executive networks, respectively). Risk factors related to PTSD include pre-event, event- and post-event ones. Some of the genes related to PTSD include: FKBP5, 5-HTTLPR, and COMT (which are, respectively, FK506-binding protein 5 gene, serotonin-transporter linked polymorphic region, catechol-O-methyl-transferase). These genetic findings give an estimate of 30% for the genetic influence on PTSD. The typical brain regions involved in PTSD include the amygdala, hippocampus, and prefrontal cortex, along with the insula. Causal models of behavior are multifactorial and biopsychosocial, and these types of models apply to PTSD, as well. The paper presents a multilevel systems model of psychopathology, including PTSD, which involves three levels - a top-down psychological construct one, a bottom-up symptom connection one, and a middle one involving symptom appraisal. Legally, causality refers to the event at issue needing to meet the bar of being materially contributory to the outcome. Finally, this section of the article reviews empirically-supported therapies for PTSD and the dangers of not receiving treatment for it.
Collapse
Affiliation(s)
- Gerald Young
- Glendon Campus, York University, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Banerjee SB, Morrison FG, Ressler KJ. Genetic approaches for the study of PTSD: Advances and challenges. Neurosci Lett 2017; 649:139-146. [PMID: 28242325 DOI: 10.1016/j.neulet.2017.02.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 12/31/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a highly debilitating stress and anxiety-related disorder that occurs in response to specific trauma or abuse. Genetic risk factors may account for up to 30-40% of the heritability of PTSD. Understanding the gene pathways that are associated with PTSD, and how those genes interact with the fear and stress circuitry to mediate risk and resilience for PTSD will enable the development of targeted therapies to prevent the occurrence of or decrease the severity of this complex multi-gene disorder. This review will summarize recent research on genetic approaches to understanding PTSD risk and resilience in human populations, including candidate genes and their epigenetic modifications, genome-wide association studies and neural imaging genetics approaches. Despite challenges faced within this field of study such as inconsistent results and replications, genetic approaches still offer exciting opportunities for the identification and development of novel therapeutic targets and therapies in the future.
Collapse
Affiliation(s)
- Sunayana B Banerjee
- Behavioral Neuroscience and Psychiatric Disorders, Emory University, Atlanta, GA 30329, USA
| | - Filomene G Morrison
- Behavioral Neuroscience and Psychiatric Disorders, Emory University, Atlanta, GA 30329, USA; McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Kerry J Ressler
- Behavioral Neuroscience and Psychiatric Disorders, Emory University, Atlanta, GA 30329, USA; McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| |
Collapse
|