1
|
Huo X, Zhao F, Yang C, Su J. Antioxidant anthocyanin synergistic immune enhancer nanopeptide C-I20 remarkably enhances the protective effect of largemouth bass against largemouth bass ranavirus. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109952. [PMID: 39384057 DOI: 10.1016/j.fsi.2024.109952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Largemouth bass ranavirus (LMBV) infection results in huge economic losses in largemouth bass (Micropterus salmoides) industry. Nanopeptide C-I20 and anthocyanins have a positive effect on promoting immune responses and antioxidant mechanisms in several aquatic organisms, and are therefore used to inhibit LMBV infection. In this study, we developed an LMBV immersion challenge model using three different viral concentrations (1 × 104 copies/mL, 1 × 105 copies/mL, and 1 × 106 copies/mL) to infect largemouth bass, and LMBV-MCP mRNA expression was detected in infected fish. Following infection, the fish exhibited severe external ulceration, redness swelling, and darkening of the skin. Histopathological examination revealed significant necrosis and inflammation in muscle tissue, epithelial cell shedding in renal tubules, macrophage aggregation centers and cellular vacuolization in spleen and head kidney, and cellular hypertrophy in liver. To mitigate LMBV infection, we explored the protective effects of a combined treatment strategy involving C-I20 and anthocyanin. Overall, the combination of anthocyanin and C-I20 demonstrated the highest protective efficacy, significantly reducing viral loads in muscle, liver, spleen, and head kidney. Moreover, this treatment regimen enhanced antioxidant enzyme activities (T-AOC, TSOD, GSH-Px, CAT) and modulated important immune genes (IL-1, IL-8, TNF-α, IL-10, Mx, and IgM) expression. In conclusion, the synergistic application of anthocyanin and C-I20 demonstrates significant efficacy in mitigating LMBV infection. This research introduces a novel and promising approach to managing infectious diseases in aquaculture settings.
Collapse
Affiliation(s)
- Xingchen Huo
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Fengxia Zhao
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Kumar H, Guleria S, Kimta N, Dhalaria R, Nepovimova E, Dhanjal DS, Alomar SY, Kuca K. Amaranth and buckwheat grains: Nutritional profile, development of functional foods, their pre-clinical cum clinical aspects and enrichment in feed. Curr Res Food Sci 2024; 9:100836. [PMID: 39290651 PMCID: PMC11406246 DOI: 10.1016/j.crfs.2024.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
The resurgence of interest in amaranth and buckwheat as nutrient-rich and versatile grains has incited extensive research aimed at exploring their potential benefits for sustainable agriculture and human nutrition. Amaranth is renowned for its gluten-free nature and exceptional nutritional profile, offering high-quality proteins, fiber, minerals, and bioactive compounds. Similarly, buckwheat is recognized for its functional and nutraceutical properties, offering a plethora of health benefits attributed to its diverse array of biologically active constituents; flavonoids, phytosterols, and antioxidants. This comprehensive review comprehends the existing understanding of the composition, anti-nutritional factors, biological activity, and potential application of these grains, emphasizing their pivotal role in addressing global food insecurity. Developed functional foods using these grains are having enhanced physicochemical properties, mineral content, phenolic content and overall sensory acceptability. In addition, the consumption of developed functional food products proved their health benefits against various type of anomalies. Moreover, enrichment of both grains in the animal feeds also showing positive health benefits.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001, India
| | - Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Mekonnen YT, Savini F, Indio V, Seguino A, Giacometti F, Serraino A, Candela M, De Cesare A. Systematic review on microbiome-related nutritional interventions interfering with the colonization of foodborne pathogens in broiler gut to prevent contamination of poultry meat. Poult Sci 2024; 103:103607. [PMID: 38493536 PMCID: PMC10959702 DOI: 10.1016/j.psj.2024.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
This systematic review aimed to compile the available body of knowledge about microbiome-related nutritional interventions contributing to improve the chicken health and having an impact on the reduction of colonization by foodborne pathogens in the gut. Original research articles published between 2012 and 2022 were systematically searched in Scopus and PubMed. A total of 1,948 articles were retrieved and 140 fulfilled the inclusion criteria. Overall, 73 papers described 99 interventions against colonization by Escherichia coli and related organisms; 10 papers described 15 interventions against Campylobacter spp.; 36 papers described 54 interventions against Salmonella; 40 papers described 54 interventions against Clostridium perfringens. A total of 197 microbiome-related interventions were identified as effective against one or more of the listed pathogens and included probiotics (n = 80), prebiotics (n = 23), phytobiotics (n = 25), synbiotics (n = 12), organic acids (n = 12), enzymes (n = 4), essential oils (n = 14) and combination of these (n = 27). The identified interventions were mostly administered in the feed (173/197) or through oral gavage (11/197), in the drinking water (7/197), in ovo (2/197), intra amniotic (2/197), in fresh or reused litter (1/197) or both in the feed and water (1/197). The interventions enhanced the beneficial microbial communities in the broiler gut as Lactic acid bacteria, mostly Lactobacillus spp., or modulated multiple microbial populations. The mechanisms promoting the fighting against colonization by foodborne pathogens included competitive exclusion, production of short chain fatty acids, decrease of gut pH, restoration of the microbiome after dysbiosis events, promotion of a more stable microbial ecology, expression of genes improving the integrity of intestinal mucosa, enhancing of mucin production and improvement of host immune response. All the studies extracted from the literature described in vivo trials but performed on a limited number of animals under experimental settings. Moreover, they detailed the effect of the intervention on the chicken gut without details on further impact on poultry meat safety.
Collapse
Affiliation(s)
- Yitagele Terefe Mekonnen
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Federica Savini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Valentina Indio
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy.
| | - Alessandro Seguino
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alessandra De Cesare
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| |
Collapse
|
4
|
Kumar H, Dhalaria R, Guleria S, Sharma R, Cimler R, Dhanjal DS, Chopra C, Kumar V, Manickam S, Siddiqui SA, Kaur T, Verma N, Kumar Pathera A, Kuča K. Advances in the concept of functional foods and feeds: applications of cinnamon and turmeric as functional enrichment ingredients. Crit Rev Food Sci Nutr 2023; 65:1144-1162. [PMID: 38063355 DOI: 10.1080/10408398.2023.2289645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Spices are a rich source of vitamins, polyphenols, proteins, dietary fiber, and minerals such as calcium, magnesium, iron, and zinc, all of which play an important role in biological functions. Since ancient times, spices have been used in our kitchen as a food coloring agent. Spices like cinnamon and turmeric allegedly contain various functional ingredients, such as phenolic and volatile compounds. Therefore, this review aims to summarize the current knowledge about the nutritional profiles of cinnamon and turmeric, as well as to analyze the clinical studies on their extracts and essential oils in animals and humans. Furthermore, their enrichment applications for food products and animal feed have also been investigated in terms of safety and toxicity. Numerous studies have shown that cinnamon and turmeric have various health benefits, including the reduction of insulin resistance and insulin signaling pathways in diabetic patients, the reduction of inflammatory biomarkers, and the maintenance of gut microflora in both animals and humans. The food and animal feed industries have taken notice of these health benefits and have begun to promote cinnamon and turmeric as healthy foods. This has resulted in the development of new food products and animal feeds that contain cinnamon and turmeric as primary ingredients, which have been deemed an effective means of promoting cinnamon and turmeric's health benefits.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, India
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Richard Cimler
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vijay Kumar
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Talwinder Kaur
- Department of Microbiology, DAV University, Sarmastpur, Jalandhar, Punjab, India
| | - Narinder Verma
- School of Management and Liberal Arts, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | | | - Kamil Kuča
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec, Kralove, Czech Republic
| |
Collapse
|
5
|
Thuekeaw S, Angkanaporn K, Nuengjamnong C. Microencapsulated basil oil (Ocimum basilicum Linn.) enhances growth performance, intestinal morphology, and antioxidant capacity of broiler chickens in the tropics. Anim Biosci 2022; 35:752-762. [PMID: 34991219 PMCID: PMC9065782 DOI: 10.5713/ab.21.0299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/08/2021] [Accepted: 11/16/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Microencapsulation is a technique to improve stability, bioavailability, and controlled release of active ingredients at a target site. This experiment aimed to investigate the effects of microencapsulated basil oil (MBO) on growth performance, apparent ileal digestibility (AID), jejunal histomorphology, bacterial population as well as antioxidant capacity of broiler chickens in a tropical climate. METHODS A total of 288 one-day-old female broilers (Ross 308) were randomly allocated into 4 groups (6 replicates of 12 birds), based on a completely randomized design. Dietary treatments were as follows: i) basal diet (NC), ii) basal diet with avilamycin at 10 ppm (PC), iii) basal diet with free basil oil (FBO) at 500 ppm, and iv) basal diet with MBO at 500 ppm, respectively. RESULTS Dietary supplementation of MBO improved average daily gain, and feed conversion ratio of broilers throughout the 42-d trial period (p<0.05), whereas MBO did not affect average daily feed intake compared with NC group. The broilers fed MBO diet exhibited a greater AID of crude protein and gross energy compared with those in other groups (p<0.05). Lactobacillus spp. and Escherichia coli populations were not affected by feeding dietary treatments. Both FBO and MBO had positive effects on jejunal villus height (VH), villus height to crypt depth ratio (VH:CD) and villus surface area of broilers compared to NC and PC groups (p<0.05). Superoxide dismutase level in the duodenal mucosa of MBO group was significantly increased (p<0.01), whereas malondialdehyde level was significantly decreased (p<0.01). CONCLUSION Microencapsulation could be considered as a promising driver of the basil oil efficiency, consequently MBO at 500 ppm could be potentially used as a feed additive for improvement of intestinal integrity and nutrient utilization, leading to better performance of broiler chickens.
Collapse
Affiliation(s)
- Sureerat Thuekeaw
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330,
Thailand
| | - Kris Angkanaporn
- Department of Veterinary Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330,
Thailand
| | - Chackrit Nuengjamnong
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330,
Thailand
- Food Risk Hub, Research Unit of Chulalongkorn University, Bangkok 10330,
Thailand
| |
Collapse
|
6
|
Bean-Hodgins L, Mohammadigheisar M, Edwards A, Wang C, Barbut S, Kiarie E. Comparative impact of conventional and alternative gut health management programs on growth performance and breast meat quality in broiler chickens raised in commercial and research settings. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2021.100228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|