1
|
Jia L, Xu L, Cai Y, Chen Y, Jin J, Yu L, Zhu J. Enhancing PI3Kγ inhibitor discovery: a machine learning-based virtual screening approach integrating pharmacophores, docking, and molecular descriptors. Mol Divers 2025:10.1007/s11030-025-11216-4. [PMID: 40360829 DOI: 10.1007/s11030-025-11216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025]
Abstract
PI3Kγ is a lipid kinase that is expressed primarily in leukocytes and plays a significant role in tumors, inflammation, and autoimmune diseases. Consequently, considerable attention has been given to the development of pharmacological inhibitors of PI3Kγ. Recently, machine learning-based virtual screening approaches have been increasingly applied in new drug discovery research, potentially providing innovative strategies for the development of PI3Kγ inhibitors. Thus, in this study, we developed a naïve Bayesian classification (NBC) model that integrates molecular descriptors, molecular fingerprints, molecular docking, and pharmacophore models for virtual screening of the PI3Kγ protein. The validation results indicated that the optimal model demonstrated significant potential for differentiating between active and inactive compounds, as well as a reliable ability to identify true PI3Kγ inhibitors with defined biological activity. Additionally, the optimal NBC model provided favorable and unfavorable fragments for PI3Kγ inhibitors, which will help guide the design and discovery of novel PI3Kγ inhibitors. Finally, the optimal NBC model was employed to perform virtual screening on the ChEMBL database, resulting in the identification of several compounds with high potential as PI3Kγ inhibitors. We anticipate that the developed machine learning-based virtual screening approach will offer valuable insights and guidance for the development of novel PI3Kγ inhibitors.
Collapse
Affiliation(s)
- Lei Jia
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Li Yu
- School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, Changzhou, 213164, Jiangsu, China.
| | - Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
2
|
He Y, Diao S, Hou S, Li T, Meng W, Zhang J. Identification of novel potential hypoxia-inducible factor-1α inhibitors through machine learning and computational simulations. Front Chem 2025; 13:1585882. [PMID: 40421268 PMCID: PMC12104167 DOI: 10.3389/fchem.2025.1585882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 04/24/2025] [Indexed: 05/28/2025] Open
Abstract
Introduction Hypoxia-inducible factor-1α (HIF-1α) has become a significant therapeutic target for breast cancer and other cancers by regulating the expression of downstream genes such as erythropoietin, thereby improving cell survival in hypoxic conditions. Methods We jointly applied a multistage screening system encompassing machine learning, molecular docking, and molecular dynamics simulations to conduct virtual screening of the "Traditional Chinese Medicine Monomer Library" for potential HIF-1α inhibitors. The virtual screening was conducted in three sequential stages, applying the following selection criteria sequentially: an activity prediction score greater than or equal to 0.8, a stronger binding affinity, and an MM-PBSA binding free energy lower than the reference compound. Results and Discussion We retrieved 361 compounds with HIF-1α inhibitory activity data from the ChEMBL database for the construction and evaluation of machine learning models. Among the six constructed models, the random forest model based on RDKit molecular descriptor with the optimal comprehensive performance was employed for virtual screening. Ultimately, four compounds were selected for binding mode analyses and 100 ns molecular dynamics simulations. The results showed that the compounds Arnidiol and Epifriedelanol exhibit the most stable interactions with the HIF-1α protein, which can serve as potential HIF-1α inhibitors for future investigations.
Collapse
Affiliation(s)
- Yuxiang He
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuning Diao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengzhen Hou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Taiying Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenhui Meng
- Third Department of Infectious Diseases, The Fourth People’s Hospital of Zibo, Zibo, China
| | - Jinping Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Qiu G, Yu L, Jia L, Cai Y, Chen Y, Jin J, Xu L, Zhu J. Identification of novel covalent JAK3 inhibitors through consensus scoring virtual screening: integration of common feature pharmacophore and covalent docking. Mol Divers 2025; 29:1353-1373. [PMID: 39009908 DOI: 10.1007/s11030-024-10918-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024]
Abstract
Accumulated research strongly indicates that Janus kinase 3 (JAK3) is intricately involved in the initiation and advancement of a diverse range of human diseases, underscoring JAK3 as a promising target for therapeutic intervention. However, JAK3 shows significant homology with other JAK family isoforms, posing substantial challenges in the development of JAK3 inhibitors. To address these limitations, one strategy is to design selective covalent JAK3 inhibitors. Therefore, this study introduces a virtual screening approach that combines common feature pharmacophore modeling, covalent docking, and consensus scoring to identify novel inhibitors for JAK3. First, common feature pharmacophore models were constructed based on a selection of representative covalent JAK3 inhibitors. The optimal qualitative pharmacophore model proved highly effective in distinguishing active and inactive compounds. Second, 14 crystal structures of the JAK3-covalent inhibitor complex were chosen for the covalent docking studies. Following validation of the screening performance, 5TTU was identified as the most suitable candidate for screening potential JAK3 inhibitors due to its higher predictive accuracy. Finally, a virtual screening protocol based on consensus scoring was conducted, integrating pharmacophore mapping and covalent docking. This approach resulted in the discovery of multiple compounds with notable potential as effective JAK3 inhibitors. We hope that the developed virtual screening strategy will provide valuable guidance in the discovery of novel covalent JAK3 inhibitors.
Collapse
Affiliation(s)
- Genhong Qiu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Li Yu
- School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, Changzhou, 213164, Jiangsu, China
| | - Lei Jia
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
4
|
Jia W, Li G, Cheng X, Zhang R, Ma Y. In silico discovery of a novel potential allosteric PI3Kα inhibitor incorporating 2-oxopropyl urea targeting head and neck squamous cell carcinoma. BMC Chem 2025; 19:55. [PMID: 40022235 PMCID: PMC11871742 DOI: 10.1186/s13065-025-01420-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 02/13/2025] [Indexed: 03/03/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common head and neck cancer and highly aggressive and heterogeneous. Targeted therapy is still the main treatment method used in clinic due to lower side effect and personalized medication. In order to discover novel and effective drugs with low side effect against HNSCC, we analyzed the genes related to HNSCC, and found that PIK3CA was highly expressed in tumor tissues and often experienced mutations, leading to excessive activation of phosphoinositide 3-kinase alpha (PI3Kα), promoting the development of HNSCC. The allosteric PI3Kα inhibitor STX-478 inhibits the growth of tumor with hotspot mutations in PI3Kα and shows prominent efficacy on the treatment of human HNSCC xenografts without displaying the metabolic dysfunction observed in Alpelisib. These mutations open the allosteric site more readily, increasing the selectivity of STX-478 for mutant PI3Kα. STX-478 cleverly avoids the side effect of ATP competitive PI3Kα inhibitors. So, the structure of STX-478 was optimized based on the interaction mechanism between STX-478 and PI3Kα. Then, virtual screening, binding mode research, target verification, physical and chemical properties, pharmacokinetic properties and stabilities of ligand-PI3Kα complexes were evaluated by computer technologies (scaffold hopping, cdocker, SuperPred, SwissTarget prediction, Lipinski's rule of five, ADMET and MD simulation). Finally, J-53 (2-oxopropyl urea compound) with excellent properties was selected. J-53 not only formed H-bonds with key amino acids, but its unique -C(O)CH3 could also form H-bonds with ILE1019, making it more stably bound to PI3Kα and contributing to its activity. After the SciFinder verification, J-53 with novel structure had the value of further study. This study suggested that J-53 could be used as potential inhibitors of PI3Kα, and provides valuable information for the subsequent drug discovery of allosteric PI3Kα inhibitors.
Collapse
Affiliation(s)
- Wenqing Jia
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, China.
| | - Guangzhuang Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xianchao Cheng
- Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ruijie Zhang
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, China
| | - Yukui Ma
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, China.
| |
Collapse
|
5
|
Jia L, Ma M, Xiong W, Zhu J, Cai Y, Chen Y, Jin J, Gao M. Evaluating the Anti-inflammatory Potential of JN-KI3: The Therapeutic Role of PI3Kγ-Selective Inhibitors in Asthma Treatment. Inflammation 2025:10.1007/s10753-024-02180-6. [PMID: 39776396 DOI: 10.1007/s10753-024-02180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025]
Abstract
Asthma is a chronic airway inflammatory disease of the airways characterized by the involvement of numerous inflammatory cells and factors. Therefore, targeting airway inflammation is one of the crucial strategies for developing novel drugs in the treatment of asthma. Phosphoinositide 3-kinase gamma (PI3Kγ) has been demonstrated to have a significant impact on inflammation and immune responses, thus emerging as a promising therapeutic target for airway inflammatory disease, including asthma. There are few studies reporting on the therapeutic effects of PI3Kγ-selective inhibitors in asthma disease. In this study, we investigated the anti-inflammatory and therapeutic effects of PI3Kγ-selective inhibitor JN-KI3 for treating asthma by utilizing both in vivo and in vitro approaches, thereby proving that PI3Kγ-selective inhibitors could be valuable in the treatment of asthma. In RAW264.7 macrophages, JN-KI3 effectively suppressed C5a-induced Akt phosphorylation in a concentration-dependent manner, with no discernible toxicity observed in RAW264.7 cells. Furthermore, JN-KI3 can inhibit the PI3K/Akt signaling pathway in lipopolysaccharide-induced RAW264.7 cells, leading to the suppression of transcription and expression of the classical inflammatory cytokines in a concentration-dependent manner. Finally, an ovalbumin-induced murine asthma model was constructed to evaluate the initial therapeutic effect of JN-KI3 for treating asthma. Oral administration of JN-KI3 inhibited the infiltration of inflammatory cells and the expression of T-helper type 2 cytokines in bronchoalveolar lavage fluid, which was associated with the suppression of the PI3K signaling pathway. Lung tissue and immunohistochemical studies demonstrated that JN-KI3 inhibited the accumulation of inflammatory cells around the bronchus and blood vessels, as well as the secretion of mucus and excessive deposition of collagen around the airway. In addition, it reduced the infiltration of white blood cells into the lungs. In summary, JN-KI3 shows promise as a candidate for the treatment of asthma. Our study also suggests that the inhibitory effects of PI3Kγ on inflammation could offer an additional therapeutic strategy for pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Lei Jia
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Mengyun Ma
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wendian Xiong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Mingzhu Gao
- Department of Clinical Research Center for Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Wuxi, 214000, Jiangsu, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
6
|
Li G, Xian S, Cheng X, Hou Y, Jia W, Ma Y. Efficacy of Oroxylin A in ameliorating renal fibrosis with emphasis on Sirt1 activation and TGF-β/Smad3 pathway modulation. Front Pharmacol 2024; 15:1499012. [PMID: 39687299 PMCID: PMC11646733 DOI: 10.3389/fphar.2024.1499012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Renal fibrosis poses a serious threat to human health. At present, there are few types of traditional Chinese medicine used to treat this disease, and Oroxylin A (OA), as a natural product with multiple biological activities, is expected to be used for the treatment of renal fibrosis. Methods The tolerance of osteoarthritis and its impact on renal fibrosis were studied through ADMET, Lipinski's filter, establishment of a unilateral ureteral obstruction (UUO) model, and molecular docking. Results OA has good drug tolerance. Compared with the sham group, UUO mice that did not receive OA treatment showed severe tubular dilation and atrophy, extracellular matrix (ECM) deposition, and inflammatory cell infiltration in their kidneys, while OA-treated mice showed significant improvement in these symptoms. OA treatment remarkably restrained the accumulation of fibronectin and α-SMA. Moreover, OA treatment remarkably decreased the abnormal upregulation of inflammatory factors (IL-1β, IL-6, and TNF-α) in the obstructed kidney of UUO mice. Sirtuin1 (Sirt1) expression was markedly diminished in the kidneys of UUO mice and TGF-β1-induced HK-2 cells, whereas this reduction was largely reversed after OA treatment. The results support that OA exerts antifibrotic effects partly through the promotion of the activity of Sirt1. In in vitro results, OA treatment markedly inhibited the activation of Smad3 in UUO mice, thereby ameliorating renal fibrosis. OA could form hydrogen bonds with key the amino acid ASN226 in Sirt1, thereby activating Sirt1, which might also be the reason why OA could resist renal fibrosis. Discussion Our study indicated that OA might exert anti-renal fibrosis effects through the activation of Sirt1 and the suppression of the TGF-β/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Guangzhuang Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Sentao Xian
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, China
| | - Xianchao Cheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yunhua Hou
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Wenqing Jia
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, China
| | - Yukui Ma
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, China
| |
Collapse
|
7
|
Zheng S, Qi W, Xue T, Zao X, Xie J, Zhang P, Li X, Ye Y, Liu A. Chinese medicine in the treatment of chronic hepatitis B: The mechanisms of signal pathway regulation. Heliyon 2024; 10:e39176. [PMID: 39640799 PMCID: PMC11620126 DOI: 10.1016/j.heliyon.2024.e39176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Chronic hepatitis B (CHB) is a chronic inflammatory disease of the liver caused by infection with the hepatitis B virus (HBV), which in later stages can lead to the development of end-stage liver diseases such as cirrhosis and hepatocellular carcinoma in severe cases, jeopardizing long-term quality of life, with a poor prognosis, and placing a serious financial burden on many families around the world. The pathogenesis of the disease is complex and closely related to the immune function of the body, which has not yet been fully elucidated. The development of chronic hepatitis B is closely related to the involvement of various signaling pathways, such as JAK/STAT, PI3K/Akt, Toll-like receptor, NF-κB and MAPK signaling pathways. A large number of studies have shown that Chinese medicine has obvious advantages in anti-hepatitis B virus, and it can effectively treat the disease by modulating relevant signaling pathways, strengthening immune resistance and defense, and inhibiting inflammatory responses, and certain research progress has been made, but there is still a lack of a comprehensive review on the modulation of relevant signaling pathways in Chinese medicine for the treatment of CHB. Therefore, this article systematically combed and elaborated the relevant literature on the modulation of relevant signaling pathways by traditional Chinese medicine in recent years, with a view to providing new ideas for the treatment of CHB and further drug development.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Tianyu Xue
- Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, 050000, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
| | - Jinchi Xie
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Aimin Liu
- Shangzhuang Township Community Health Service Center, Beijing, 100094, China
| |
Collapse
|
8
|
Dhanabalan AK, Devadasan V, Haribabu J, Krishnasamy G. Machine learning models to identify lead compound and substitution optimization to have derived energetics and conformational stability through docking and MD simulations for sphingosine kinase 1. Mol Divers 2024:10.1007/s11030-024-10997-4. [PMID: 39417979 DOI: 10.1007/s11030-024-10997-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Sphingosine kinases (SphKs) are a group of important enzymes that circulate at low micromolar concentrations in mammals and have received considerable attention due to the roles they play in a broad array of biological processes including apoptosis, mutagenesis, lymphocyte migration, radio- and chemo-sensitization, and angiogenesis. In the present study, we constructed three classification models by four machine learning (ML) algorithms including naive bayes (NB), support vector machine (SVM), logistic regression, and random forest from 395 compounds. The generated ML models were validated by fivefold cross validation. Five different scaffold hit fragments resulted from SVM model-based virtual screening and docking results indicate that all the five fragments exhibit common hydrogen bond interaction a catalytic residue of SphK1. Further, molecular dynamics (MD) simulations and binding free energy calculation had been carried out with the identified five fragment leads and three cocrystal inhibitors. The best 15 fragments were selected. Molecular dynamics (MD) simulations showed that among these compounds, 7 compounds have favorable binding energy compared with cocrystal inhibitors. Hence, the study showed that the present lead fragments could act as potential inhibitors against therapeutic target of cancers and neurodegenerative disorders.
Collapse
Affiliation(s)
- Anantha Krishnan Dhanabalan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Velmurugan Devadasan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502, Copiapó, Chile
- Chennai Institute of Technology (CIT), Chennai, Tamil Nadu, 600069, India
| | - Gunasekaran Krishnasamy
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600025, India.
| |
Collapse
|
9
|
Zhu J, Li X, Meng H, Jia L, Xu L, Cai Y, Chen Y, Jin J, Yu L, Gao M. Molecular modeling strategy for detailing the primary mechanism of action of copanlisib to PI3K: combined ligand-based and target-based approach. J Biomol Struct Dyn 2024; 42:8172-8183. [PMID: 37572326 DOI: 10.1080/07391102.2023.2246569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
Since dysregulation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway is associated with the pathogenesis of cancer, inflammation, and autoimmunity, PI3K has emerged as an attractive target for drug development. Although copanlisib is the first pan-PI3K inhibitor to be approved for clinical use, the precise mechanism by which it acts on PI3K has not been fully elucidated. To reveal the binding mechanisms and structure-activity relationship between PI3K and copanlisib, a comprehensive modeling approach that combines 3D-quantitative structure-activity relationship (3D-QSAR), pharmacophore model, and molecular dynamics (MD) simulation was utilized. Initially, the structure-activity relationship of copanlisib and its derivatives were explored by constructing a 3D-QSAR. Then, the key chemical characteristics were identified by building common feature pharmacophore models. Finally, MD simulations were performed to elucidate the important interactions between copanlisib and different PI3K subtypes, and highlight the key residues for tight-binding inhibitors. The present study uncovered the principal mechanism of copanlisib's action on PI3K at the theoretical level, and these findings might provide guidance for the rational design of pan-PI3K inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Xintong Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Huiqin Meng
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Lei Jia
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Li Yu
- School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, Changzhou, China
| | - Mingzhu Gao
- Department of Clinical Research Center for Jiangnan University Medical Center (Wuxi No.2 People's Hospital), Wuxi, China
| |
Collapse
|
10
|
Kong MM, Wei T, Liu B, Xi ZX, Ding JT, Liu X, Li K, Qin TL, Qian ZY, Wu WC, Wu JZ, Li WL. Discovery of novel ULK1 inhibitors through machine learning-guided virtual screening and biological evaluation. Future Med Chem 2024; 16:1821-1837. [PMID: 39145469 PMCID: PMC11485869 DOI: 10.1080/17568919.2024.2385288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Aim: Build a virtual screening model for ULK1 inhibitors based on artificial intelligence.Materials & methods: Build machine learning and deep learning classification models and combine molecular docking and biological evaluation to screen ULK1 inhibitors from 13 million compounds. And molecular dynamics was used to explore the binding mechanism of active compounds.Results & conclusion: Possibly due to less available training data, machine learning models significantly outperform deep learning models. Among them, the Naive Bayes model has the best performance. Through virtual screening, we obtained three inhibitors with IC50 of μM level and they all bind well to ULK1. This study provides an efficient virtual screening model and three promising compounds for the study of ULK1 inhibitors.
Collapse
Affiliation(s)
- Miao-Miao Kong
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision & Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Tao Wei
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bo Liu
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China
| | - Zi-Xuan Xi
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jun-Tao Ding
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xin Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ke Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tian-Li Qin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhen-Yong Qian
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wen-Can Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jian-Zhang Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision & Brain Health), Wenzhou, Zhejiang, 325000, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wu-Lan Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
11
|
Yin X, Wang J, Ge M, Feng X, Zhang G. Designing Small Molecule PI3Kγ Inhibitors: A Review of Structure-Based Methods and Computational Approaches. J Med Chem 2024; 67:10530-10547. [PMID: 38988222 DOI: 10.1021/acs.jmedchem.4c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The PI3K/AKT/mTOR pathway plays critical roles in a wide array of biological processes. Phosphatidylinositol 3-kinase gamma (PI3Kγ), a class IB PI3K family member, represents a potential therapeutic opportunity for the treatment of cancer, inflammation, and autoimmunity. In this Perspective, we provide a comprehensive overview of the structure, biological function, and regulation of PI3Kγ. We also focus on the development of PI3Kγ inhibitors over the past decade and emphasize their binding modes, structure-activity relationships, and pharmacological activities. The application of computational technologies and artificial intelligence in the discovery of novel PI3Kγ inhibitors is also introduced. This review aims to provide a timely and updated overview on the strategies for targeting PI3Kγ.
Collapse
Affiliation(s)
- Xiaoming Yin
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| | - Jiaying Wang
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| | - Minghao Ge
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| | - Xue Feng
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
| | - Guogang Zhang
- Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, People's Republic of China
| |
Collapse
|
12
|
Liang J, Dai W, Liu C, Wen Y, Chen C, Xu Y, Huang S, Hou S, Li C, Chen Y, Wang W, Tang H. Gingerenone A Attenuates Ulcerative Colitis via Targeting IL-17RA to Inhibit Inflammation and Restore Intestinal Barrier Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400206. [PMID: 38639442 PMCID: PMC11267284 DOI: 10.1002/advs.202400206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/27/2024] [Indexed: 04/20/2024]
Abstract
Ulcerative colitis (UC) is a complicated and recurrent intestinal disease. Currently available drugs for UC treatment are scarce, therefore, novel therapeutic drugs for the UC are urgently to be developed. Gingerenone A (GA) is a phenolic compound known for its anti-inflammatory effect, but its effect on UC remains unknown. Here, it is shown that GA protects mice against UC, which is closely associated with inhibiting intestinal mucosal inflammation and enhancing intestinal barrier integrity in vivo and in vitro. Of note, RNA sequencing analysis demonstrates an evident correlation with IL-17 signaling pathway after GA treatment, and this effect is further corroborated by Western blot. Mechanistically, GA directly interacts with IL-17RA protein through pull-down, surface plasmon resonance analysis and molecular dynamics simulation. Importantly, lentivirus-mediated IL-17RA/Act1 knock-down or GA co-treatment with brodalumab/ixekizumab significantly impairs the protective effects of GA against DSS-induced inflammation and barrier dysfunction, suggesting a critical role of IL-17RA signaling for GA-mediated protection against UC. Overall, these results indicate that GA is an effective agent against UC mainly through the direct binding of IL-17RA to inhibit inflammatory signaling activation.
Collapse
Affiliation(s)
- Jian Liang
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhou510060China
- Dongguan Institute of Guangzhou University of Chinese MedicineDongguan523808China
| | - Weigang Dai
- Center of Ganstric CancerThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510062China
| | - Chuanghui Liu
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yifan Wen
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Chen Chen
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yifei Xu
- Shenzhen Traditional Chinese Medicine HospitalThe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhen518033China
| | - Song Huang
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
- Dongguan Institute of Guangzhou University of Chinese MedicineDongguan523808China
| | - Shaozhen Hou
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Chun Li
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Yongming Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhou510060China
| | - Wei Wang
- School of Pharmaceutical SciencesState Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Hailin Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
13
|
Wang Y, Wang Z, Sun Y, Zhu M, Jiang Y, Bai H, Yang B, Kuang H. Isovaleryl Sucrose Esters from Atractylodes japonica and Their Cytotoxic Activity. Molecules 2024; 29:3069. [PMID: 38999021 PMCID: PMC11243297 DOI: 10.3390/molecules29133069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Cancer represents one of the most significant health challenges currently facing humanity, and plant-derived antitumour drugs represent a prominent class of anticancer medications in clinical practice. Isovaleryl sucrose esters, which are natural constituents, have been identified as having potential antitumour effects. However, the mechanism of action remains unclear. In this study, 12 isovaleryl sucrose ester components, including five new (1-5) and seven known compounds (6-12), were isolated from the roots of Atractylodes japonica. The structures of the compounds were elucidated using 1D and 2D-NMR spectroscopy, complemented by HR-ESI-MS mass spectrometry. The cytotoxic activities of all the compounds against human colon cancer cells (HCT-116) and human lung adenocarcinoma cells (A549) were also evaluated using the CCK8 assay. The results demonstrated that compounds 2, 4, and 6 were moderately inhibitory to HCT-116 cells, with IC50 values of 7.49 ± 0.48, 9.03 ± 0.21, and 13.49 ± 1.45 μM, respectively. Compounds 1 and 6 were moderately inhibitory to A549, with IC50 values of 8.36 ± 0.77 and 7.10 ± 0.52 μM, respectively. Molecular docking revealed that compounds 1-9 exhibited a stronger affinity for FGFR3 and BRAF, with binding energies below -7 kcal/mol. Compound 2 exhibited the lowest binding energy of -10.63 kcal/mol to FGFR3. We screened the compounds with lower binding energies, and the protein-ligand complexes already obtained after molecular docking were subjected to exhaustive molecular dynamics simulation experiments, which simulated the dynamic behaviour of the molecules in close proximity to the actual biological environment, thus providing a deeper understanding of their functions and interaction mechanisms. The present study provides a reference for the development and use of iso-valeryl sucrose esters in the antitumour field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (Y.W.); (Z.W.); (Y.S.); (M.Z.); (Y.J.); (H.B.); (B.Y.)
| |
Collapse
|
14
|
Zhu J, Meng H, Li X, Jia L, Xu L, Cai Y, Chen Y, Jin J, Yu L. Optimization of virtual screening against phosphoinositide 3-kinase delta: Integration of common feature pharmacophore and multicomplex-based molecular docking. Comput Biol Chem 2024; 109:108011. [PMID: 38198965 DOI: 10.1016/j.compbiolchem.2023.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Extensive research has accumulated which suggests that phosphatidylinositol 3-kinase delta (PI3Kδ) is closely related to the occurrence and development of various human diseases, making PI3Kδ a highly promising drug target. However, PI3Kδ exhibits high homology with other members of the PI3K family, which poses significant challenges to the development of PI3Kδ inhibitors. Therefore, in the present study, a hybrid virtual screening (VS) approach based on a ligand-based pharmacophore model and multicomplex-based molecular docking was developed to find novel PI3Kδ inhibitors. 13 crystal structures of the human PI3Kδ-inhibitor complex were collected to establish models. The inhibitors were extracted from the crystal structures to generate the common feature pharmacophore. The crystallographic protein structures were used to construct a naïve Bayesian classification model that integrates molecular docking based on multiple PI3Kδ conformations. Subsequently, three VS protocols involving sequential or parallel molecular docking and pharmacophore approaches were employed. External predictions demonstrated that the protocol combining molecular docking and pharmacophore resulted in a significant improvement in the enrichment of active PI3Kδ inhibitors. Finally, the optimal VS method was utilized for virtual screening against a large chemical database, and some potential hit compounds were identified. We hope that the developed VS strategy will provide valuable guidance for the discovery of novel PI3Kδ inhibitors.
Collapse
Affiliation(s)
- Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Huiqin Meng
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xintong Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lei Jia
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Yu
- School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, Changzhou, Jiangsu 213164, China.
| |
Collapse
|
15
|
Xiong W, Jia L, Cai Y, Chen Y, Gao M, Jin J, Zhu J. Evaluation of the anti-inflammatory effects of PI3Kδ/γ inhibitors for treating acute lung injury. Immunobiology 2023; 228:152753. [PMID: 37832501 DOI: 10.1016/j.imbio.2023.152753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
Phosphatidylinositol 3-kinase delta (PI3Kδ) and gamma (PI3Kγ) are predominantly located in immune and hematopoietic cells. It is well-established that PI3Kδ/γ plays important roles in the immune system and participates in inflammation; hence, it could be a potential target for anti-inflammatory therapy. Currently, several PI3K inhibitors are used clinically to treat cancers with aberrant PI3K signaling; however, their role in treating acute respiratory inflammatory diseases has rarely been explored. Herein, we investigated the potential anti-inflammatory activities of several pharmacological PI3K inhibitors, including marketed drugs idelalisib (PI3Kδ), duvelisib (PI3Kδ/γ), and copanlisib (pan-PI3K with preferential α/δ) and the clinical drug eganelisib (PI3Kγ), for treating acute lung injury (ALI). In the lipopolysaccharide-induced RAW264.7 macrophage inflammatory model, the four inhibitors significantly suppressed proinflammatory cytokine expression by inhibiting the PI3K signaling pathway. Oral administration of PI3K inhibitors markedly improved lung injury in a murine model of ALI. PI3K pathway inhibition decreased inflammatory cell infiltration and totalprotein levels, as well as reduced the expression of associated lung inflammatory factors. Collectively, all four representative PI3K inhibitors exerted prominent anti-inflammatory properties, indicating that PI3K δ and/or γ inhibition could be ideal targets to treat respiratory inflammatory diseases by reducing the inflammatory response. The findings of the current study provide a new basis for utilizing PI3K inhibitors to treat acute respiratory inflammatory diseases.
Collapse
Affiliation(s)
- Wendian Xiong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lei Jia
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mingzhu Gao
- Department of Clinical Research Center for Jiangnan University Medical Center (Wuxi No.2 People's Hospital), Wuxi, Jiangsu 214000, China.
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
16
|
Xu K, Zheng P, Zhao S, Wang J, Feng J, Ren Y, Zhong Q, Zhang H, Chen X, Chen J, Xie P. LRFN5 and OLFM4 as novel potential biomarkers for major depressive disorder: a pilot study. Transl Psychiatry 2023; 13:188. [PMID: 37280213 DOI: 10.1038/s41398-023-02490-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Evidences have shown that both LRFN5 and OLFM4 can regulate neural development and synaptic function. Recent genome-wide association studies on major depressive disorder (MDD) have implicated LRFN5 and OLFM4, but their expressions and roles in MDD are still completely unclear. Here, we examined serum concentrations of LRFN5 and OLFM4 in 99 drug-naive MDD patients, 90 drug-treatment MDD patients, and 81 healthy controls (HCs) using ELISA methods. The results showed that both LRFN5 and OLFM4 levels were considerably higher in MDD patients compared to HCs, and were significantly lower in drug-treatment MDD patients than in drug-naive MDD patients. However, there were no significant differences between MDD patients who received a single antidepressant and a combination of antidepressants. Pearson correlation analysis showed that they were associated with the clinical data, including Hamilton Depression Scale score, age, duration of illness, fasting blood glucose, serum lipids, and hepatic, renal, or thyroid function. Moreover, these two molecules both yielded fairly excellent diagnostic performance in diagnosing MDD. In addition, a combination of LRFN5 and OLFM4 demonstrated a better diagnostic effectiveness, with an area under curve of 0.974 in the training set and 0.975 in the testing set. Taken together, our data suggest that LRFN5 and OLFM4 may be implicated in the pathophysiology of MDD and the combination of LRFN5 and OLFM4 may offer a diagnostic biomarker panel for MDD.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jiubing Wang
- Department of Clinical Laboratory, Chongqing Mental Health Centre, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Zhong
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Hanping Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangyu Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
Zhu J, Sun D, Li X, Jia L, Cai Y, Chen Y, Jin J, Yu L. Developing new PI3Kγ inhibitors by combining pharmacophore modeling, molecular dynamic simulation, molecular docking, fragment-based drug design, and virtual screening. Comput Biol Chem 2023; 104:107879. [PMID: 37182359 DOI: 10.1016/j.compbiolchem.2023.107879] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
Since dysregulation of the phosphatidylinositol 3-kinase gamma (PI3Kγ) signaling pathway is associated with the pathogenesis of cancer, inflammation, and autoimmunity, PI3Kγ has emerged as an attractive target for drug development. IPI-549 is the only selective PI3Kγ inhibitor that has advanced to clinical trials, thus, IPI-549 could serve as a promising template for designing novel PI3Kγ inhibitors. In this present study, a modeling strategy consisting of common feature pharmacophore modeling, receptor-ligand pharmacophore modeling, and molecular dynamics simulation was utilized to identify the key pharmacodynamic characteristic elements of the target compound and the key residue information of the PI3Kγ interaction with the inhibitors. Then, 10 molecules were designed based on the structure-activity relationships, and some of them exhibited satisfactory predicted binding affinities to PI3Kγ. Finally, a hierarchical multistage virtual screening method, involving the developed common feature and receptor-ligand pharmacophore model and molecular docking, was constructed for screening the potential PI3Kγ inhibitors. Overall, we hope these findings would provide some guidance for the development of novel PI3Kγ inhibitors.
Collapse
Affiliation(s)
- Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Dan Sun
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xintong Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lei Jia
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Yu
- School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, Changzhou 213164, Jiangsu, China.
| |
Collapse
|
18
|
Al Hasan M, Sabirianov M, Redwine G, Goettsch K, Yang SX, Zhong HA. Binding and selectivity studies of phosphatidylinositol 3-kinase (PI3K) inhibitors. J Mol Graph Model 2023; 121:108433. [PMID: 36812742 DOI: 10.1016/j.jmgm.2023.108433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Overexpression of the Phosphatidylinositol 3-kinase (PI3K) proteins have been observed in cancer cells. Targeting the phosphatidylinositol 3-kinase (PI3K) signaling transduction pathway by inhibition of the PI3K substrate recognition sites has been proved to be an effective approach to block cancer progression. Many PI3K inhibitors have been developed. Seven drugs have been approved by the US FDA with a mechanism of targeting the phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway. In this study, we used docking tools to investigate selective binding of ligands toward four different subtypes of PI3Ks (PI3Kα, PI3Kβ, PI3Kγ and PI3Kδ). The affinity predicted from both the Glide dock and the Movable-Type (MT)-based free energy calculations agreed well with the experimental data. The validation of our predicted methods with a large dataset of 147 ligands showed very small mean errors. We identified residues that may dictate the subtype-specific binding. Particularly, residues Asp964, Ser806, Lys890 and Thr886 of PI3Kγ might be utilized for PI3Kγ-selective inhibitor design. Residues Val828, Trp760, Glu826 and Tyr813 may be important for PI3Kδ-selective inhibitor binding.
Collapse
Affiliation(s)
- Mohammad Al Hasan
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Matthew Sabirianov
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Grace Redwine
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Kaitlin Goettsch
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Stephen X Yang
- Westlake High School, 100 Lakeview Canyon Rd, Thousand Oaks, CA, 91362, USA
| | - Haizhen A Zhong
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA.
| |
Collapse
|
19
|
Developing a Naïve Bayesian Classification Model with PI3Kγ structural features for virtual screening against PI3Kγ: Combining molecular docking and pharmacophore based on multiple PI3Kγ conformations. Eur J Med Chem 2022; 244:114824. [DOI: 10.1016/j.ejmech.2022.114824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/21/2022]
|
20
|
Xiong W, Jia L, Liang J, Cai Y, Chen Y, Nie Y, Jin J, Zhu J. Investigation into the anti-airway inflammatory role of the PI3Kγ inhibitor JN-PK1: An in vitro and in vivo study. Int Immunopharmacol 2022; 111:109102. [PMID: 35964410 DOI: 10.1016/j.intimp.2022.109102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 12/17/2022]
Abstract
Phosphatidylinositol 3-kinase gamma (PI3Kγ) has been proven to be a potential target for the treatment of inflammatory diseases of the airway; however, there are few reports of selective PI3Kγ inhibitors being used in the field of airway inflammation thus far. Herein, a study employing in vitro and in vivo methodologies was carried out to assess the anti-airway inflammatory effects of JN-PK1, a selective PI3Kγ inhibitor. In RAW264.7 macrophages, JN-PK1 inhibited PI3Kγ-dependent, cellular C5a-induced AKT Ser473 phosphorylation in a concentration- and time-dependent manner and had no significant effect on cell viability.Furthermore, JN-PK1 significantly suppressed LPS-induced, proinflammatory cytokine expression and nitric oxide production through inhibition of the PI3K signaling pathway in RAW264.7 cells. Then, a murine asthma model was established to evaluate the anti-airway inflammation effect of JN-PK1. BALB/c mice were sensitized and challenged with ovalbumin (OVA) to develop an inflammatory response, fibrosis formation, and other airway changes similar to the symptomatology of asthma in humans. Oral administration of JN-PK1 remarkably attenuated OVA-induced asthma in association with the inhibition of the PI3K signaling pathway. That is to say, the oral administration significantly inhibited increases in inflammatory cell counts and reduced T-helper type 2 cytokine production in bronchoalveolar lavage fluid. Pulmonary histological studies showed that oral administration of JN-PK1 not only reduced the infiltration of inflammatory cells but also retarded airway inflammation and fibration. Taken together, JN-PK1 could be developed as a promising candidate for inflammation therapy, and our findings support some potential for therapeutic inhibition of PI3Kγ to treat inflammatory airway diseases.
Collapse
Affiliation(s)
- Wendian Xiong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lei Jia
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junjie Liang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
21
|
Exploring PI3Kγ binding preference with Eganelisib, Duvelisib, and Idelalisib via energetic, pharmacophore and dissociation pathway analyses. Comput Biol Med 2022; 147:105642. [DOI: 10.1016/j.compbiomed.2022.105642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022]
|
22
|
Target-Based Small Molecule Drug Discovery for Colorectal Cancer: A Review of Molecular Pathways and In Silico Studies. Biomolecules 2022; 12:biom12070878. [PMID: 35883434 PMCID: PMC9312989 DOI: 10.3390/biom12070878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Colorectal cancer is one of the most prevalent cancer types. Although there have been breakthroughs in its treatments, a better understanding of the molecular mechanisms and genetic involvement in colorectal cancer will have a substantial role in producing novel and targeted treatments with better safety profiles. In this review, the main molecular pathways and driver genes that are responsible for initiating and propagating the cascade of signaling molecules reaching carcinoma and the aggressive metastatic stages of colorectal cancer were presented. Protein kinases involved in colorectal cancer, as much as other cancers, have seen much focus and committed efforts due to their crucial role in subsidizing, inhibiting, or changing the disease course. Moreover, notable improvements in colorectal cancer treatments with in silico studies and the enhanced selectivity on specific macromolecular targets were discussed. Besides, the selective multi-target agents have been made easier by employing in silico methods in molecular de novo synthesis or target identification and drug repurposing.
Collapse
|