1
|
Wang X, Bian Y, Chen W. Cross-disease transcriptomic analysis reveals DOK3 and PAPOLA as therapeutic targets for neuroinflammatory and tumorigenic processes. Front Immunol 2024; 15:1504629. [PMID: 39726593 PMCID: PMC11669587 DOI: 10.3389/fimmu.2024.1504629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Objective Subarachnoid hemorrhage (SAH) and tumorigenesis share numerous biological complexities; nevertheless, the specific gene expression profiles and underlying mechanisms remain poorly understood. This study aims to identify differentially expressed genes (DEGs) that could serve as biomarkers for diagnosis and prognosis. Methods Gene expression datasets (GSE122063, GSE13353, GSE161870) were analyzed using machine learning algorithms and logistic regression to identify DEGs associated with both SAH and tumorigenesis. Lasso regression and receiver operating characteristic (ROC) curve analysis were employed to evaluate the classification accuracy of these genes. Validation of critical DEGs was performed through pan-cancer analysis and experimental studies, focusing on the role of DOK3 in modulating inflammation and oxidative stress in U251MG glioblastoma and BV2 microglia cells. Results Fifteen common DEGs were identified, with DOK3 and PAPOLA highlighted as crucial genes implicated in SAH and neurodegenerative processes. Experimental validation demonstrated that DOK3 overexpression significantly reduced pro-inflammatory cytokine levels and oxidative stress markers while enhancing antioxidant enzyme activity. Additionally, DOK3 influenced tumorigenic processes such as apoptosis, cell cycle regulation, and proliferation, effectively mitigating LPS-induced cytotoxicity and inflammation in BV2 microglial cells. Conclusions DOK3 and PAPOLA play critical roles in both SAH and related neurodegeneration, presenting themselves as potential prognostic biomarkers and therapeutic targets. Notably, DOK3 exhibits potential as an antitumor agent with anti-inflammatory and antioxidative properties, offering therapeutic benefits for both cancer and neuroinflammatory conditions.
Collapse
Affiliation(s)
| | | | - Weiguang Chen
- Emergency Department, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
2
|
Adamopoulos C, Papavassiliou KA, Papavassiliou AG. DOKing tumor progression in ccRCC. J Cancer 2024; 15:6416-6417. [PMID: 39513127 PMCID: PMC11540509 DOI: 10.7150/jca.104784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Affiliation(s)
- Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, 'Sotiria' Chest Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Tan C, Qin G, Wang QQ, Li KM, Zhou YC, Yao SK. Comprehensive serum proteomics profiles and potential protein biomarkers for the early detection of advanced adenoma and colorectal cancer. World J Gastrointest Oncol 2024; 16:2971-2987. [PMID: 39072170 PMCID: PMC11271786 DOI: 10.4251/wjgo.v16.i7.2971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/08/2024] [Accepted: 05/15/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The majority of colorectal cancer (CRC) cases develop from precursor advanced adenoma (AA). With the development of proteomics technologies, blood protein biomarkers have potential applications in the early screening of AA and CRC in the general population. AIM To identify serum protein biomarkers for the early screening of AA and CRC. METHODS We collected 43 serum samples from 8 normal controls (NCs), 19 AA patients and 16 CRC patients at China-Japan Friendship Hospital. Quantitative proteomic analysis was performed using liquid chromatography-mass spectrometry/mass spectrometry and data independent acquisition, and differentially expressed proteins (DEPs) with P-values < 0.05 and absolute fold changes > 1.5 were screened out, followed by bioinformatics analysis. Prognosis was further analyzed based on public databases, and proteins expression in tissues were validated by immunohistochemistry. RESULTS A total of 2132 proteins and 17365 peptides were identified in the serum samples. There were 459 upregulated proteins and 118 downregulated proteins in the NC vs AA group, 289 and 180 in the NC vs CRC group, and 52 and 248 in the AA vs CRC group, respectively. Bioinformatic analysis revealed that these DEPs had different functions and participated in extensive signaling pathways. We also identified DIAPH1, VASP, RAB11B, LBP, SAR1A, TUBGCP5, and DOK3 as important proteins for the progression of AA and CRC. Furthermore, VASP (P < 0.01), LBP (P = 0.01), TUBGCP5 (P < 0.01), and DOK3 (P < 0.01) were associated with a poor prognosis. In addition, we propose that LBP and VASP may be more promising protein biomarkers for the early screening of colorectal tumors. CONCLUSION Our study elucidated the serum proteomic profiles of AA and CRC patients, and the identified proteins, such as LBP and VASP, may contribute to the early detection of AA and CRC.
Collapse
Affiliation(s)
- Chang Tan
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Geng Qin
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qian-Qian Wang
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Kai-Min Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yuan-Chen Zhou
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Shu-Kun Yao
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
4
|
Acharjee A, Wijesinghe SN, Russ D, Gkoutos G, Jones SW. Cross-species transcriptomics identifies obesity associated genes between human and mouse studies. J Transl Med 2024; 22:592. [PMID: 38918843 PMCID: PMC11197204 DOI: 10.1186/s12967-024-05414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Fundamentally defined by an imbalance in energy consumption and energy expenditure, obesity is a significant risk factor of several musculoskeletal conditions including osteoarthritis (OA). High-fat diets and sedentary lifestyle leads to increased adiposity resulting in systemic inflammation due to the endocrine properties of adipose tissue producing inflammatory cytokines and adipokines. We previously showed serum levels of specific adipokines are associated with biomarkers of bone remodelling and cartilage volume loss in knee OA patients. Whilst more recently we find the metabolic consequence of obesity drives the enrichment of pro-inflammatory fibroblast subsets within joint synovial tissues in obese individuals compared to those of BMI defined 'health weight'. As such this present study identifies obesity-associated genes in OA joint tissues which are conserved across species and conditions. METHODS The study utilised 6 publicly available bulk and single-cell transcriptomic datasets from human and mice studies downloaded from Gene Expression Omnibus (GEO). Machine learning models were employed to model and statistically test datasets for conserved gene expression profiles. Identified genes were validated in OA tissues from obese and healthy weight individuals using quantitative PCR method (N = 38). Obese and healthy-weight patients were categorised by BMI > 30 and BMI between 18 and 24.9 respectively. Informed consent was obtained from all study participants who were scheduled to undergo elective arthroplasty. RESULTS Principal component analysis (PCA) was used to investigate the variations between classes of mouse and human data which confirmed variation between obese and healthy populations. Differential gene expression analysis filtered on adjusted p-values of p < 0.05, identified differentially expressed genes (DEGs) in mouse and human datasets. DEGs were analysed further using area under curve (AUC) which identified 12 genes. Pathway enrichment analysis suggests these genes were involved in the biosynthesis and elongation of fatty acids and the transport, oxidation, and catabolic processing of lipids. qPCR validation found the majority of genes showed a tendency to be upregulated in joint tissues from obese participants. Three validated genes, IGFBP2 (p = 0.0363), DOK6 (0.0451) and CASP1 (0.0412) were found to be significantly different in obese joint tissues compared to lean-weight joint tissues. CONCLUSIONS The present study has employed machine learning models across several published obesity datasets to identify obesity-associated genes which are validated in joint tissues from OA. These results suggest obesity-associated genes are conserved across conditions and may be fundamental in accelerating disease in obese individuals. Whilst further validations and additional conditions remain to be tested in this model, identifying obesity-associated genes in this way may serve as a global aid for patient stratification giving rise to the potential of targeted therapeutic interventions in such patient subpopulations.
Collapse
Affiliation(s)
- Animesh Acharjee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
- MRC Health Data Research UK (HDR UK), Birmingham, UK.
- Institute of Translational Medicine, Foundation Trust, University Hospitals Birmingham NHS, Birmingham, B15 2TT, UK.
- Centre for Health Data Research, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Susanne N Wijesinghe
- Institute of Inflammation and Ageing, MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Dominic Russ
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- MRC Health Data Research UK (HDR UK), Birmingham, UK
- Institute of Translational Medicine, Foundation Trust, University Hospitals Birmingham NHS, Birmingham, B15 2TT, UK
- Centre for Health Data Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Georgios Gkoutos
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- MRC Health Data Research UK (HDR UK), Birmingham, UK
- Institute of Translational Medicine, Foundation Trust, University Hospitals Birmingham NHS, Birmingham, B15 2TT, UK
- Centre for Health Data Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Shu L, Tang J, Liu S, Tao Y. Plasma cell signatures predict prognosis and treatment efficacy for lung adenocarcinoma. Cell Oncol (Dordr) 2024; 47:555-571. [PMID: 37814076 DOI: 10.1007/s13402-023-00883-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
PURPOSE This study aims to identify key genes regulating tumor infiltrating plasma cells (PC) and provide new insights for innovative immunotherapy. METHODS Key genes related to PC were identified using machine learning in lung adenocarcinoma (LUAD) patients. A prognostic model called PC scores was developed using TCGA data and validated with GEO cohorts. We assessed the molecular background, immune features, and drug sensitivity of the high PC scores group. Real-time PCR was utilized to assess the expression of hub genes in both localized LUAD patients and LUAD cell lines. RESULTS We constructed PC scores based on seventeen PC-related hub genes (ELOVL6, MFI2, FURIN, DOK1, ERO1LB, CLEC7A, ZNF431, KIAA1324, NUCB2, TXNDC11, ICAM3, CR2, CLIC6, CARNS1, P2RY13, KLF15, and SLC24A4). Higher age, TNM stage, and PC scores independently predicted shorter overall survival. The AUC value of PC scores for one year, three years, and five years of overall survival were 0.713, 0.716, and 0.690, separately. The nomogram model that integrated age, stage, and PC scores showed significantly higher predictive value than stage alone (P < 0.01). High PC scores group exhibited an immune suppressing microenvironment with lower B, CD8 + T, CD4 + T, and dendritic cell infiltration. Docetaxel, gefitinib, and erlotinib had lower IC50 in high PC groups (P < 0.001). After validation through the local cohort and in vitro experiments, we ultimately confirmed three key potential targets: MFI2, KLF15, and CLEC7A. CONCLUSION We proposed a prediction mode which can effectively identify high-risk LUAD patients and found three novel genes closely correlated with PC tumor infiltration.
Collapse
Affiliation(s)
- Long Shu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Jun Tang
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, China.
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
6
|
Rezaie M, Nasehi M, Shimia M, Ebrahimnezhad M, Yousefi B, Majidinia M. Polyphenols Modulate the miRNAs Expression that Involved in Glioblastoma. Mini Rev Med Chem 2024; 24:1953-1969. [PMID: 38639278 DOI: 10.2174/0113895575304605240408105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 04/20/2024]
Abstract
Glioblastoma multiforme (GBM), a solid tumor that develops from astrocytes, is one of the most aggressive types of brain cancer. While there have been improvements in the efficacy of treating GBM, many problems remain, especially with traditional therapy methods. Therefore, recent studies have extensively focused on developing novel therapeutic agents for combating glioblastoma. Natural polyphenols have been studied for their potential as chemopreventive and chemotherapeutic agents due to their wide range of positive qualities, including antioxidant, antiinflammatory, cytotoxic, antineoplastic, and immunomodulatory activities. These natural compounds have been suggested to act via modulated various macromolecules within cells, including microRNAs (miRNAs), which play a crucial role in the molecular milieu. In this article, we focus on how polyphenols may inhibit tumor growth by influencing the expression of key miRNAs that regulate oncogenes and tumor suppressor genes.
Collapse
Affiliation(s)
- Maede Rezaie
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center, Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Shimia
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Ebrahimnezhad
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
7
|
Wang YF, Hu YQ, Hu YN, Bai YC, Wang H, Zhang Q. Expression and clinical significance of DOK3 in renal clear cell carcinoma. J Int Med Res 2023; 51:3000605231174974. [PMID: 37235715 DOI: 10.1177/03000605231174974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
OBJECTIVES Docking Protein 3 (DOK3) is an adapter protein that has been implicated in various cellular processes relevant to diseases, such as cancer. In this study, we aimed to evaluate the role of DOK3 in kidney renal clear cell carcinoma (KIRC) by examining how its expression levels are correlated with patient characteristics and prognosis. METHODS We analyzed KIRC-related data from The Cancer Genome Atlas and used several bioinformatics tools, such as LinkedOmics and Oncomine, to evaluate DOK3 mRNA expression in KIRC. DOK3 protein expression was examined in 150 clinical KIRC samples and 100 non-cancerous renal tissues with immunohistochemistry assays. The prognostic value of DOK3 mRNA expression on patient overall survival was analyzed retrospectively using Kaplan-Meier survival and Cox regression analyses. RESULTS DOK3 mRNA expression was notably higher in KIRC samples compared with normal tissues. Significant correlations were found between DOK3 mRNA expression levels and tumor size, lymph node metastasis, distant metastasis, and pathological grade using the bioinformatics data. This was confirmed at the protein level with immunohistochemistry data. Survival analyses indicated that elevated DOK3 expression is linked to a lower overall survival rate in KIRC patients. CONCLUSIONS DOK3 is a potential biomarker for determining KIRC patient clinical prognosis.
Collapse
Affiliation(s)
- Yi-Fan Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate Department, Bengbu Medical College, Bengbu, China
| | - Yu-Qi Hu
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu-Ning Hu
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu-Chen Bai
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Heng Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qi Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
8
|
He Z, Gu J, Luan T, Li H, Li C, Chen Z, Luo E, Wang J, Huang Y, Ding M. Comprehensive analyses of a tumor-infiltrating lymphocytes-related gene signature regarding the prognosis and immunologic features for immunotherapy in bladder cancer on the basis of WGCNA. Front Immunol 2022; 13:973974. [PMID: 36211333 PMCID: PMC9540212 DOI: 10.3389/fimmu.2022.973974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor-infiltrating lymphocyte (TIL) is a class of cells with important immune functions and plays a crucial role in bladder cancer (BCa). Several studies have shown the clinical significance of TIL in predicting the prognosis and immunotherapy efficacy. TIL-related gene module was screened utilizing weighted gene coexpression network analysis. We screened eight TIL-related genes utilizing univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO) Cox regression analysis, and multivariate Cox regression analysis. Then, we established a TIL-related signature model containing the eight selected genes and subsequently classified all patients into two groups, that is, the high-risk as well as low-risk groups. Gene mutation status, prognosis, immune cell infiltration, immune subtypes, TME, clinical features, and immunotherapy response were assessed among different risk subgroups. The results affirmed that the TIL-related signature model was a reliable predictor of overall survival (OS) for BCa and was determined as an independent risk factor for BCa patients in two cohorts. Moreover, the risk score was substantially linked to age, tumor staging, TNM stage, and pathological grade. And there were different mutational profiles, biological pathways, immune scores, stromal scores, and immune cell infiltration in the tumor microenvironment (TME) between the two risk groups. In particular, immune checkpoint genes’ expression was remarkably different between the two risk groups, with patients belonging to the low-risk group responding better to immune checkpoint inhibition (ICI) therapy. In conclusion, our study demonstrates that the TIL-related model was a reliable signature in anticipating prognosis, immune status, and immunotherapy response, which can help in screening patients who respond to immunotherapy.
Collapse
Affiliation(s)
- Zexi He
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Gu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ting Luan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haihao Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Charles Li
- Zhongke Jianlan Medical Research Institute, Beijing, China
| | - Zhenjie Chen
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Enxiu Luo
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yinglong Huang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Mingxia Ding, ; Yinglong Huang,
| | - Mingxia Ding
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Urological Disease Clinical Medical Center of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Mingxia Ding, ; Yinglong Huang,
| |
Collapse
|
9
|
Linden N, Jones RB. Potential multi-modal effects of provirus integration on HIV-1 persistence: lessons from other viruses. Trends Immunol 2022; 43:617-629. [PMID: 35817699 PMCID: PMC9429957 DOI: 10.1016/j.it.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022]
Abstract
Despite antiretroviral therapy (ART), HIV-1 persists as proviruses integrated into the genomic DNA of CD4+ T cells. The mechanisms underlying the persistence and clonal expansion of these cells remain incompletely understood. Cases have been described in which proviral integration can alter host gene expression to drive cellular proliferation. Here, we review observations from other genome-integrating human viruses to propose additional putative modalities by which HIV-1 integration may alter cellular function to favor persistence, such as by altering susceptibility to cytotoxicity in virus-expressing cells. We propose that signals implicating such mechanisms may have been masked thus far by the preponderance of defective and/or nonreactivatable HIV-1 proviruses, but could be revealed by focusing on the integration sites of intact proviruses with expression potential.
Collapse
Affiliation(s)
- Noemi Linden
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|