2
|
Xie J, Yan L, Cheng Z, Qiang L, Yan J, Liu Y, Liang R, Zhang J, Li Z, Zhuang L, Hao C, Wang B, Lu Q. Potential effect of inflammation on the failure risk of in vitro fertilization and embryo transfer among infertile women. HUM FERTIL 2018; 23:214-222. [PMID: 30477363 DOI: 10.1080/14647273.2018.1543898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Xie
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People’s Republic of China, Beijing, People’s Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, People’s Republic of China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People’s Republic of China
| | - Zixi Cheng
- Department of Child, Adolescent and Women’s Health, School of Public Health, Peking University, Beijing, People’s Republic of China
| | - Lijuan Qiang
- Reproductive Medical Center, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Jingjing Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People’s Republic of China
| | - Yingying Liu
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People’s Republic of China, Beijing, People’s Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, People’s Republic of China
| | - Rong Liang
- Reproductive Medical Center, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Jingxu Zhang
- Department of Child, Adolescent and Women’s Health, School of Public Health, Peking University, Beijing, People’s Republic of China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People’s Republic of China, Beijing, People’s Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, People’s Republic of China
| | - Lili Zhuang
- Reproductive Medicine Centre, Yuhuangding Hospital of Yantai, Affiliated Hospital of Qingdao University, Yantai, People’s Republic of China
| | - Cuifang Hao
- Reproductive Medicine Centre, Yuhuangding Hospital of Yantai, Affiliated Hospital of Qingdao University, Yantai, People’s Republic of China
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People’s Republic of China, Beijing, People’s Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, People’s Republic of China
| | - Qun Lu
- Reproductive Medical Center, Peking University People’s Hospital, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Bai HY, Mogi M, Nakaoka H, Kan-No H, Tsukuda K, Wang XL, Shan BS, Kukida M, Yamauchi T, Higaki A, Min LJ, Iwanami J, Horiuchi M. Synergistic Inhibitory Effect of Rosuvastatin and Angiotensin II Type 2 Receptor Agonist on Vascular Remodeling. J Pharmacol Exp Ther 2016; 358:352-8. [PMID: 27225894 DOI: 10.1124/jpet.116.233148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022] Open
Abstract
We investigated the possibility that coadministration of rosuvastatin and compound 21 (C21), a selective angiotensin II type 2 (AT2) receptor agonist, could exert synergistic preventive effects on vascular injury. Vascular injury was induced by polyethylene cuff placement on the femoral artery in 9-week-old male C57BL/6J mice. Mice were treated with rosuvastatin and/or with C21 after cuff placement. Neointima formation was determined 14 days after the operation and cell proliferation, and superoxide anion production and expression of inflammatory cytokines were examined 7 days after cuff placement. Neointima formation was significantly attenuated by the treatment of rosuvastatin (5 mg kg(-1) day(-1)) or C21 (10 μg kg(-1) day(-1)), associated with the decreases in proliferating cell nuclear antigen (PCNA) labeling index, oxidative stress, and the expression of inflammatory markers. Treatment with a noneffective dose of rosuvastatin (0.5 mg kg(-1) day(-1)) plus a low dose of C21 (1 μg kg(-1) day(-1)) inhibited the PCNA labeling index, superoxide anion production, mRNA expressions of NAD(P)H subunits, and mRNA and protein expressions of inflammatory markers associated with marked inhibition of neointima formation. Angiotensin II type 1 (AT1) receptor mRNA expression did not differ the groups. By contrast, AT2 receptor mRNA expression was increased by administration of C21 at the dose of 10 μg kg(-1) day(-1) but not by C21 at the dose of 1 μg kg(-1) day(-1) or rosuvastatin. The combination of rosuvastatin and AT2 receptor agonist exerted synergistic preventive effects on vascular remodeling associated with the decreases in cell proliferation, oxidative stress, and inflammatory reaction. That could be a powerful approach to vascular disease prevention.
Collapse
Affiliation(s)
- Hui-Yu Bai
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Hirotomo Nakaoka
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Harumi Kan-No
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Kana Tsukuda
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Xiao-Li Wang
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Bao-Shuai Shan
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Masayoshi Kukida
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Toshifumi Yamauchi
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Akinori Higaki
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Li-Juan Min
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Jun Iwanami
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| |
Collapse
|
5
|
Mizuno N, Nishibori E, Oka M, Jomori T, Takata M, Kumasaka T. Structural Basis for Polymer Packing and Solvation Properties of the Organogermanium Crystalline Polymer Propagermanium and Its Derivatives. J Pharm Sci 2015; 104:2482-8. [PMID: 26037234 DOI: 10.1002/jps.24486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 11/08/2022]
Abstract
Of organogermanium compounds known to have an immunostimulatory action, propagermanium [PGe; 3-oxygermylpropionic acid polymer, (C3 H5 GeO3.5 )n] is the only one used as a pharmaceutical agent, to treat the hepatitis B virus in Japan. However, because of lack of information about its structure, PGe has been confused with a polymeric solid, repagermanium (RGe, Ge-132, poly-trans-[(2-carboxyethyl) germasesquioxane], (C18 H30 Ge6 O21 )n), which has the same essential formula as PGe. To clarify this issue, the structure of PGe was analyzed using X-ray diffraction (XRD). PGe has a polymeric ladder-shaped structure of a concatenated eight-membered ring composed of Ge-O bonds, which is clearly distinguished from the infinite sheet structure in RGe. Moreover, we observed temperature or moisture-dependent transformations among these compounds using powder XRD. For instance, PGe was easily dissolved in water, and transformed to RGe by exposure to water vapor, but transformed into another straight-chain structure when exposed to aqueous solution. As a result of these findings, PGe was indicated to have labile polymer packing against RGe. These characteristics of PGe may affect pharmaceutical properties such as respective stability and solubility, which indicate its unique impact on physiological activity.
Collapse
Affiliation(s)
- Nobuhiro Mizuno
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo, Japan
| | - Eiji Nishibori
- Division of Physics, Faculty of Pure and Applied Sciences, Tsukuba Research Center for Interdisciplinary Materials Science (TIMS) and Center for Integrated Research in Fundamental Science and Engineering (CiRfSE), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mitsuru Oka
- Pharmaceutical Technology Laboratories, Sanwa Kagaku Kenkyusho Company, Ltd., Inabe, Mie, Jpaan
| | - Takahito Jomori
- Drug Development Center, Sanwa Kagaku Kenkyusho Company, Ltd., Nagoya Aichi, Japan
| | - Masaki Takata
- Structural Materials Science Laboratory, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan.,Research and Utilization Division, Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo, Japan
| | - Takashi Kumasaka
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo, Japan
| |
Collapse
|