1
|
Murvai N, Gellen G, Micsonai A, Schlosser G, Kardos J. Cross-Linked α-Synuclein as Inhibitor of Amyloid Formation. Int J Mol Sci 2023; 24:13403. [PMID: 37686208 PMCID: PMC10487470 DOI: 10.3390/ijms241713403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The aggregation and amyloid formation of α-synuclein is associated with Parkinson's disease and other synucleinopathies. In its native, monomeric form α-synuclein is an intrinsically disordered protein represented by highly dynamic conformational ensembles. Inhibition of α-synuclein aggregation using small molecules, peptides, or proteins has been at the center of interest in recent years. Our aim was to explore the effects of cross-linking on the structure and aggregation/amyloid formation properties of α-synuclein. Comparative analysis of available high-resolution amyloid structures and representative structural models and MD trajectory of monomeric α-synuclein revealed that potential cross-links in the monomeric protein are mostly incompatible with the amyloid forms and thus might inhibit fibrillation. Monomeric α-synuclein has been intramolecularly chemically cross-linked under various conditions using different cross-linkers. We determined the location of cross-links and their frequency using mass spectrometry and found that most of them cannot be realized in the amyloid structures. The inhibitory potential of cross-linked proteins has been experimentally investigated using various methods, including thioflavin-T fluorescence and transmission electron microscopy. We found that conformational constraints applied by cross-linking fully blocked α-synuclein amyloid formation. Moreover, DTSSP-cross-linked molecules exhibited an inhibitory effect on the aggregation of unmodified α-synuclein as well.
Collapse
Affiliation(s)
- Nikoletta Murvai
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
- ELTE—Functional Nucleic Acid Motifs Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Gabriella Gellen
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - András Micsonai
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
- ELTE—Functional Nucleic Acid Motifs Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - József Kardos
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| |
Collapse
|
2
|
Immobilization of a Bienzymatic System via Crosslinking to a Metal‐Organic Framework. Catalysts 2022. [DOI: 10.3390/catal12090969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A leading biotechnological advancement in the field of biocatalysis is the immobilization of enzymes on solid supports to create more stable and recyclable systems. Metal-organic frameworks (MOFs) are porous materials that have been explored as solid supports for enzyme immobilization. Composed of organic linkers and inorganic nodes, MOFs feature empty void space with large surface areas and have the ability to be modified post-synthesis. Our target enzyme system for immobilization is glucose oxidase (GOx) and chloroperoxidase (CPO). Glucose oxidase catalyzes the oxidation of glucose and is used for many applications in biosensing, biofuel cells, and food production. Chloroperoxidase is a fungal heme enzyme that catalyzes peroxide-dependent halogenation, oxidation, and hydroxylation. These two enzymes work sequentially in this enzyme system by GOx producing peroxide, which activates CPO that reacts with a suitable substrate. This study focuses on using a zirconium-based MOF, UiO-66-NH2, to immobilize the enzyme system via crosslinking with the MOF’s amine group on the surface of the MOF. This study investigates two different crosslinkers: disuccinimidyl glutarate (DSG) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/N-hydroxysuccinidimide (NHS), providing stable crosslinking of the MOF to the enzymes. The two crosslinkers are used to covalently bond CPO and GOx onto UiO-66-NH2, and a comparison of the recyclability and enzymatic activity of the single immobilization of CPO and the doubly immobilized CPO and GOx is discussed through assays and characterization analyses. The DSG-crosslinked composites displayed enhanced activity relative to the free enzyme, and all crosslinked enzyme/MOF composites demonstrated recyclability, with at least 30% of the activity being retained after four catalytic cycles. The results of this report will aid researchers in utilizing CPO as a biocatalyst that is more active and has greater recyclability.
Collapse
|
3
|
Zhang Z, Li Y, Yuan W, Wang Z, Wan C. Proteomic-driven identification of short open reading frame-encoded peptides. Proteomics 2022; 22:e2100312. [PMID: 35384297 DOI: 10.1002/pmic.202100312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/10/2022]
Abstract
Accumulating evidence has shown that a large number of short open reading frames (sORFs) also have the ability to encode proteins. The discovery of sORFs opens up a new research area, leading to the identification and functional study of sORF encoded peptides (SEPs) at the omics level. Besides bioinformatics prediction and ribosomal profiling, mass spectrometry (MS) has become a significant tool as it directly detects the sequence of SEPs. Though MS-based proteomics methods have proved to be effective for qualitative and quantitative analysis of SEPs, the detection of SEPs is still a great challenge due to their low abundance and short sequence. To illustrate the progress in method development, we described and discussed the main steps of large-scale proteomics identification of SEPs, including SEP extraction and enrichment, MS detection, data processing and quality control, quantification, and function prediction and validation methods. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Yujie Li
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Wenqian Yuan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Zhiwei Wang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| |
Collapse
|
4
|
Kim YE, Kim KE, Kim KK. In Vivo Crosslinking of Histone and RNA-Binding Proteins. Methods Mol Biol 2020; 2161:75-88. [PMID: 32681507 DOI: 10.1007/978-1-0716-0680-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Protein-protein interactions are essential in various cellular processes including regulation of gene expression, formation of protein complexes, and cellular signaling transduction. In particular, several proteins in the nucleus interact to regulate transcription and RNA splicing. These protein-protein interactions are short and weak and occur through transient processes, making it difficult to identify these interactions. In addition, detection of interacting partners in vitro using cell lysates cannot provide complete information due to the loss of spatial organization and changes in protein modification. Here we describe an in vivo crosslinking technique using disuccinimidyl suberate (DSS), which is useful to capture and stabilize proteins to analyze the interacting proteins.
Collapse
Affiliation(s)
- Yong-Eun Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Kyoon Eon Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Sayers RL, Gethings LA, Lee V, Balasundaram A, Johnson PE, Marsh JA, Wallace A, Brown H, Rogers A, Langridge JI, Mills ENC. Microfluidic Separation Coupled to Mass Spectrometry for Quantification of Peanut Allergens in a Complex Food Matrix. J Proteome Res 2017; 17:647-655. [DOI: 10.1021/acs.jproteome.7b00714] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rebekah L. Sayers
- School of Biological Sciences, Manchester Academic Health Science Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, U.K. M1 7DN
| | - Lee A. Gethings
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, U.K. SK9 4AX
| | - Victoria Lee
- School of Biological Sciences, Manchester Academic Health Science Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, U.K. M1 7DN
| | - Anuradha Balasundaram
- School of Biological Sciences, Manchester Academic Health Science Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, U.K. M1 7DN
| | - Philip E. Johnson
- School of Biological Sciences, Manchester Academic Health Science Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, U.K. M1 7DN
| | - Justin A. Marsh
- School of Biological Sciences, Manchester Academic Health Science Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, U.K. M1 7DN
| | - Antonietta Wallace
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, U.K. SK9 4AX
| | - Helen Brown
- Campden BRI (Chipping Campden) Ltd, Chipping Campden, U.K. GL55 6LD
| | - Adrian Rogers
- Romer Labs U.K., The Heath Business and Technical Park, Runcorn, Cheshire, U.K. WA7 4QX
| | - James I. Langridge
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, U.K. SK9 4AX
| | - E. N. Clare Mills
- School of Biological Sciences, Manchester Academic Health Science Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, U.K. M1 7DN
| |
Collapse
|
6
|
Barysz HM, Malmström J. Development of Large-scale Cross-linking Mass Spectrometry. Mol Cell Proteomics 2017; 17:1055-1066. [PMID: 28389583 DOI: 10.1074/mcp.r116.061663] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 03/26/2017] [Indexed: 11/06/2022] Open
Abstract
Cross-linking mass spectrometry (CLMS) provides distance constraints to study the structure of proteins, multiprotein complexes and protein-protein interactions which are critical for the understanding of protein function. CLMS is an attractive technology to bridge the gap between high-resolution structural biology techniques and proteomic-based interactome studies. However, as outlined in this review there are still several bottlenecks associated with CLMS which limit its application on a proteome-wide level. Specifically, there is an unmet need for comprehensive software that can reliably identify cross-linked peptides from large data sets. In this review we provide supporting information to reason that targeted proteomics of cross-links may provide the required sensitivity to reliably detect and quantify cross-linked peptides and that a reporter ion signature for cross-linked peptides may become a useful approach to increase confidence in the identification process of cross-linked peptides. In addition, the review summarizes the recent advances in CLMS workflows using the analysis of condensin complex in intact chromosomes as a model complex.
Collapse
Affiliation(s)
- Helena Maria Barysz
- From the ‡Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Johan Malmström
- From the ‡Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Nguyen-Huynh NT, Sharov G, Potel C, Fichter P, Trowitzsch S, Berger I, Lamour V, Schultz P, Potier N, Leize-Wagner E. Chemical cross-linking and mass spectrometry to determine the subunit interaction network in a recombinant human SAGA HAT subcomplex. Protein Sci 2015; 24:1232-46. [PMID: 25753033 DOI: 10.1002/pro.2676] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 01/04/2023]
Abstract
Understanding the way how proteins interact with each other to form transient or stable protein complexes is a key aspect in structural biology. In this study, we combined chemical cross-linking with mass spectrometry to determine the binding stoichiometry and map the protein-protein interaction network of a human SAGA HAT subcomplex. MALDI-MS equipped with high mass detection was used to follow the cross-linking reaction using bis[sulfosuccinimidyl] suberate (BS3) and confirm the heterotetrameric stoichiometry of the specific stabilized subcomplex. Cross-linking with isotopically labeled BS3 d0-d4 followed by trypsin digestion allowed the identification of intra- and intercross-linked peptides using two dedicated search engines: pLink and xQuest. The identified interlinked peptides suggest a strong network of interaction between GCN5, ADA2B and ADA3 subunits; SGF29 is interacting with GCN5 and ADA3 but not with ADA2B. These restraint data were combined to molecular modeling and a low-resolution interacting model for the human SAGA HAT subcomplex could be proposed, illustrating the potential of an integrative strategy using cross-linking and mass spectrometry for addressing the structural architecture of multiprotein complexes.
Collapse
Affiliation(s)
- Nha-Thi Nguyen-Huynh
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008, Strasbourg, France
| | - Grigory Sharov
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, INSERM U964, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Clément Potel
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008, Strasbourg, France
| | - Pélagie Fichter
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, INSERM U964, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Simon Trowitzsch
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Imre Berger
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Valérie Lamour
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, INSERM U964, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Patrick Schultz
- Integrated Structural Biology Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104, INSERM U964, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Noëlle Potier
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008, Strasbourg, France
| | - Emmanuelle Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 CNRS/Université de Strasbourg - "Chimie de la Matière Complexe", 1 Rue Blaise Pascal, 67008, Strasbourg, France
| |
Collapse
|
8
|
Koolen HHF, Gomes AF, Schwab NV, Eberlin MN, Gozzo FC. Imidate-based cross-linkers for structural proteomics: increased charge of protein and peptide ions and CID and ECD fragmentation studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1181-1191. [PMID: 24781457 DOI: 10.1007/s13361-014-0900-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
Chemical cross-linking is an attractive low-resolution technique for structural studies of protein complexes. Distance constraints obtained from cross-linked peptides identified by mass spectrometry (MS) are used to construct and validate protein models. Amidinating cross-linkers such as diethyl suberthioimidate (DEST) have been used successfully in chemical cross-linking experiments. In this work, the application of a commercial diimidate cross-linking reagent, dimethyl suberimidate (DMS), was evaluated with model peptides and proteins. The peptides were designed with acetylated N-termini followed by random sequences containing two Lys residues separated by an Arg residue. After cross-linking reactions, intra- and intermolecular cross-linked species were submitted to CID and ECD dissociations to study their fragmentation features in the gas phase. Fragmentation of intramolecular peptides by collision induced dissociation (CID) demonstrates a unique two-step fragmentation pathway involving formation of a ketimine as intermediate. Electron capture and electron transfer dissociation (ECD and ETD) experiments demonstrated that the cyclic moiety is not dissociated. Intermolecular species demonstrated previously described fragmentation behavior in both CID and ECD experiments. The charge state distributions (CSD) obtained after reaction with DMS were compared with those obtained with disuccinimidyl suberate (DSS). CSDs for peptides and proteins were increased after their reaction with DMS, owing to the higher basicity of DMS modified species. These features were also observed in LC-MS experiments with bovine carbonic anhydrase II (BCA) after cross-linking with DMS and tryptic proteolysis. Cross-linked peptides derived from this protein were identified at high confidence and those species were in agreement with the crystal structure of BCA.
Collapse
Affiliation(s)
- Hector H F Koolen
- Institute of Chemistry, University of Campinas and Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Sao Paulo, 13083-970, Brazil
| | | | | | | | | |
Collapse
|
9
|
Calabrese AN, Good NJ, Wang T, He J, Bowie JH, Pukala TL. A negative ion mass spectrometry approach to identify cross-linked peptides utilizing characteristic disulfide fragmentations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1364-1375. [PMID: 22644737 DOI: 10.1007/s13361-012-0407-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/29/2012] [Accepted: 04/30/2012] [Indexed: 06/01/2023]
Abstract
Chemical cross-linking combined with mass spectrometry (MS) is an analytical tool used to elucidate the topologies of proteins and protein complexes. However, identification of the low abundance cross-linked peptides and modification sites amongst a large quantity of proteolytic fragments remains challenging. In this work, we present a strategy to identify cross-linked peptides by negative ion MS for the first time. This approach is based around the facile cleavages of disulfide bonds in the negative mode, and allows identification of cross-linked products based on their characteristic fragmentations. MS(3) analysis of the cross-linked peptides allows for their sequencing and identification, with residue specific location of cross-linking sites. We demonstrate the applicability of the commercially available cystine based cross-linking reagent dithiobis(succinimidyl) propionate (DSP) and identify cross-linked peptides from ubiquitin. In each instance, the characteristic fragmentation behavior of the cross-linked species is described. The data presented here indicate that this negative ion approach may be a useful tool to characterize the structures of proteins and protein complexes, and provides the basis for the development of high throughput negative ion MS chemical cross-linking strategies.
Collapse
Affiliation(s)
- Antonio N Calabrese
- School of Chemistry and Physics, The University of Adelaide, Adelaide, SA, 5005, Australia
| | | | | | | | | | | |
Collapse
|
10
|
Santos LFA, Iglesias AH, Gozzo FC. Fragmentation features of intermolecular cross-linked peptides using N-hydroxy- succinimide esters by MALDI- and ESI-MS/MS for use in structural proteomics. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:742-750. [PMID: 21766393 DOI: 10.1002/jms.1951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The use of mass spectrometry coupled with chemical cross-linking of proteins has become one of the most useful tools for proteins structure and interactions studies. One of the challenges in these studies is the identification of the cross-linked peptides. The interpretation of the MS/MS data generated in cross-linking experiments using N-hydroxy succinimide esters is not trivial once a new amide bond is formed allowing new fragmentation pathways, unlike linear peptides. Intermolecular cross-linked peptides occur when two different peptides are connected by the cross-linker and they yield information on the spatial proximity of different domains (within a protein) or proteins (within a complex). In this article, we report a detailed fragmentation study of intermolecular cross-linked peptides, generated from a set of synthetic peptides, using both ESI and MALDI to generate the precursor ions. The fragmentation features observed here can be helpful in the interpretation and identification of cross-linked peptides present in cross-linking experiments and be further implemented in search engine's algorithms.
Collapse
Affiliation(s)
- Luiz F A Santos
- Institute of Chemistry, University of Campinas, CP 6154 Campinas, SP 13083-970, Brazil
| | | | | |
Collapse
|
11
|
Santos LFA, Eberlin MN, Gozzo FC. IRMPD and ECD fragmentation of intermolecular cross-linked peptides. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:262-268. [PMID: 21394842 DOI: 10.1002/jms.1891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Despite the increasing number of studies using mass spectrometry for three dimensional analyses of proteins (MS3D), the identification of cross-linked peptides remains a bottleneck of the method. One of the main reasons for this is the lack of knowledge about the fragmentation of these species. Intermolecular cross-linked peptides are considered the most informative species present in MS3D experiment, since different peptides are connected by a cross-linker, the peptides chain can be either from a single protein, providing information about protein folding, or from two different proteins in a complex, providing information about binding partners, complex topology and interaction sites. These species tend to be large and highly charged in ESI, making comprehensive fragmentation by CID MS/MS problematic. On the other hand, these highly charged peptides are very suitable for dissociation using both infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD). Herein, we report the fragmentation study of intermolecular cross-linked peptides using IRMPD and ECD. Using synthetic peptides and different commercial cross-linkers, a series of intermolecular cross-linked peptides were generate, and subsequently fragmented by IRMPD and ECD in a FT-ICR-MS instrument. Due to the high mass accuracy and resolution of the FT-ICR, the fragment ions could be attributed with high confidence. The peptides sequence coverage and fragmentation features obtained from IRMPD and ECD were compared for all charge states.
Collapse
|
12
|
Lauber MA, Reilly JP. Novel amidinating cross-linker for facilitating analyses of protein structures and interactions. Anal Chem 2011; 82:7736-43. [PMID: 20795639 DOI: 10.1021/ac101586z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel bifunctional thioimidate cross-linking reagent (diethyl suberthioimidate) that modifies amines without sacrificing their native basicity is developed. Intermolecular cross-linking of neurotensin and intramolecular cross-linking of cytochrome c under physiological conditions is investigated with this reagent. Because it does not perturb the electrostatic properties of a protein, it is unlikely to lead to artifactual conclusions about native protein structure. The interpeptide cross-links formed with this reagent are easily separated from other tryptic fragments using strong cation exchange chromatography, and they have a readily identified mass spectrometric signature. The use of this novel amidinating protein cross-linking reagent holds great promise for efficient, large-scale structural analysis of complex systems.
Collapse
Affiliation(s)
- Matthew A Lauber
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
13
|
Rappsilber J. The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J Struct Biol 2010; 173:530-40. [PMID: 21029779 PMCID: PMC3043253 DOI: 10.1016/j.jsb.2010.10.014] [Citation(s) in RCA: 330] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/21/2010] [Accepted: 10/21/2010] [Indexed: 11/17/2022]
Abstract
After more than a decade of method development, cross-linking in combination with mass spectrometry and bioinformatics is finally coming of age. This technology now provides improved opportunities for modelling by mapping structural details of functional complexes in solution. The structure of proteins or protein complexes is ascertained by identifying amino acid pairs that are positioned in close proximity to each other. The validity of this technique has recently been benchmarked for large multi-protein complexes, by comparing cross-link data with that from a crystal structure of RNA polymerase II. Here, the specific nature of this cross-linking data will be discussed to assess the technical challenges and opportunities for model building. We believe that once remaining technological challenges of cross-linking/mass spectrometry have been addressed and cross-linking/mass spectrometry data has been incorporated into modelling algorithms it will quickly become an indispensable companion of protein and protein complex modelling and a corner-stone of integrated structural biology.
Collapse
Affiliation(s)
- Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Mayfield Road, Edinburgh, EH9 3JR Scotland, UK.
| |
Collapse
|
14
|
Fabris D, Yu ET. Elucidating the higher-order structure of biopolymers by structural probing and mass spectrometry: MS3D. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:841-60. [PMID: 20648672 PMCID: PMC3432860 DOI: 10.1002/jms.1762] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chemical probing represents a very versatile alternative for studying the structure and dynamics of substrates that are intractable by established high-resolution techniques. The implementation of MS-based strategies for the characterization of probing products has not only extended the range of applicability to virtually all types of biopolymers but has also paved the way for the introduction of new reagents that would not have been viable with traditional analytical platforms. As the availability of probing data is steadily increasing on the wings of the development of dedicated interpretation aids, powerful computational approaches have been explored to enable the effective utilization of such information to generate valid molecular models. This combination of factors has contributed to making the possibility of obtaining actual 3D structures by MS-based technologies (MS3D) a reality. Although approaches for achieving structure determination of unknown targets or assessing the dynamics of known structures may share similar reagents and development trajectories, they clearly involve distinctive experimental strategies, analytical concerns and interpretation paradigms. This Perspective offers a commentary on methods aimed at obtaining distance constraints for the modeling of full-fledged structures while highlighting common elements, salient distinctions and complementary capabilities exhibited by methods used in dynamics studies. We discuss critical factors to be addressed for completing effective structural determinations and expose possible pitfalls of chemical methods. We survey programs developed for facilitating the interpretation of experimental data and discuss possible computational strategies for translating sparse spatial constraints into all-atom models. Examples are provided to illustrate how the concerted application of very diverse probing techniques can lead to the solution of actual biological systems.
Collapse
Affiliation(s)
- Daniele Fabris
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA.
| | | |
Collapse
|
15
|
Gardner MW, Brodbelt JS. Preferential Cleavage of N−N Hydrazone Bonds for Sequencing Bis-arylhydrazone Conjugated Peptides by Electron Transfer Dissociation. Anal Chem 2010; 82:5751-9. [DOI: 10.1021/ac100788a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Myles W. Gardner
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712
| | - Jennifer S. Brodbelt
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712
| |
Collapse
|
16
|
Gardner MW, Brodbelt JS. Ultraviolet photodissociation mass spectrometry of bis-aryl hydrazone conjugated peptides. Anal Chem 2009; 81:4864-72. [PMID: 19449860 DOI: 10.1021/ac9005233] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultraviolet photodissociation (UVPD) at 355 nm was used to rapidly identify peptides which had been chemically conjugated through bis-aryl hydrazone (BAH) moieties. The two biomolecules of interest were separately tagged to introduce either an aldehyde or a hydrazine and then conjugated together through these functional groups to from the UV-chromogenic BAH-group. In a mock mixture of peptides, UVPD was used to screen for the BAH-conjugated peptides in direct infusion ESI-UVPD-MS and online LC-UVPD-MS methods by comparing the abundances of the ions with the laser off and with the laser on. Only the BAH-conjugated peptides were observed to photodissociate upon exposure to UV irradiation, thus affording excellent selectivity for the pinpointing the relevant conjugated peptides in a complex mixture of nonconjugated peptides. UVPD analysis of conjugated model peptides indicated that the UVPD efficiencies of these species were charge state dependent. BAH-conjugated peptides that had a mobile proton which could protonate the basic BAH-moiety underwent more efficient photodissociation than the peptide ions with sequestered protons. Ultraviolet photodissociation of BAH-cross-linked peptides also yielded more diagnostic sequence ions than CID to unambiguously locate the site of conjugation.
Collapse
Affiliation(s)
- Myles W Gardner
- Department of Chemistry and Biochemistry,The University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712-1167, USA
| | | |
Collapse
|
17
|
Iglesias AH, Santos LFA, Gozzo FC. Collision-induced dissociation of Lys-Lys intramolecular crosslinked peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:557-566. [PMID: 19138533 DOI: 10.1016/j.jasms.2008.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 05/27/2023]
Abstract
The use of chemical crosslinking is an attractive tool that presents many advantages in the application of mass spectrometry to structural biology. The correct assignment of crosslinked peptides, however, is still a challenge because of the lack of detailed fragmentation studies on resultant species. In this work, the fragmentation patterns of intramolecular crosslinked peptides with disuccinimidyl suberate (DSS) has been devised by using a set of versatile, model peptides that resemble species found in crosslinking experiments with proteins. These peptides contain an acetylated N-terminus followed by a random sequence of residues containing two lysine residues separated by an arginine. After the crosslinking reaction, controlled trypsin digestion yields both intra- and intermolecular crosslinked peptides. In the present study we analyzed the fragmentation of matrix-assisted laser desorption/ionization-generated peptides crosslinked with DSS in which both lysines are found in the same peptide. Fragmentation starts in the linear moiety of the peptide, yielding regular b and y ions. Once it reaches the cyclic portion of the molecule, fragmentation was observed to occur either at the following peptide bond or at the peptide crosslinker amide bond. If the peptide crosslinker bond is cleaved, it fragments as a regular modified peptide, in which the DSS backbone remains attached to the first lysine. This fragmentation pattern resembles the fragmentation of modified peptides and may be identified by common automated search engines using DSS as a modification. If, on the other hand, fragmentation happens at the peptide bond itself, rearrangement of the last crosslinked lysine is observed and a product ion containing the crosslinker backbone and lysine (m/z 222) is formed. The detailed identification of fragment ions can help the development of softwares devoted to the MS/MS data analysis of crosslinked peptides.
Collapse
Affiliation(s)
- Amadeu H Iglesias
- Center for Structural and Molecular Biology, Brazilian Synchrotron Light Source, Campinas, Brazil
| | | | | |
Collapse
|
18
|
Gardner MW, Vasicek LA, Shabbir S, Anslyn EV, Brodbelt JS. Chromogenic cross-linker for the characterization of protein structure by infrared multiphoton dissociation mass spectrometry. Anal Chem 2008; 80:4807-19. [PMID: 18517224 DOI: 10.1021/ac800625x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have developed a new IR chromogenic cross-linker (IRCX) to aid in rapidly distinguishing cross-linked peptides from unmodified species in complex mixtures. By incorporating a phosphate functional group into the cross-linker, one can take advantage of its unique IR absorption properties, affording selective infrared multiphoton dissociation (IRMPD) of the cross-linked peptides. In a mock mixture of unmodified peptides and IRCX-cross-linked peptides (intramolecularly and intermolecularly cross-linked), only the peptides containing the IRCX modification were shown to dissociate upon exposure to 50 ms of 10.6-microm radiation. LC-IRMPD-MS proved to be an effective method to distinguish the cross-linked peptides in a tryptic digest of IRCX-cross-linked ubiquitin. A total of four intermolecular cross-links and two dead-end modifications were identified using IRCX and LC-IRMPD-MS. IRMPD of these cross-linked peptides resulted in secondary dissociation of all primary fragment ions containing the chromophore, producing a series of unmodified b- or y-type ions that allowed the cross-linked peptides to be sequenced without the need for collision-induced dissociation.
Collapse
Affiliation(s)
- Myles W Gardner
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas, USA 78712, USA
| | | | | | | | | |
Collapse
|
19
|
King GJ, Jones A, Kobe B, Huber T, Mouradov D, Hume DA, Ross IL. Identification of Disulfide-Containing Chemical Cross-Links in Proteins Using MALDI-TOF/TOF-Mass Spectrometry. Anal Chem 2008; 80:5036-43. [DOI: 10.1021/ac702277q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gordon J. King
- Cooperative Research Centre for Chronic Inflammatory Diseases, Institute for Molecular Bioscience, University of Queensland, St. Lucia Brisbane, 4072, School of Molecular and Microbial Sciences, University of Queensland, St. Lucia Brisbane, 4072, Institute for Molecular Biosciences and Special Research Centre for Functional and Applied Genomics, University of Queensland, St. Lucia Brisbane, 4072, and The Roslin Institute, University of Edinburgh, Roslin, EH25 9PS, U.K
| | - Alun Jones
- Cooperative Research Centre for Chronic Inflammatory Diseases, Institute for Molecular Bioscience, University of Queensland, St. Lucia Brisbane, 4072, School of Molecular and Microbial Sciences, University of Queensland, St. Lucia Brisbane, 4072, Institute for Molecular Biosciences and Special Research Centre for Functional and Applied Genomics, University of Queensland, St. Lucia Brisbane, 4072, and The Roslin Institute, University of Edinburgh, Roslin, EH25 9PS, U.K
| | - Bostjan Kobe
- Cooperative Research Centre for Chronic Inflammatory Diseases, Institute for Molecular Bioscience, University of Queensland, St. Lucia Brisbane, 4072, School of Molecular and Microbial Sciences, University of Queensland, St. Lucia Brisbane, 4072, Institute for Molecular Biosciences and Special Research Centre for Functional and Applied Genomics, University of Queensland, St. Lucia Brisbane, 4072, and The Roslin Institute, University of Edinburgh, Roslin, EH25 9PS, U.K
| | - Thomas Huber
- Cooperative Research Centre for Chronic Inflammatory Diseases, Institute for Molecular Bioscience, University of Queensland, St. Lucia Brisbane, 4072, School of Molecular and Microbial Sciences, University of Queensland, St. Lucia Brisbane, 4072, Institute for Molecular Biosciences and Special Research Centre for Functional and Applied Genomics, University of Queensland, St. Lucia Brisbane, 4072, and The Roslin Institute, University of Edinburgh, Roslin, EH25 9PS, U.K
| | - Dmitri Mouradov
- Cooperative Research Centre for Chronic Inflammatory Diseases, Institute for Molecular Bioscience, University of Queensland, St. Lucia Brisbane, 4072, School of Molecular and Microbial Sciences, University of Queensland, St. Lucia Brisbane, 4072, Institute for Molecular Biosciences and Special Research Centre for Functional and Applied Genomics, University of Queensland, St. Lucia Brisbane, 4072, and The Roslin Institute, University of Edinburgh, Roslin, EH25 9PS, U.K
| | - David A. Hume
- Cooperative Research Centre for Chronic Inflammatory Diseases, Institute for Molecular Bioscience, University of Queensland, St. Lucia Brisbane, 4072, School of Molecular and Microbial Sciences, University of Queensland, St. Lucia Brisbane, 4072, Institute for Molecular Biosciences and Special Research Centre for Functional and Applied Genomics, University of Queensland, St. Lucia Brisbane, 4072, and The Roslin Institute, University of Edinburgh, Roslin, EH25 9PS, U.K
| | - Ian L. Ross
- Cooperative Research Centre for Chronic Inflammatory Diseases, Institute for Molecular Bioscience, University of Queensland, St. Lucia Brisbane, 4072, School of Molecular and Microbial Sciences, University of Queensland, St. Lucia Brisbane, 4072, Institute for Molecular Biosciences and Special Research Centre for Functional and Applied Genomics, University of Queensland, St. Lucia Brisbane, 4072, and The Roslin Institute, University of Edinburgh, Roslin, EH25 9PS, U.K
| |
Collapse
|
20
|
Gardner MW, Brodbelt JS. Impact of proline and aspartic acid residues on the dissociation of intermolecularly crosslinked peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:344-357. [PMID: 18083526 DOI: 10.1016/j.jasms.2007.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 11/02/2007] [Accepted: 11/06/2007] [Indexed: 05/25/2023]
Abstract
The dissociation of intermolecularly crosslinked peptides was evaluated for a series of peptides with proline or aspartic acid residues positioned adjacent to the crosslinking sites (lysine residues). The peptides were crosslinked with either disuccinimidyl suberate (DSS) or disuccinimidyl L-tartrate (DST), and the influence of proline and aspartic acid residues on the fragmentation patterns were investigated for precursor ions with and without a mobile proton. Collisionally activated dissociation (CAD) spectra of aspartic acid-containing crosslinked peptide ions, doubly-charged with both protons sequestered, were dominated by cleavage C-terminal to the Asp residue, similar to that of unmodified peptides. The proline-containing crosslinked peptides exhibited a high degree of internal ion formation, with the resulting product ions having an N-terminal proline residue. Upon dissociation of the doubly-charged crosslinked peptides, twenty to fifty percent of the fragment ion abundance was accounted for by multiple cleavage products. Crosslinked peptides possessing a mobile proton yielded almost a full series of b- and y-type fragment ions, with only proline-directed fragments still observed at high abundances. Interestingly, the crosslinked peptides exhibited a tendency to dissociate at the amide bond C-terminal to the crosslinked lysine residue, relative to the N-terminal side. One could envision updating computer algorithms to include these crosslinker specific product ions--particularly for precursor ions with localized protons--that provide complementary and confirmatory information, to offer more confident identification of both the crosslinked peptides and the location of the crosslink, as well as affording predictive guidelines for interpretation of the product-ion spectra of crosslinked peptides.
Collapse
Affiliation(s)
- Myles W Gardner
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
21
|
Jin Lee Y. Mass spectrometric analysis of cross-linking sites for the structure of proteins and protein complexes. MOLECULAR BIOSYSTEMS 2008; 4:816-23. [DOI: 10.1039/b801810c] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Maiolica A, Cittaro D, Borsotti D, Sennels L, Ciferri C, Tarricone C, Musacchio A, Rappsilber J. Structural analysis of multiprotein complexes by cross-linking, mass spectrometry, and database searching. Mol Cell Proteomics 2007; 6:2200-11. [PMID: 17921176 DOI: 10.1074/mcp.m700274-mcp200] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most protein complexes are inaccessible to high resolution structural analysis. We report the results of a combined approach of cross-linking, mass spectrometry, and bioinformatics to two human complexes containing large coiled-coil segments, the NDEL1 homodimer and the NDC80 heterotetramer. An important limitation of the cross-linking approach, so far, was the identification of cross-linked peptides from fragmentation spectra. Our novel approach overcomes the data analysis bottleneck of cross-linking and mass spectrometry. We constructed a purpose-built database to match spectra with cross-linked peptides, define a score that expresses the quality of our identification, and estimate false positive rates. We show that our analysis sheds light on critical structural parameters such as the directionality of the homodimeric coiled coil of NDEL1, the register of the heterodimeric coiled coils of the NDC80 complex, and the organization of a tetramerization region in the NDC80 complex. Our approach is especially useful to address complexes that are difficult in addressing by standard structural methods.
Collapse
Affiliation(s)
- Alessio Maiolica
- FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lee YJ, Lackner LL, Nunnari JM, Phinney BS. Shotgun cross-linking analysis for studying quaternary and tertiary protein structures. J Proteome Res 2007; 6:3908-17. [PMID: 17854217 DOI: 10.1021/pr070234i] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed a new approach that employs a novel computer algorithm for the sensitive and high-throughput analysis of tertiary and quaternary interaction sites from chemically cross-linked proteins or multi-protein complexes. First, we directly analyze the digests of the chemically cross-linked proteins using only high-accuracy LC-MS/MS data. We analyze these data using a computer algorithm, we term X!Link, to find cross-links between two peptides. Our algorithm is rapid, taking only a few seconds to analyze approximately 5000 MS/MS spectra. We applied this algorithm to analyze cross-linked sites generated chemically using the amino specific reagent, BS3, in both cytochrome c and the mitochondrial division dynamin mutant, Dnm1G385D, which exists as a stable homodimer. From cytochrome c, a well-established test protein, we identified a total of 31 cross-links, 21 interpeptide and 10 intrapeptide cross-links, in 257 MS/MS spectra from a single LC-MS/MS data set. The high sensitivity of this technique is indicated by the fact that all 19 lysines in cytochrome c were detected as a cross-link product and 33% of all the Lys pairs within 20 A were also observed as a cross-link. Analysis of the cross-linked dimeric form of Dnm1G385D identified a total of 46 cross-links, 38 interpeptide and 8 intrapeptide cross-links, in 98 MS/MS spectra in a single LC-MS/MS data set. These results represent the most abundant cross-links identified in a single protein or protein dimer to date. Statistical analysis suggests a 1% false discovery rate after optimization of filtering parameters. Further analysis of the cross-links identified using our approach indicates that careful manual inspection is important for the correct assignment of cross-linking sites when multiple cross-linkable sites or several similar sequences exist. In summary, we have developed a sensitive MS-based approach to identify peptide-peptide cross-links that does not require isotopic labeling or comparison with non-cross-linked controls, making it faster and simpler than current methodologies.
Collapse
Affiliation(s)
- Young Jin Lee
- Proteomics Core Facility, Genome Center, and Molecular and Cellular Biology, University of California, Davis 95616, USA.
| | | | | | | |
Collapse
|
24
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:127-38. [PMID: 17199253 PMCID: PMC7166443 DOI: 10.1002/jms.1070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In order to keep subscribers up‐to‐date with the latest developments in their field, John Wiley & Sons are providing a current awareness service in each issue of the journal. The bibliography contains newly published material in the field of mass spectrometry. Each bibliography is divided into 11 sections: 1 Books, Reviews & Symposia; 2 Instrumental Techniques & Methods; 3 Gas Phase Ion Chemistry; 4 Biology/Biochemistry: Amino Acids, Peptides & Proteins; Carbohydrates; Lipids; Nucleic Acids; 5 Pharmacology/Toxicology; 6 Natural Products; 7 Analysis of Organic Compounds; 8 Analysis of Inorganics/Organometallics; 9 Surface Analysis; 10 Environmental Analysis; 11 Elemental Analysis. Within each section, articles are listed in alphabetical order with respect to author (6 Weeks journals ‐ Search completed at 4th. Oct. 2006)
Collapse
|
25
|
Nadeau OW, Anderson DW, Yang Q, Artigues A, Paschall JE, Wyckoff GJ, McClintock JL, Carlson GM. Evidence for the location of the allosteric activation switch in the multisubunit phosphorylase kinase complex from mass spectrometric identification of chemically crosslinked peptides. J Mol Biol 2006; 365:1429-45. [PMID: 17123541 PMCID: PMC1852525 DOI: 10.1016/j.jmb.2006.10.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 10/10/2006] [Accepted: 10/18/2006] [Indexed: 10/24/2022]
Abstract
Phosphorylase kinase (PhK), an (alphabetagammadelta)(4) complex, regulates glycogenolysis. Its activity, catalyzed by the gamma subunit, is tightly controlled by phosphorylation and activators acting through allosteric sites on its regulatory alpha, beta and delta subunits. Activation by phosphorylation is predominantly mediated by the regulatory beta subunit, which undergoes a conformational change that is structurally linked with the gamma subunit and that is characterized by the ability of a short chemical crosslinker to form beta-beta dimers. To determine potential regions of interaction of the beta and gamma subunits, we have used chemical crosslinking and two-hybrid screening. The beta and gamma subunits were crosslinked to each other in phosphorylated PhK, and crosslinked peptides from digests were identified by Fourier transform mass spectrometry, beginning with a search engine developed "in house" that generates a hypothetical list of crosslinked peptides. A conjugate between beta and gamma that was verified by MS/MS corresponded to crosslinking between K303 in the C-terminal regulatory domain of gamma (gammaCRD) and R18 in the N-terminal regulatory region of beta (beta1-31), which contains the phosphorylatable serines 11 and 26. A synthetic peptide corresponding to residues 1-22 of beta inhibited the crosslinking between beta and gamma, and was itself crosslinked to K303 of gamma. In two-hybrid screening, the beta1-31 region controlled beta subunit self-interactions, in that they were favored by truncation of this region or by mutation of the phosphorylatable serines 11 and 26, thus providing structural evidence for a phosphorylation-dependent subunit communication network in the PhK complex involving at least these two regulatory regions of the beta and gamma subunits. The sum of our results considered together with previous findings implicates the gammaCRD as being an allosteric activation switch in PhK that interacts with all three of the enzyme's regulatory subunits and is proximal to the active site cleft.
Collapse
Affiliation(s)
- Owen W. Nadeau
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66209
| | - David W. Anderson
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66209
| | - Qing Yang
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66209
| | - Antonio Artigues
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66209
| | - Justin E. Paschall
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 66211
| | - Gerald J. Wyckoff
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 66211
| | - Jennifer L. McClintock
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66209
| | - Gerald M. Carlson
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66209
| |
Collapse
|
26
|
Seebacher J, Mallick P, Zhang N, Eddes JS, Aebersold R, Gelb MH. Protein Cross-Linking Analysis Using Mass Spectrometry, Isotope-Coded Cross-Linkers, and Integrated Computational Data Processing. J Proteome Res 2006; 5:2270-82. [PMID: 16944939 DOI: 10.1021/pr060154z] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Distance constraints in proteins and protein complexes provide invaluable information for calculation of 3D structures, identification of protein binding partners and localization of protein-protein contact sites. We have developed an integrative approach to identify and characterize such sites through the analysis of proteolytic products derived from proteins chemically cross-linked by isotopically coded cross-linkers using LC-MALDI tandem mass spectrometry and computer software. This method is specifically tailored toward the rapid analysis of low microgram amounts of proteins or multimeric protein complexes cross-linked with nonlabeled and deuterium-labeled bis-NHS ester cross-linking reagents (both commercially available and readily synthesized). Through labeling with [18O]water solvent and LC-MALDI analysis, the method further allows the possible distinction between Type 0 and Type 1 or Type 2 modified peptides (monolinks and looplinks or cross-links), although such a distinction is more readily made from analysis of tandem mass spectrometry data. When applied to the bacterial Colicin E7 DNAse/Im7 heterodimeric protein complex, 23 cross-links were identified including six intersubunit cross-links, all between residues that are close in space when examined in the context of the X-ray structure of the heterodimer. In addition, cross-links were successfully identified in five single subunit proteins, beta-lactoglobulin, cytochrome c, lysozyme, myoglobin, and ribonuclease A, establishing the generality of the approach.
Collapse
Affiliation(s)
- Jan Seebacher
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|