1
|
Mikawy NN, Rojas Ramírez C, DeFiglia SA, Szot CW, Le J, Lantz C, Wei B, Zenaidee MA, Blakney GT, Nesvizhskii AI, Loo JA, Ruotolo BT, Shabanowitz J, Anderson LC, Håkansson K. Are Internal Fragments Observable in Electron Based Top-Down Mass Spectrometry? Mol Cell Proteomics 2024; 23:100814. [PMID: 39029587 PMCID: PMC11388692 DOI: 10.1016/j.mcpro.2024.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
Protein tandem mass spectrometry (MS/MS) often generates sequence-informative fragments from backbone bond cleavages near the termini. This lack of fragmentation in the protein interior is particularly apparent in native top-down mass spectrometry (MS). Improved sequence coverage, critical for reliable annotation of posttranslational modifications and sequence variants, may be obtained from internal fragments generated by multiple backbone cleavage events. However, internal fragment assignments can be error prone due to isomeric/isobaric fragments from different parts of a protein sequence. Also, internal fragment generation propensity depends on the chosen MS/MS activation strategy. Here, we examine internal fragment formation in electron capture dissociation (ECD) and electron transfer dissociation (ETD) following native and denaturing MS, as well as LC/MS of several proteins. Experiments were undertaken on multiple instruments, including quadrupole time-of-flight, Orbitrap, and high-field Fourier-transform ion cyclotron resonance (FT-ICR) across four laboratories. ECD was performed at both ultrahigh vacuum and at similar pressure to ETD conditions. Two complementary software packages were used for data analysis. When feasible, ETD-higher energy collision dissociation MS3 was performed to validate/refute potential internal fragment assignments, including differentiating MS3 fragmentation behavior of radical versus even-electron primary fragments. We show that, under typical operating conditions, internal fragments cannot be confidently assigned in ECD or ETD. On the other hand, such fragments, along with some b-type terminal fragments (not typically observed in ECD/ETD spectra) appear at atypical ECD operating conditions, suggesting they originate from a separate ion-electron activation process. Furthermore, atypical fragment ion types, e.g., x ions, are observed at such conditions as well as upon EThcD, presumably due to vibrational activation of radical z-type ions.
Collapse
Affiliation(s)
- Neven N Mikawy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Steven A DeFiglia
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Carson W Szot
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jessie Le
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, USA
| | - Benqian Wei
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, USA
| | - Muhammad A Zenaidee
- Australian Proteome Analysis Facility, Macquarie University, Sydney, New South Wales, Australia
| | - Greg T Blakney
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Lissa C Anderson
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Kristina Håkansson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
2
|
Gaetani ML, Pinto IC, Li M, O'Connor P, Giorgi-Coll S, Tyreman M, Rumary KL, Schouten JA, Davis P, Dixon AM. Towards detection of structurally-diverse glycated epitopes in native proteins: Single-chain antibody directed to non-A1c epitope in human haemoglobin. Mol Immunol 2024; 166:16-28. [PMID: 38181455 DOI: 10.1016/j.molimm.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Over 500 million people worldwide are affected by diabetes mellitus, a chronic disease that leads to high blood glucose levels and causes severe side effects. The predominant biological marker for diagnosis of diabetes is glycated haemoglobin (GHb). In human blood the predominant reducing sugar, glucose, irreversibly conjugates onto accessible amine groups within Hb. Most methods for diagnosis and monitoring of diabetes selectively detect N-terminal glycation at Val-1 on the β-globin chain, but not glycation at other sites. Detection of other glycated epitopes of GHb has the potential to provide new information on the extent, duration and timing of elevated glucose, facilitating personalised diagnosis and intelligent diabetic control. In this work, a new anti-GHb Fab antibody (Fab-1) specific for haemoglobin A1c (HbA1c) with nanomolar affinity was discovered via epitope-directed immunisation and phage display. A single chain variable fragment (scFv) antibody derived from Fab-1 retained affinity and specificity for HbA1c, and affinity was enhanced tenfold upon addition of an enhanced green fluorescent protein tag. Both the scFv and Fab-1 recognised an epitope within HbA1c that was distinct from β-Val-1, and our data suggest that this epitope may include glycation at Lys-66 in the β-globin chain. To our knowledge, this is the first report of an scFv/Fab anti-glycated epitope antibody that recognises a non-A1c epitope in GHb, and confirms that fructosamine attached to different, discrete glycation sites within the same protein can be resolved from one another by immunoassay.
Collapse
Affiliation(s)
- Miss Lucia Gaetani
- Medical Research Council Doctoral Training Programme, Warwick Medical School, UK
| | - Isabel Campos Pinto
- iBET, Bayer Satellite Lab, Av. República, Quinta do Marquês, Edifício iBET/ITQB, Oeiras 2780-157, Portugal
| | - Meng Li
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Peter O'Connor
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | | | - Matthew Tyreman
- Global Access Diagnostics, Thurleigh, Bedfordshire MK44 2YA, UK
| | | | | | - Paul Davis
- Global Access Diagnostics, Thurleigh, Bedfordshire MK44 2YA, UK
| | - Ann M Dixon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
3
|
Tolpina MD, Vasileva ID, Samgina TY. Modern Approaches in de novo Sequencing of Nontryptic Peptides of Ranid and Hylid Frogs by Means of Mass Spectrometry: A Review. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822130081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Liu R, Xia S, Li H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. MASS SPECTROMETRY REVIEWS 2022:e21793. [PMID: 35757976 DOI: 10.1002/mas.21793] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Progress in structural biology research has led to a high demand for powerful and yet complementary analytical tools for structural characterization of proteins and protein complexes. This demand has significantly increased interest in native mass spectrometry (nMS), particularly native top-down mass spectrometry (nTDMS) in the past decade. This review highlights recent advances in nTDMS for structural research of biological assemblies, with a particular focus on the extra multi-layers of information enabled by TDMS. We include a short introduction of sample preparation and ionization to nMS, tandem fragmentation techniques as well as mass analyzers and software/analysis pipelines used for nTDMS. We highlight unique structural information offered by nTDMS and examples of its broad range of applications in proteins, protein-ligand interactions (metal, cofactor/drug, DNA/RNA, and protein), therapeutic antibodies and antigen-antibody complexes, membrane proteins, macromolecular machineries (ribosome, nucleosome, proteosome, and viruses), to endogenous protein complexes. The challenges, potential, along with perspectives of nTDMS methods for the analysis of proteins and protein assemblies in recombinant and biological samples are discussed.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shujun Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Lebedev AT, Vasileva ID, Samgina TY. FT-MS in the de novo top-down sequencing of natural nontryptic peptides. MASS SPECTROMETRY REVIEWS 2022; 41:284-313. [PMID: 33347655 DOI: 10.1002/mas.21678] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The present review covers available results on the application of FT-MS for the de novo sequencing of natural peptides of various animals: cones, bees, snakes, amphibians, scorpions, and so forth. As these peptides are usually bioactive, the animals efficiently use them as a weapon against microorganisms or higher animals including predators. These peptides represent definite interest as drugs of future generations since the mechanism of their activity is completely different in comparison with that of the modern antibiotics. Utilization of those peptides as antibiotics can eliminate the problem of the bacterial resistance development. Sequence elucidation of these bioactive peptides becomes even more challenging when the species genome is not available and little is known about the protein origin and other properties of those peptides in the study. De novo sequencing may be the only option to obtain sequence information. The benefits of FT-MS for the top-down peptide sequencing, the general approaches of the de novxxo sequencing, the difficult cases involving sequence coverage, isobaric and isomeric amino acids, cyclization of short peptides, the presence of posttranslational modifications will be discussed in the review.
Collapse
Affiliation(s)
- Albert T Lebedev
- Organic Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Irina D Vasileva
- Organic Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Y Samgina
- Organic Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Peters-Clarke TM, Riley NM, Westphall MS, Coon JJ. Practical Effects of Intramolecular Hydrogen Rearrangement in Electron Transfer Dissociation-Based Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:100-110. [PMID: 34874726 PMCID: PMC10291708 DOI: 10.1021/jasms.1c00284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ion-ion reactions are valuable tools in mass-spectrometry-based peptide and protein sequencing. To boost the generation of sequence-informative fragment ions from low charge-density precursors, supplemental activation methods, via vibrational and photoactivation, have become widely adopted. However, long-lived radical peptide cations undergo intramolecular hydrogen atom transfer from c-type ions to z•-type ions. Here we investigate the degree of hydrogen transfer for thousands of unique peptide cations where electron transfer dissociation (ETD) was performed and was followed by beam-type collisional activation (EThcD), resonant collisional activation (ETcaD), or concurrent infrared photoirradiation (AI-ETD). We report on the precursor charge density and the local amino acid environment surrounding bond cleavage to illustrate the effects of intramolecular hydrogen atom transfer for various precursor ions. Over 30% of fragments from EThcD spectra comprise distorted isotopic distributions, whereas over 20% of fragments from ETcaD have distorted distributions and less than 15% of fragments derived from ETD and AI-ETD reveal distorted isotopic distributions. Both ETcaD and EThcD give a relatively high degree of hydrogen migration, especially when D, G, N, S, and T residues were directly C-terminal to the cleavage site. Whereas all postactivation methods boost the number of c- and z•-type fragment ions detected, the collision-based approaches produce higher rates of hydrogen migration, yielding fewer spectral identifications when only c- and z•-type ions are considered. Understanding hydrogen rearrangement between c- and z•-type ions will facilitate better spectral interpretation.
Collapse
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael S Westphall
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53515, United States
| |
Collapse
|
7
|
Adhikari S, Dziekonski ET, Londry FA, McLuckey SA. Dipolar DC induced collisional activation of non-dissociated electron-transfer products. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:459-465. [PMID: 30869178 PMCID: PMC6520196 DOI: 10.1002/jms.4352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 05/22/2023]
Abstract
The application of electron transfer and dipolar direct current induced collisional activation (ET-DDC) for enhanced sequence coverage of peptide/protein cations is described. A DDC potential is applied across one pair of opposing rods in the high-pressure collision cell of a hybrid quadrupole/time-of-flight tandem mass spectrometer (QqTOF) to induce collisional activation, in conjunction with electron transfer reactions. As a broadband technique, DDC can be employed for the simultaneous collisional activation of all the first-generation charge-reduced precursor ions (eg, electron transfer no-dissociation or ETnoD products) from electron transfer reactions over a relatively broad mass-to-charge range. A systematic study of ET-DDC induced collision activation on peptide/protein cations revealed an increase in the variety (and abundances) of sequence informative fragment ions, mainly c- and z-type fragment ions, relative to products derived directly via electron transfer dissociation (ETD). Compared with ETD, which has low dissociation efficiency for low-charge-state precursor ions, ET-DDC also showed marked improvement, providing a sequence coverage of 80% to 85% for all the charge states of ubiquitin. Overall, this method provides a simple means for the broadband collisional activation of ETnoD ions in the same collision cell in which they are generated for improved structural characterization of polypeptide and protein cations subjected to ETD.
Collapse
Affiliation(s)
- Sarju Adhikari
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Address reprint requests to: Dr. Scott A. McLuckey, 560 Oval Drive, Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA, Phone: (765) 494-5270, Fax: (765) 494-0239,
| |
Collapse
|
8
|
Łącki MK, Lermyte F, Miasojedow B, Startek MP, Sobott F, Valkenborg D, Gambin A. masstodon: A Tool for Assigning Peaks and Modeling Electron Transfer Reactions in Top-Down Mass Spectrometry. Anal Chem 2019; 91:1801-1807. [DOI: 10.1021/acs.analchem.8b01479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mateusz K. Łącki
- University Medical Center, Johannes Gutenberg University, Mainz D-55131, Germany
| | - Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp 2000, Belgium
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Błażej Miasojedow
- Department of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw 02-097, Poland
| | - Michał P. Startek
- Department of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw 02-097, Poland
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp 2000, Belgium
- Flemish Institute for Technological Research (VITO), Mol 2400, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt 3500, Belgium
| | - Anna Gambin
- Department of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
9
|
Kempkes LJ, Martens J, Berden G, Houthuijs KJ, Oomens J. Investigation of the position of the radical in z3-ions resulting from electron transfer dissociation using infrared ion spectroscopy. Faraday Discuss 2019; 217:434-452. [DOI: 10.1039/c8fd00202a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular structures of six open-shell z3-ions resulting from electron transfer dissociation mass spectrometry (ETD MS) were investigated using infrared ion spectroscopy in combination with density functional theory and molecular mechanics/molecular dynamics calculations.
Collapse
Affiliation(s)
| | - Jonathan Martens
- Radboud University
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Giel Berden
- Radboud University
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Kas J. Houthuijs
- Radboud University
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Jos Oomens
- Radboud University
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
- Van’t Hoff Institute for Molecular Sciences
| |
Collapse
|
10
|
Lermyte F, Valkenborg D, Loo JA, Sobott F. Radical solutions: Principles and application of electron-based dissociation in mass spectrometry-based analysis of protein structure. MASS SPECTROMETRY REVIEWS 2018; 37:750-771. [PMID: 29425406 PMCID: PMC6131092 DOI: 10.1002/mas.21560] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 05/11/2023]
Abstract
In recent years, electron capture (ECD) and electron transfer dissociation (ETD) have emerged as two of the most useful methods in mass spectrometry-based protein analysis, evidenced by a considerable and growing body of literature. In large part, the interest in these methods is due to their ability to induce backbone fragmentation with very little disruption of noncovalent interactions which allows inference of information regarding higher order structure from the observed fragmentation behavior. Here, we review the evolution of electron-based dissociation methods, and pay particular attention to their application in "native" mass spectrometry, their mechanism, determinants of fragmentation behavior, and recent developments in available instrumentation. Although we focus on the two most widely used methods-ECD and ETD-we also discuss the use of other ion/electron, ion/ion, and ion/neutral fragmentation methods, useful for interrogation of a range of classes of biomolecules in positive- and negative-ion mode, and speculate about how this exciting field might evolve in the coming years.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan, Diepenbeek, Belgium
- Applied Bio and Molecular Systems, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
11
|
Schneeberger EM, Breuker K. Replacing H + by Na + or K + in phosphopeptide anions and cations prevents electron capture dissociation. Chem Sci 2018; 9:7338-7353. [PMID: 30542537 PMCID: PMC6237128 DOI: 10.1039/c8sc02470g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/07/2018] [Indexed: 01/29/2023] Open
Abstract
By successively replacing H+ by Na+ or K+ in phosphopeptide anions and cations, we show that the efficiency of fragmentation into c and z˙ or c˙ and z fragments from N-Cα backbone bond cleavage by negative ion electron capture dissociation (niECD) and electron capture dissociation (ECD) substantially decreases with increasing number of alkali ions attached. In proton-deficient phosphopeptide ions with a net charge of 2-, we observed an exponential decrease in electron capture efficiency with increasing number of Na+ or K+ ions attached, suggesting that electrons are preferentially captured at protonated sites. In proton-abundant phosphopeptide ions with a net charge of 3+, the electron capture efficiency was not affected by replacing up to four H+ ions with Na+ or K+ ions, but the yield of c, z˙ and c˙, z fragments from N-Cα backbone bond cleavage generally decreased next to Na+ or K+ binding sites. We interpret the site-specific decrease in fragmentation efficiency as Na+ or K+ binding to backbone amide oxygen in competition with interactions of protonated sites that would otherwise lead to backbone cleavage into c, z˙ or c˙, z fragments. Our findings seriously challenge the hypothesis that the positive charge responsible for ECD into c, z˙ or c˙, z fragments can generally be a sodium or other metal ion instead of a proton.
Collapse
Affiliation(s)
- Eva-Maria Schneeberger
- Institute of Organic Chemistry , Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria . ; http://www.bioms-breuker.at/
| | - Kathrin Breuker
- Institute of Organic Chemistry , Center for Molecular Biosciences Innsbruck (CMBI) , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria . ; http://www.bioms-breuker.at/
| |
Collapse
|
12
|
Imaoka N, Houferak C, Murphy MP, Nguyen HTH, Dang A, Tureček F. Spontaneous Isomerization of Peptide Cation Radicals Following Electron Transfer Dissociation Revealed by UV-Vis Photodissociation Action Spectroscopy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1768-1780. [PMID: 29340957 DOI: 10.1007/s13361-017-1871-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/06/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z4 + H]+● fragment ion-radicals of the R-C●H-CONH- type, initially formed by N-Cα bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [●DAAR + H]+ isomers and used to assign structures to the action spectra. The potential energy surface of [●DAAR + H]+ isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [●XAAR + H]+ ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone Cα positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H]●-ETD fragments containing Asp, Asn, Glu, and Gln residues. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Naruaki Imaoka
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Camille Houferak
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Megan P Murphy
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Huong T H Nguyen
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Andy Dang
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - František Tureček
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA.
| |
Collapse
|
13
|
Samgina TY, Kovalev SV, Tolpina MD, Trebse P, Torkar G, Lebedev AT. EThcD Discrimination of Isomeric Leucine/Isoleucine Residues in Sequencing of the Intact Skin Frog Peptides with Intramolecular Disulfide Bond. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:842-852. [PMID: 29299834 DOI: 10.1007/s13361-017-1857-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/19/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Our scientific interests involve de novo sequencing of non-tryptic natural amphibian skin peptides including those with intramolecular S-S bond by means of exclusively mass spectrometry. Reliable discrimination of the isomeric leucine/isoleucine residues during peptide sequencing by means of mass spectrometry represents a bottleneck in the workflow for complete automation of the primary structure elucidation of these compounds. MS3 is capable of solving the problem. Earlier we demonstrated the advanced efficiency of ETD-HCD method to discriminate Leu/Ile in individual peptides by consecutive application of ETD to the polyprotonated peptides followed by HCD applied to the manually selected primary z-ions with the targeted isomeric residues at their N-termini and registration of the characteristic w-ions. Later this approach was extended to deal with several (4-7) broad band mass ranges, without special isolation of the primary z-ions. The present paper demonstrates an advanced version of this method when EThcD is applied in the whole mass range to a complex mixture of natural non-tryptic peptides without their separation and intermediate isolation of the targeted z-ions. The proposed EThcD method showed over 81% efficiency for the large natural peptides with intact disulfide ring, while the interfering process of radical site migration is suppressed. Due to higher speed and sensitivity, the proposed EThcD approach facilitates the analytical procedure and allows for the automation of the entire experiment and data processing. Moreover, in some cases it gives a chance to establish the nature of the residues in the intact intramolecular disulfide loops. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Tatiana Yu Samgina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Sergey V Kovalev
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Miriam D Tolpina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Polonca Trebse
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Torkar
- Faculty of Education, University of Ljubljana, Ljubljana, Slovenia
| | - Albert T Lebedev
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
14
|
Tang Y, Pu Y, Gao J, Hong P, Costello CE, Lin C. De Novo Glycan Sequencing by Electronic Excitation Dissociation and Fixed-Charge Derivatization. Anal Chem 2018; 90:3793-3801. [PMID: 29443510 DOI: 10.1021/acs.analchem.7b04077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Detailed glycan structural characterization is frequently achieved by collisionally activated dissociation (CAD) based sequential tandem mass spectrometry (MS n) analysis of permethylated glycans. However, it is challenging to implement MS n ( n > 2) during online glycan separation, and this has limited its application to analysis of complex glycan mixtures from biological samples. Further, permethylation can reduce liquid chromatographic (LC) resolution of isomeric glycans. Here, we studied the electronic excitation dissociation (EED) fragmentation behavior of native glycans with a reducing-end fixed charge tag and identified key spectral features that are useful for topology and linkage determination. We also developed a de novo glycan sequencing software that showed remarkable accuracy in glycan topology elucidation based on the EED spectra of fixed charge-derivatized glycans. The ability to obtain glycan structural details at the MS2 level, without permethylation, via a combination of fixed charge derivatization, EED, and de novo spectral interpretation, makes the present approach a promising tool for comprehensive and rapid characterization of glycan mixtures.
Collapse
Affiliation(s)
- Yang Tang
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States.,Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Yi Pu
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States.,Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Jinshan Gao
- Department of Chemistry and Biochemistry , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Pengyu Hong
- Department of Computer Science, Brandeis University , Waltham , Massachusetts 02453 , United States
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States.,Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Cheng Lin
- Center for Biomedical Mass Spectrometry , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| |
Collapse
|
15
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
16
|
Zhokhov SS, Kovalyov SV, Samgina TY, Lebedev AT. An EThcD-Based Method for Discrimination of Leucine and Isoleucine Residues in Tryptic Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1600-1611. [PMID: 28447219 DOI: 10.1007/s13361-017-1674-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 06/07/2023]
Abstract
An EThcD-based approach for the reliable discrimination of isomeric leucine and isoleucine residues in peptide de novo sequencing procedure has been proposed. A multistage fragmentation of peptide ions was performed with Orbitrap Elite mass spectrometer in electrospray ionization mode. At the first stage, z-ions were produced by ETD or ETcaD fragmentation of doubly or triply charged peptide precursor ions. These primary ions were further fragmented by HCD with broad-band ion isolation, and the resulting w-ions showed different mass for leucine and isoleucine residues. The procedure did not require manual isolation of specific z-ions prior to HCD stage. Forty-three tryptic peptides (3 to 27 residues) obtained by trypsinolysis of human serum albumin (HSA) and gp188 protein were analyzed. To demonstrate a proper solution for radical site migration problem, three non-tryptic peptides were also analyzed. A total of 93 leucine and isoleucine residues were considered and 83 of them were correctly identified. The developed approach can be a reasonable substitution for additional Edman degradation procedure, which is still used in peptide sequencing for leucine and isoleucine discrimination. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sergey S Zhokhov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1 Bld. 3, 119991, Moscow, Russia
| | - Sergey V Kovalyov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1 Bld. 3, 119991, Moscow, Russia
| | - Tatiana Yu Samgina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1 Bld. 3, 119991, Moscow, Russia
| | - Albert T Lebedev
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1 Bld. 3, 119991, Moscow, Russia.
| |
Collapse
|
17
|
Riley NM, Hebert AS, Dürnberger G, Stanek F, Mechtler K, Westphall MS, Coon JJ. Phosphoproteomics with Activated Ion Electron Transfer Dissociation. Anal Chem 2017; 89:6367-6376. [PMID: 28383256 PMCID: PMC5555596 DOI: 10.1021/acs.analchem.7b00212] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability to localize phosphosites to specific amino acid residues is crucial to translating phosphoproteomic data into biological meaningful contexts. In a companion manuscript ( Anal. Chem. 2017 , DOI: 10.1021/acs.analchem.7b00213 ), we described a new implementation of activated ion electron transfer dissociation (AI-ETD) on a quadrupole-Orbitrap-linear ion trap hybrid MS system (Orbitrap Fusion Lumos), which greatly improved peptide fragmentation and identification over ETD and other supplemental activation methods. Here we present the performance of AI-ETD for identifying and localizing sites of phosphorylation in both phosphopeptides and intact phosphoproteins. Using 90 min analyses we show that AI-ETD can identify 24,503 localized phosphopeptide spectral matches enriched from mouse brain lysates, which more than triples identifications from standard ETD experiments and outperforms ETcaD and EThcD as well. AI-ETD achieves these gains through improved quality of fragmentation and MS/MS success rates for all precursor charge states, especially for doubly protonated species. We also evaluate the degree to which phosphate neutral loss occurs from phosphopeptide product ions due to the infrared photoactivation of AI-ETD and show that modifying phosphoRS (a phosphosite localization algorithm) to include phosphate neutral losses can significantly improve localization in AI-ETD spectra. Finally, we demonstrate the utility of AI-ETD in localizing phosphosites in α-casein, an ∼23.5 kDa phosphoprotein that showed eight of nine known phosphorylation sites occupied upon intact mass analysis. AI-ETD provided the greatest sequence coverage for all five charge states investigated and was the only fragmentation method to localize all eight phosphosites for each precursor. Overall, this work highlights the analytical value AI-ETD can bring to both bottom-up and top-down phosphoproteomics.
Collapse
Affiliation(s)
- Nicholas M. Riley
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alexander S. Hebert
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gerhard Dürnberger
- Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
- GMI, Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr Gasse 3, A-1030 Vienna, Austria
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, A-1030 Vienna, Austria
| | - Florian Stanek
- Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
| | - Karl Mechtler
- Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, A-1030 Vienna, Austria
| | - Michael S. Westphall
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Joshua J. Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| |
Collapse
|
18
|
Riley NM, Westphall MS, Hebert AS, Coon JJ. Implementation of Activated Ion Electron Transfer Dissociation on a Quadrupole-Orbitrap-Linear Ion Trap Hybrid Mass Spectrometer. Anal Chem 2017; 89:6358-6366. [PMID: 28383247 DOI: 10.1021/acs.analchem.7b00213] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Using concurrent IR photoactivation during electron transfer dissociation (ETD) reactions, i.e., activated ion ETD (AI-ETD), significantly increases dissociation efficiency resulting in improved overall performance. Here we describe the first implementation of AI-ETD on a quadrupole-Orbitrap-quadrupole linear ion trap (QLT) hybrid MS system (Orbitrap Fusion Lumos) and demonstrate the substantial benefits it offers for peptide characterization. First, we show that AI-ETD can be implemented in a straightforward manner by fastening the laser and guiding optics to the instrument chassis itself, making alignment with the trapping volume of the QLT simple and robust. We then characterize the performance of AI-ETD using standard peptides in addition to a complex mixtures of tryptic peptides using LC-MS/MS, showing not only that AI-ETD can nearly double the identifications achieved with ETD alone but also that it outperforms the other available supplemental activation methods (ETcaD and EThcD). Finally, we introduce a new activation scheme called AI-ETD+ that combines AI-ETD in the high pressure cell of the QLT with a short infrared multiphoton dissociation (IRMPD) activation in the low-pressure cell. This reaction scheme introduces no addition time to the scan duty cycle but generates MS/MS spectra rich in b/y-type and c/z•-type product ions. The extensive generation of fragment ions in AI-ETD+ substantially increases peptide sequence coverage while also improving peptide identifications over all other ETD methods, making it a valuable new tool for hybrid fragmentation approaches.
Collapse
Affiliation(s)
| | | | | | - Joshua J Coon
- Morgridge Institute for Research , Madison, Wisconsin 53715, United States
| |
Collapse
|
19
|
Qi Y, Volmer DA. Electron-based fragmentation methods in mass spectrometry: An overview. MASS SPECTROMETRY REVIEWS 2017; 36:4-15. [PMID: 26445267 DOI: 10.1002/mas.21482] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 05/21/2023]
Abstract
Tandem mass spectrometry (MS/MS) provides detailed information for structural characterization of biomolecules. The combination of electron capture dissociation (ECD) techniques with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) often provides unique ion-electron reactions and fragmentation channels in MS/MS. ECD is often a complimentary, sometimes even a superior tool to conventional MS/MS techniques. This article is aimed at providing a short overview of ECD-based fragmentation techniques (ExD) and optimization of ECD experiments for FTICR mass analyzers. Most importantly, it is meant to pique the interest of potential users for this exciting research field. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:4-15, 2017.
Collapse
Affiliation(s)
- Yulin Qi
- Institute of Bioanalytical Chemistry, Saarland University, Campus B2.2, Saarbrücken, 66123, Germany
| | - Dietrich A Volmer
- Institute of Bioanalytical Chemistry, Saarland University, Campus B2.2, Saarbrücken, 66123, Germany
| |
Collapse
|
20
|
Lermyte F, Łącki MK, Valkenborg D, Gambin A, Sobott F. Conformational Space and Stability of ETD Charge Reduction Products of Ubiquitin. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:69-76. [PMID: 27495285 DOI: 10.1007/s13361-016-1444-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/11/2016] [Accepted: 06/26/2016] [Indexed: 06/06/2023]
Abstract
Owing to its versatility, electron transfer dissociation (ETD) has become one of the most commonly utilized fragmentation techniques in both native and non-native top-down mass spectrometry. However, several competing reactions-primarily different forms of charge reduction-occur under ETD conditions, as evidenced by the distorted isotope patterns usually observed. In this work, we analyze these isotope patterns to compare the stability of nondissociative electron transfer (ETnoD) products, specifically noncovalent c/z fragment complexes, across a range of ubiquitin conformational states. Using ion mobility, we find that more extended states are more prone to fragment release. We obtain evidence that for a given charge state, populations of ubiquitin ions formed either directly by electrospray ionization or through collapse of more extended states upon charge reduction, span a similar range of collision cross-sections. Products of gas-phase collapse are, however, less stabilized towards unfolding than the native conformation, indicating that the ions retain a memory of previous conformational states. Furthermore, this collapse of charge-reduced ions is promoted if the ions are 'preheated' using collisional activation, with possible implications for the kinetics of gas-phase compaction. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerpen, Belgium
- Center for Proteomics, University of Antwerp, Antwerpen, Belgium
| | | | - Dirk Valkenborg
- Center for Proteomics, University of Antwerp, Antwerpen, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
- Applied Bio and Molecular Systems, Flemish Institute for Technological Research (VITO), Antwerp, Belgium
| | - Anna Gambin
- Institute of Informatics, University of Warsaw, Warsaw, Poland
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerpen, Belgium.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
21
|
Lermyte F, Sobott F. A broader view on ion heating in traveling-wave devices using fragmentation of CsI clusters and extent of H˙ migration as molecular thermometers. Analyst 2017; 142:3388-3399. [DOI: 10.1039/c7an00161d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Traveling-wave-dependent ion ‘heating’ is observed during mass spectrometry experiments under both ion mobility and electron transfer dissociation conditions and investigated using novel molecular ‘thermometers’.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular & Analytical Mass Spectrometry Group
- Department of Chemistry
- University of Antwerp
- Antwerp
- Belgium
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry Group
- Department of Chemistry
- University of Antwerp
- Antwerp
- Belgium
| |
Collapse
|
22
|
Yu X, Zhong W. Differentiation of Norvaline and Valine in Peptides by Hot Electron Capture Dissociation. Anal Chem 2016; 88:5914-9. [DOI: 10.1021/acs.analchem.6b00823] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xiang Yu
- Department of Pharmacokinetics, Pharmacodynamics, & Drug Metabolism (PPDM), Merck Research Laboratories, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Wendy Zhong
- Process/Analytical
Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
23
|
Takahashi H, Sekiya S, Nishikaze T, Kodera K, Iwamoto S, Wada M, Tanaka K. Hydrogen Attachment/Abstraction Dissociation (HAD) of Gas-Phase Peptide Ions for Tandem Mass Spectrometry. Anal Chem 2016; 88:3810-6. [DOI: 10.1021/acs.analchem.5b04888] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hidenori Takahashi
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Sadanori Sekiya
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Takashi Nishikaze
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Kei Kodera
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Shinichi Iwamoto
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| | - Motoi Wada
- Graduate
School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Koichi Tanaka
- Koichi Tanaka
Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|
24
|
Halim MA, Girod M, MacAleese L, Lemoine J, Antoine R, Dugourd P. 213 nm Ultraviolet Photodissociation on Peptide Anions: Radical-Directed Fragmentation Patterns. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:474-86. [PMID: 26545767 DOI: 10.1007/s13361-015-1297-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 05/25/2023]
Abstract
Characterization of acidic peptides and proteins is greatly hindered due to lack of suitable analytical techniques. Here we present the implementation of 213 nm ultraviolet photodissociation (UVPD) in high-resolution quadrupole-Orbitrap mass spectrometer in negative polarity for peptide anions. Radical-driven backbone fragmentation provides 22 distinctive fragment ion types, achieving the complete sequence coverage for all reported peptides. Hydrogen-deficient radical anion not only promotes the cleavage of Cα-C bond but also stimulates the breaking of N-Cα and C-N bonds. Radical-directed loss of small molecules and specific side chain of amino acids are detected in these experiments. Radical containing side chain of amino acids (Tyr, Ser, Thr, and Asp) may possibly support the N-Cα backbone fragmentation. Proline comprising peptides exhibit the unusual fragment ions similar to reported earlier. Interestingly, basic amino acids such as Arg and Lys also stimulated the formation of abundant b and y ions of the related peptide anions. Loss of hydrogen atom from the charge-reduced radical anion and fragment ions are rationalized by time-dependent density functional theory (TDDFT) calculation, locating the potential energy surface (PES) of ππ* and repulsive πσ* excited states of a model amide system.
Collapse
Affiliation(s)
- Mohammad A Halim
- Institut Lumière Matière, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Marion Girod
- Institut des Sciences Analytiques, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Luke MacAleese
- Institut Lumière Matière, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Jérôme Lemoine
- Institut des Sciences Analytiques, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Rodolphe Antoine
- Institut Lumière Matière, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Philippe Dugourd
- Institut Lumière Matière, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France.
| |
Collapse
|
25
|
Riley NM, Westphall MS, Coon JJ. Activated Ion Electron Transfer Dissociation for Improved Fragmentation of Intact Proteins. Anal Chem 2015; 87:7109-16. [PMID: 26067513 PMCID: PMC9488116 DOI: 10.1021/acs.analchem.5b00881] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here we report the first implementation of activated ion electron transfer dissociation (AI-ETD) for top down protein characterization, showing that AI-ETD definitively extends the m/z range over which ETD can be effective for fragmentation of intact proteins. AI-ETD, which leverages infrared photon bombardment concurrent to the ETD reaction to mitigate nondissociative electron transfer, was performed using a novel multipurpose dissociation cell that can perform both beam-type collisional dissociation and ion-ion reactions on an ion trap-Orbitrap hybrid mass spectrometer. AI-ETD increased the number of c- and z-type product ions for all charge states over ETD alone, boosting product ion yield by nearly 4-fold for low charge density precursors. AI-ETD also outperformed HCD, generating more matching fragments for all proteins at all charge states investigated. In addition to generating more unique fragment ions, AI-ETD provided greater protein sequence coverage compared to both HCD and ETD. In all, the effectiveness of AI-ETD across the entirety of the m/z spectrum demonstrates its efficacy for robust fragmentation of intact proteins.
Collapse
Affiliation(s)
- Nicholas M. Riley
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
- Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Michael S. Westphall
- Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
- Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
26
|
Schennach M, Breuker K. Probing Protein Structure and Folding in the Gas Phase by Electron Capture Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1059-67. [PMID: 25868904 PMCID: PMC4475247 DOI: 10.1007/s13361-015-1088-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/19/2015] [Accepted: 01/27/2015] [Indexed: 05/11/2023]
Abstract
The established methods for the study of atom-detailed protein structure in the condensed phases, X-ray crystallography and nuclear magnetic resonance spectroscopy, have recently been complemented by new techniques by which nearly or fully desolvated protein structures are probed in gas-phase experiments. Electron capture dissociation (ECD) is unique among these as it provides residue-specific, although indirect, structural information. In this Critical Insight article, we discuss the development of ECD for the structural probing of gaseous protein ions, its potential, and limitations.
Collapse
Affiliation(s)
- Moritz Schennach
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
27
|
Byskov CS, Jensen F, Jørgensen TJD, Nielsen SB. On the photostability of peptides after selective photoexcitation of the backbone: prompt versus slow dissociation. Phys Chem Chem Phys 2015; 16:15831-8. [PMID: 24945849 DOI: 10.1039/c4cp02015d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vulnerability of biomolecules to ultraviolet radiation is intimately linked to deexcitation pathways: photostability requires fast internal conversion to the electronic ground state, but also intramolecular vibrational redistribution and cooling on a time scale faster than dissociation. Here we present a protocol to disentangle slow and non-hazardous statistical dissociation from prompt cleavage of peptide bonds by 210 nm light based on experiments on protonated peptides isolated in vacuo and tagged by 18-crown-6 ether (CE). The weakest link in the system is between the charged site and CE, which is remote from the initial site of excitation. Hence loss of CE serves as direct proof that energy has reached the charge-site end, leaving the backbone intact. Our work demonstrates that excitation of tertiary amide moieties (proline linkages) results in both prompt dissociation and statistical dissociation after energy randomisation over all vibrational degrees of freedom.
Collapse
|
28
|
Oh HB, Moon B. Radical-driven peptide backbone dissociation tandem mass spectrometry. MASS SPECTROMETRY REVIEWS 2015; 34:116-132. [PMID: 24863492 DOI: 10.1002/mas.21426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 05/06/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
In recent years, a number of novel tandem mass spectrometry approaches utilizing radical-driven peptide gas-phase fragmentation chemistry have been developed. These approaches show a peptide fragmentation pattern quite different from that of collision-induced dissociation (CID). The peptide fragmentation features of these approaches share some in common with electron capture dissociation (ECD) or electron transfer dissociation (ETD) without the use of sophisticated equipment such as a Fourier-transform mass spectrometer. For example, Siu and coworkers showed that CID of transition metal (ligand)-peptide ternary complexes led to the formation of peptide radical ions through dissociative electron transfer (Chu et al., 2000. J Phys Chem B 104:3393-3397). The subsequent collisional activation of the generated radical ions resulted in a number of characteristic product ions, including a, c, x, z-type fragments and notable side-chain losses. Another example is the free radical initiated peptide sequencing (FRIPS) approach, in which Porter et al. and Beauchamp et al. independently introduced a free radical initiator to the primary amine group of the lysine side chain or N-terminus of peptides (Masterson et al., 2004. J Am Chem Soc 126:720-721; Hodyss et al., 2005 J Am Chem Soc 127: 12436-12437). Photodetachment of gaseous multiply charged peptide anions (Joly et al., 2008. J Am Chem Soc 130:13832-13833) and UV photodissociation of photolabile radical precursors including a C-I bond (Ly & Julian, 2008. J Am Chem Soc 130:351-358; Ly & Julian, 2009. J Am Soc Mass Spectrom 20:1148-1158) also provide another route to generate radical ions. In this review, we provide a brief summary of recent results obtained through the radical-driven peptide backbone dissociation tandem mass spectrometry approach.
Collapse
Affiliation(s)
- Han Bin Oh
- Department of Chemistry, Sogang University, Seoul, 121-742, Republic of Korea
| | | |
Collapse
|
29
|
Ledvina AR, Coon JJ, Tureček F. Competitive Hydrogen Atom Migrations Accompanying Cascade Dissociations of Peptide Cation-Radicals of the z+• Type. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 377:44-53. [PMID: 25844055 PMCID: PMC4380023 DOI: 10.1016/j.ijms.2014.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report a combined experimental and computational study of energy-resolved collision-induced dissociation (ER-CID) and time-resolved infrared multiphoton dissociation (TR-IRMPD) of z4 ions prepared by electron transfer dissociation of peptide (Ala-Ala-Asn-Ala-Arg + 2H)2+ ions. The z4 cation-radicals, •ANAR+, undergo competitive dissociations by backbone cleavage and loss of a CONH2 radical from the Asn side chain. The backbone cleavage proceeds by radical-assisted dissociation of the Asn Cα-CO bond, forming an x2 ion intermediate which rapidly dissociates by HNCO elimination to yield a stable z2 fragment ion, •AR+. The ER-CID and TR-IRMPD data were consistent with the consecutive nature of the backbone dissociation but showed different branching ratios for the two major fragmentations. The ER-CID data showed branching ratios 0.6-1.0 for the side-chain and backbone cleavages whereas the TR-IRMPD data showed an earlier onset for the latter dissociation. Computational analysis of the potential energy surface with density functional theory and ab initio calculations was carried out to provide structures and energies for the reactant ions as well as several intermediates, products, and transition states. Dissociation pathways for cis and trans amide conformers were distinguished and their energies were evaluated. The threshold dissociation energies for the backbone and side-chain dissociations were similar in accordance with the experimental ER-CID branching ratio. The TR-IRMPD data were interpreted by different absorbances of intermediates produced by hydrogen atom migrations along the dissociation pathways.
Collapse
Affiliation(s)
- Aaron R Ledvina
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin, Madison, WI, USA ; Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - František Tureček
- Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, WA 98195-1700, USA
| |
Collapse
|
30
|
Tsybin YO, Vvorobyev A, Zhurov KO, Laskay ÜA. On the use of electron capture rate constants to describe electron capture dissociation mass spectrometry of peptides. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:451-458. [PMID: 26307726 DOI: 10.1255/ejms.1370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Electron capture dissociation (ECD) tandem mass spectrometry (MS/MS) is a powerful analytical tool for peptide and protein structure analysis. The product ion abundance (PIA) distribution in ECD MS/MS is known to vary as a function of electron irradiation period. This variation complicates the development of a method of peptide identification by correlation of ECD MS/MS data with experimental and theoretical mass spectra. Here, we first develop a kinetic model to describe primary electron capture by peptide dications leading to product ion formation and secondary electron capture resulting in product ion neutralization. We apply the developed kinetic model to calculate product ion formation rate constants and electron capture rate constants of product ions from ECD mass spectra acquired using various electron irradiation periods. Contrary to ECD PIA distributions, the product ion formation rate constants are shown to be independent of electron irradiation period and, thus, may be employed to characterize ECD product ion formation more universally. The electron capture rate constants of product ions in ECD Fourier transform ion cyclotron resonance MS were found to correlate (with a correlation factor, R(2), of ca 0.9) with ion mobility cross sections of product ions in electron transfer dissociation. Finally, we demonstrate that the electron irradiation period influences the ratio of radical and even-electron c and z product ions.
Collapse
Affiliation(s)
- Yury O Tsybin
- Bi omolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Aleksey Vvorobyev
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Konstantin O Zhurov
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ünige A Laskay
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Bythell BJ. Cα hydrogen atom transfer in post-cleavage radical-cation complexes: short and steep versus long winding road. J Phys Chem A 2014; 118:10797-803. [PMID: 25329622 DOI: 10.1021/jp507865h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recently, I explored structurally straightforward pathways to Cα hydrogen atom, H(•), transfer reactions in the radical cation complex following electron capture/transfer of a series of polyprotonated peptides (J. Phys. Chem. A 2013, 117, 1189-1196). Here, I extend my analysis to incorporate detailed rearrangement processes potentially occurring prior to H(•) transfer. This comprises intracomplex isomerization of the initial iminol-terminated (-C(OH)═NH) form of the cn' species to the energetically more favorable, amide-terminated form (-C(O)-NH2) prior to Cα H(•) abstraction by the zm(•) species. The data indicate that the previously published H(•) transfer barriers are more energetically demanding than those of this multistep alternative. The rate-determining step is typically the intracomplex iminol isomerization, consistent with the substantial energetic favorability of the amide form of the cn species. The barriers to H(•) transfer still rise steeply as a function of the charge state. In agreement with experiment, evidence for product separation without H(•) transfer at a higher charge state is also provided.
Collapse
Affiliation(s)
- Benjamin J Bythell
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis , St. Louis, Missouri 63121, United States
| |
Collapse
|
32
|
Asakawa D, Wada Y. Electron transfer dissociation mass spectrometry of peptides containing free cysteine using group XII metals as a charge carrier. J Phys Chem B 2014; 118:12318-25. [PMID: 25271566 DOI: 10.1021/jp502818u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Electron transfer dissociation (ETD) has been used for peptide sequencing. Since ETD preferentially produces the c'/z(•) fragment pair, peptide sequencing is generally performed by interpretation of mass differences between series of consecutive c' and z(•) ions. However, the presence of free cysteine residues in a precursor promotes peptide bond cleavage, hindering interpretation of the ETD spectrum. In the present study, the divalent group XII metals, such as Zn(2+), Cd(2+) and Hg(2+), were used as charge carriers to produce metal-peptide complexes. The thiol group is deprotonated by complexation with the group XII metal. The formation of b and y' ions was successfully suppressed by using the zinc-peptide complex as a precursor, indicating Zn(2+)-aided ETD to be a useful method for sequencing of cysteine-containing peptides. By contrast, ETD of Cd(2+)- and Hg(2+)-peptide complexes mainly led to SH2 loss and radical cation formation, respectively. These processes were mediated by recombination energy between the metal cation and an electron. The presence of monovalent cadmium and neutral mercury in ETD products was confirmed by MS(3) analysis with collision-induced dissociation.
Collapse
Affiliation(s)
- Daiki Asakawa
- Department of Molecular Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health , 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | | |
Collapse
|
33
|
Huang Y, Pu Y, Yu X, Costello CE, Lin C. Mechanistic study on electron capture dissociation of the oligosaccharide-Mg²⁺ complex. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1451-60. [PMID: 24845360 PMCID: PMC4108535 DOI: 10.1007/s13361-014-0921-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 05/04/2023]
Abstract
Electron capture dissociation (ECD) has shown great potential in structural characterization of glycans. However, our current understanding of the glycan ECD process is inadequate for accurate interpretation of the complex glycan ECD spectra. Here, we present the first comprehensive theoretical investigation on the ECD fragmentation behavior of metal-adducted glycans, using the cellobiose-Mg²⁺ complex as the model system. Molecular dynamics simulation was carried out to determine the typical glycan-Mg²⁺ binding patterns and the lowest-energy conformer identified was used as the initial geometry for density functional theory-based theoretical modeling. It was found that the electron is preferentially captured by Mg²⁺ and the resultant Mg⁺• can abstract a hydroxyl group from the glycan moiety to form a carbon radical. Subsequent radical migration and α-cleavage(s) result in the formation of a variety of product ions. The proposed hydroxyl abstraction mechanism correlates well with the major features in the ECD spectrum of the Mg²⁺-adducted cellohexaose. The mechanism presented here also predicts the presence of secondary, radical-induced fragmentation pathways. These secondary fragment ions could be misinterpreted, leading to erroneous structural determination. The present study highlights an urgent need for continuing investigation of the glycan ECD mechanism, which is imperative for successful development of bioinformatics tools that can take advantage of the rich structural information provided by ECD of metal-adducted glycans.
Collapse
Affiliation(s)
- Yiqun Huang
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Yi Pu
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Chemistry, Boston University, Boston, MA 02215
| | - Xiang Yu
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Catherine E. Costello
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
- Department of Chemistry, Boston University, Boston, MA 02215
| | - Cheng Lin
- Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
34
|
Qi Y, Bortoli S, Volmer DA. Detailed study of cyanobacterial microcystins using high performance tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1253-1262. [PMID: 24781456 DOI: 10.1007/s13361-014-0893-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/12/2014] [Accepted: 03/16/2014] [Indexed: 06/03/2023]
Abstract
Microcystins (MC) are a large group of toxic cyclic peptides, produced by cyanobacteria in eutrophic water systems. Identification of MC variants mostly relies on liquid chromatography (LC) combined with collision-induced dissociation (CID) mass spectrometry. Deviations from the essential amino acid complement are a common feature of these natural products, which makes the CID analysis more difficult and not always successful. Here, both CID and electron capture dissociation (ECD) were applied in combination with ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry to study a cyanobacteria strain isolated from the Salto Grande Reservoir in Sao Paulo State, Brazil, without prior LC separation. CID was shown to be an effective dissociation technique for quickly identifying the MC variants, even those that have previously been difficult to characterize by CID. Moreover, ECD provided even more detailed and complementary information, which enabled us to precisely locate metal binding sites of MCs for the first time. This additional information will be important for environmental chemists to study MC accumulation and production in ecosystems.
Collapse
Affiliation(s)
- Yulin Qi
- Institute of Bioanalytical Chemistry, Saarland University, Campus B2.2, 66123, Saarbrücken, Germany
| | | | | |
Collapse
|
35
|
Lebedev AT, Damoc E, Makarov AA, Samgina TY. Discrimination of Leucine and Isoleucine in Peptides Sequencing with Orbitrap Fusion Mass Spectrometer. Anal Chem 2014; 86:7017-22. [DOI: 10.1021/ac501200h] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Albert T. Lebedev
- Chemistry
Department, M.V. Lomonosov Moscow State University, Leninskie
Gory 1/3, Moscow, 119991, Russia
| | - Eugen Damoc
- ThermoFisher Scientific (Bremen) GmbH, Hanna-Kunath Strasse 11, 28199, Bremen, Germany
| | - Alexander A. Makarov
- ThermoFisher Scientific (Bremen) GmbH, Hanna-Kunath Strasse 11, 28199, Bremen, Germany
| | - Tatiana Yu. Samgina
- Chemistry
Department, M.V. Lomonosov Moscow State University, Leninskie
Gory 1/3, Moscow, 119991, Russia
| |
Collapse
|
36
|
Asakawa D, Takeuchi T, Yamashita A, Wada Y. Influence of metal-peptide complexation on fragmentation and inter-fragment hydrogen migration in electron transfer dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1029-1039. [PMID: 24671694 DOI: 10.1007/s13361-014-0855-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/06/2014] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
The use of metal salts in electrospray ionization (ESI) of peptides increases the charge state of peptide ions, facilitating electron transfer dissociation (ETD) in tandem mass spectrometry. In the present study, K(+) and Ca(2+) were used as charge carriers to form multiply-charged metal-peptide complexes. ETD of the potassium- or calcium-peptide complex was initiated by transfer of an electron to a proton remote from the metal cation, and a c'-z• fragment complex, in which the c' and z• fragments were linked together via a metal cation coordinating with several amino acid residues, was formed. The presence of a metal cation in the precursor for ETD increased the lifetime of the c'-z• fragment complex, eventually generating c• and z' fragments through inter-fragment hydrogen migration. The degree of hydrogen migration was dependent on the location of the metal cation in the metal-peptide complex, but was not reconciled with conformation of the precursor ion obtained by molecular mechanics simulation. In contrast, the location of the metal cation in the intermediate suggested by the ETD spectrum was in agreement with the conformation of "proton-removed" precursors, indicating that the charge reduction of precursor ions by ETD induces conformational rearrangement during the fragmentation process.
Collapse
Affiliation(s)
- Daiki Asakawa
- Department of Molecular Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan,
| | | | | | | |
Collapse
|
37
|
Takayama M, Sekiya S, Iimuro R, Iwamoto S, Tanaka K. Selective and nonselective cleavages in positive and negative CID of the fragments generated from in-source decay of intact proteins in MALDI-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:120-131. [PMID: 24135807 DOI: 10.1007/s13361-013-0756-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 06/02/2023]
Abstract
Selective and nonselective cleavages in ion trap low-energy collision-induced dissociation (CID) experiments of the fragments generated from in-source decay (ISD) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of intact proteins are described in both positive and negative ion modes. The MALDI-ISD spectra of the proteins demonstrate common, discontinuous, abundant c- and z'-ions originating from cleavage at the N-Cα bond of Xxx-Asp/Asn and Gly-Xxx residues in both positive- and negative-ion modes. The positive ion CID of the c- and z'-ions resulted in product ions originating from selective cleavage at Asp-Xxx, Glu-Xxx and Cys-Xxx residues. Nonselective cleavage product ions rationalized by the mechanism of a "mobile proton" are also observed in positive ion CID spectra. Negative ion CID of the ISD fragments results in complex product ions accompanied by the loss of neutrals from b-, c-, and y-ions. The most characteristic feature of negative ion CID is selective cleavage of the peptide bonds of acidic residues, Xxx-Asp/Glu/Cys. A definite influence of α-helix on the CID product ions was not obtained. However, the results from positive ion and negative ion CID of the MALDI-ISD fragments that may have long α-helical domains suggest that acidic residues in helix-free regions tend to degrade more than those in helical regions.
Collapse
Affiliation(s)
- Mitsuo Takayama
- Graduate School in Nanobioscience, Mass Spectrometry Laboratory, Yokohama City University, Kanazawa-ku, Yokohama, Japan,
| | | | | | | | | |
Collapse
|
38
|
Le TN, Poully JC, Lecomte F, Nieuwjaer N, Manil B, Desfrançois C, Chirot F, Lemoine J, Dugourd P, van der Rest G, Grégoire G. Gas-phase structure of amyloid-β (12-28) peptide investigated by infrared spectroscopy, electron capture dissociation and ion mobility mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1937-49. [PMID: 24043520 DOI: 10.1007/s13361-013-0722-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/22/2013] [Accepted: 07/30/2013] [Indexed: 05/11/2023]
Abstract
The gas-phase structures of doubly and triply protonated Amyloid-β12-28 peptides have been investigated through the combination of ion mobility (IM), electron capture dissociation (ECD) mass spectrometry, and infrared multi-photon dissociation (IRMPD) spectroscopy together with theoretical modeling. Replica-exchange molecular dynamics simulations were conducted to explore the conformational space of these protonated peptides, from which several classes of structures were found. Among the low-lying conformers, those with predicted diffusion cross-sections consistent with the ion mobility experiment were further selected and their IR spectra simulated using a hybrid quantum mechanical/semiempirical method at the ONIOM DFT/B3LYP/6-31 g(d)/AM1 level. In ECD mass spectrometry, the c/z product ion abundance (PIA) has been analyzed for the two charge states and revealed drastic differences. For the doubly protonated species, N - Cα bond cleavage occurs only on the N and C terminal parts, while a periodic distribution of PIA is clearly observed for the triply charged peptides. These PIA distributions have been rationalized by comparison with the inverse of the distances from the protonated sites to the carbonyl oxygens for the conformations suggested from IR and IM experiments. Structural assignment for the amyloid peptide is then made possible by the combination of these three experimental techniques that provide complementary information on the possible secondary structure adopted by peptides. Although globular conformations are favored for the doubly protonated peptide, incrementing the charge state leads to a conformational transition towards extended structures with 310- and α-helix motifs.
Collapse
Affiliation(s)
- Thi Nga Le
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, CNRS UMR 7538, F-93430, Villetaneuse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ledvina AR, Rose CM, McAlister GC, Syka JE, Westphall MS, Griep-Raming J, Schwartz JC, Coon JJ. Activated ion ETD performed in a modified collision cell on a hybrid QLT-Oribtrap mass spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1623-33. [PMID: 23677544 PMCID: PMC3776012 DOI: 10.1007/s13361-013-0621-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 05/12/2023]
Abstract
We describe the implementation and characterization of activated ion electron transfer dissociation (AI-ETD) on a hybrid QLT-Orbitrap mass spectrometer. AI-ETD was performed using a collision cell that was modified to enable ETD reactions, in addition to normal collisional activation. The instrument manifold was modified to enable irradiation of ions along the axis of this modified cell with IR photons from a CO2 laser. Laser power settings were optimized for both charge (z) and mass to charge (m/z) and the instrument control firmware was updated to allow for automated adjustments to the level of irradiation. This implementation of AI-ETD yielded 1.6-fold more unique identifications than ETD in an nLC-MS/MS analysis of tryptic yeast peptides. Furthermore, we investigated the application of AI-ETD on large scale analysis of phosphopeptides, where laser power aids ETD, but can produce b- and y-type ions because of the phosphoryl moiety's high IR adsorption. nLC-MS/MS analysis of phosphopeptides derived from human embryonic stem cells using AI-ETD yielded 2.4-fold more unique identifications than ETD alone, demonstrating a promising advance in ETD sequencing of PTM containing peptides.
Collapse
Affiliation(s)
- Aaron R. Ledvina
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
- Genome Center, University of Wisconsin, Madison, Wisconsin 53706
| | - Christopher M. Rose
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
- Genome Center, University of Wisconsin, Madison, Wisconsin 53706
| | - Graeme C. McAlister
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
- Genome Center, University of Wisconsin, Madison, Wisconsin 53706
| | | | | | | | | | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706
- Genome Center, University of Wisconsin, Madison, Wisconsin 53706
- To whom correspondence should be addressed.
| |
Collapse
|
40
|
Qi Y, Li H, Wills RH, Perez-Hurtado P, Yu X, Kilgour DPA, Barrow MP, Lin C, O’Connor PB. Absorption-mode Fourier transform mass spectrometry: the effects of apodization and phasing on modified protein spectra. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:828-34. [PMID: 23568027 PMCID: PMC4024093 DOI: 10.1007/s13361-013-0600-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 05/11/2023]
Abstract
The method of phasing broadband Fourier transform ion cyclotron resonance (FT-ICR) spectra allows plotting the spectra in the absorption-mode; this new approach significantly improves the quality of the data at no extra cost. Herein, an internal calibration method for calculating the phase function has been developed and successfully applied to the top-down spectra of modified proteins, where the peak intensities vary by 100×. The result shows that the use of absorption-mode spectra allows more peaks to be discerned within the recorded data, and this can reveal much greater information about the protein and modifications under investigation. In addition, noise and harmonic peaks can be assigned immediately in the absorption-mode.
Collapse
Affiliation(s)
- Yulin Qi
- Department of Chemistry, University of Warwick, Coventry, United Kingdom, CV4 7AL
| | - Huilin Li
- Department of Chemistry, University of Warwick, Coventry, United Kingdom, CV4 7AL
| | - Rebecca H. Wills
- Department of Chemistry, University of Warwick, Coventry, United Kingdom, CV4 7AL
| | - Pilar Perez-Hurtado
- Department of Chemistry, University of Warwick, Coventry, United Kingdom, CV4 7AL
| | - Xiang Yu
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118 USA
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 USA
| | - David. P. A. Kilgour
- Department of Chemistry, University of Warwick, Coventry, United Kingdom, CV4 7AL
| | - Mark P. Barrow
- Department of Chemistry, University of Warwick, Coventry, United Kingdom, CV4 7AL
| | - Cheng Lin
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118 USA
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 USA
| | - Peter B. O’Connor
- Department of Chemistry, University of Warwick, Coventry, United Kingdom, CV4 7AL
| |
Collapse
|
41
|
Affiliation(s)
- František Tureček
- Department of Chemistry, Bagley Hall, University of Washington , Seattle, Washington 98195-1700, United States
| | | |
Collapse
|
42
|
Tan L, Durand KL, Ma X, Xia Y. Radical cascades in electron transfer dissociation (ETD) – implications for characterizing peptide disulfide regio-isomers. Analyst 2013; 138:6759-65. [DOI: 10.1039/c3an01333b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Kornacki JR, Adamson JT, Håkansson K. Electron detachment dissociation of underivatized chloride-adducted oligosaccharides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:2031-2042. [PMID: 22911097 DOI: 10.1007/s13361-012-0459-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 07/22/2012] [Accepted: 07/23/2012] [Indexed: 06/01/2023]
Abstract
Chloride anion attachment has previously been shown to aid determination of saccharide anomeric configuration and generation of linkage information in negative ion post-source decay MALDI tandem mass spectrometry. Here, we employ electron detachment dissociation (EDD) and collision activated dissociation (CAD) for the structural characterization of underivatized oligosaccharides bearing a chloride ion adduct. Both neutral and sialylated oligosaccharides are examined, including maltoheptaose, an asialo biantennary glycan (NA2), disialylacto-N-tetraose (DSLNT), and two LS tetrasaccharides (LSTa and LSTb). Gas-phase chloride-adducted species are generated by negative ion mode electrospray ionization. EDD and CAD spectra of chloride-adducted oligosaccharides are compared to the corresponding spectra for doubly deprotonated species not containing a chloride anion to assess the role of chloride adduction in the stimulation of alternative fragmentation pathways and altered charge locations allowing detection of additional product ions. In all cases, EDD of singly chloridated and singly deprotonated species resulted in an increase in observed cross-ring cleavages, which are essential to providing saccharide linkage information. Glycosidic cleavages also increased in EDD of chloride-adducted oligosaccharides to reveal complementary structural information compared to traditional (non-chloride-assisted) EDD and CAD. Results indicate that chloride adduction is of interest in alternative anion activation methods such as EDD for oligosaccharide structural characterization.
Collapse
Affiliation(s)
- James R Kornacki
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
44
|
Wills RH, Tosin M, O'Connor PB. Structural characterization of polyketides using high mass accuracy tandem mass spectrometry. Anal Chem 2012; 84:8863-70. [PMID: 22985101 DOI: 10.1021/ac3022778] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The tandem mass spectrometry techniques electron-induced dissociation (EID) and collision-activated dissociation (CAD) have been compared as tools for providing detailed structural information of polyketides. Polyketides are an important class of natural products that account for a significant proportion of the drugs currently in clinical use. Three polyketide natural products, namely erythromycin A, lasalocid A, and iso-lasalocid A, were subjected to both CAD and EID, and their fragment ions were assigned with sub-part-per-million accuracy. The number of fragment ions detected through EID was much greater than for CAD, leading to a greater amount of structural information obtained for each polyketide, albeit with a decreased signal-to-noise ratio. The effect of different bound cations on the fragment pattern of the isomers lasalocid A and iso-lasalocid A was studied, with CAD and EID performed on the [M + H](+), [M + Na](+), [M + Li](+), and [M + NH(4)](+) precursor ions. The lithiated species were found to produce the greatest degree of fragmentation and enabled detailed structural information on the isomers to be obtained. Multistage mass spectrometry (MS(3)) experiments, combining CAD and EID, could also be performed on the lithiated species, generating new fragment information which enables the two isomers to be distinguished. Combining CAD and EID for the structural characterization of polyketides will therefore be a useful tool for identifying and characterizing unknown polyketides and their biosynthetic intermediates.
Collapse
Affiliation(s)
- Rebecca H Wills
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | | |
Collapse
|
45
|
Kalli A, Hess S. Electron capture dissociation of hydrogen-deficient peptide radical cations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1729-1740. [PMID: 22855421 DOI: 10.1007/s13361-012-0433-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/05/2012] [Accepted: 06/12/2012] [Indexed: 06/01/2023]
Abstract
Hydrogen-deficient peptide radical cations exhibit fascinating gas phase chemistry, which is governed by radical driven dissociation and, in many cases, by a combination of radical and charge driven fragmentation. Here we examine electron capture dissociation (ECD) of doubly, [M + H](2+•), and triply, [M + 2H](3+•), charged hydrogen-deficient species, aiming to investigate the effect of a hydrogen-deficient radical site on the ECD outcome and characterize the dissociation pathways of hydrogen-deficient species in ECD. ECD of [M + H](2+•) and [M + 2H](3+•) precursor ions resulted in efficient electron capture by the hydrogen-deficient species. However, the intensities of c- and z-type product ions were reduced, compared with those observed for the even electron species, indicating suppression of N-C(α) backbone bond cleavages. We postulate that radical recombination occurs after the initial electron capture event leading to a stable even electron intermediate, which does not trigger N-C(α) bond dissociations. Although the intensities of c- and z-type product ions were reduced, the number of backbone bond cleavages remained largely unaffected between the ECD spectra of the even electron and hydrogen-deficient species. We hypothesize that a small ion population exist as a biradical, which can trigger N-C(α) bond cleavages. Alternatively, radical recombination and N-C(α) bond cleavages can be in competition, with radical recombination being the dominant pathway and N-C(α) cleavages occurring to a lesser degree. Formation of b- and y-type ions observed for two of the hydrogen-deficient peptides examined is also discussed.
Collapse
Affiliation(s)
- Anastasia Kalli
- Proteome Exploration Laboratory, Division of Biology, Beckman Institute, California Institute of Technology, Pasadena, 91125, USA
| | | |
Collapse
|
46
|
Bythell BJ. To Jump or Not To Jump? Cα Hydrogen Atom Transfer in Post-cleavage Radical-Cation Complexes. J Phys Chem A 2012; 117:1189-96. [DOI: 10.1021/jp305277v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin J. Bythell
- Ion Cyclotron Resonance
Program, National High Magnetic Field Laboratory, Florida State University,
1800 East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United
States
| |
Collapse
|
47
|
Hao Q, Song T, Ng DCM, Quan Q, Siu CK, Chu IK. Arginine-Facilitated Isomerization: Radical-Induced Dissociation of Aliphatic Radical Cationic Glycylarginyl(iso)leucine Tripeptides. J Phys Chem B 2012; 116:7627-34. [DOI: 10.1021/jp301882p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qiang Hao
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Department
of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Tao Song
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Dominic C. M. Ng
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Quan Quan
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Chi-Kit Siu
- Department
of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Ivan K. Chu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
48
|
Pérot-Taillandier M, Zirah S, Rebuffat S, Linne U, Marahiel MA, Cole RB, Tabet JC, Afonso C. Determination of Peptide Topology through Time-Resolved Double-Resonance under Electron Capture Dissociation Conditions. Anal Chem 2012; 84:4957-64. [DOI: 10.1021/ac300607y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Moss CL, Liang W, Li X, Tureček F. The early life of a peptide cation-radical. Ground and excited-state trajectories of electron-based peptide dissociations during the first 330 femtoseconds. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:446-459. [PMID: 22187160 DOI: 10.1007/s13361-011-0283-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/11/2011] [Accepted: 10/18/2011] [Indexed: 05/31/2023]
Abstract
We report a new approach to investigating the mechanisms of fast peptide cation-radical dissociations based on an analysis of time-resolved reaction progress by Ehrenfest dynamics, as applied to an Ala-Arg cation-radical model system. Calculations of stationary points on the ground electronic state that were carried out with effective CCSD(T)/6-311++G(3df,2p) could not explain the experimental branching ratios for loss of a hydrogen atom, ammonia, and N-C(α) bond dissociation in (AR + 2H)(+•). The Ehrenfest dynamics results indicate that the ground and low-lying excited electronic states of (AR + 2H)(+•) follow different reaction courses in the first 330 femtoseconds after electron attachment. The ground (X) state undergoes competing loss of N-terminal ammonia and isomerization to an aminoketyl radical intermediate that depend on the vibrational energy of the charge-reduced ion. The A and B excited states involve electron capture in the Arg guanidine and carboxyl groups and are non-reactive on the short time scale. The C state is dissociative and progresses to a fast loss of an H atom from the Arg guanidine group. Analogous results were obtained by using the B3LYP and CAM-B3LYP density functionals for the excited state dynamics and including the universal M06-2X functional for ground electronic state calculations. The results of this Ehrenfest dynamics study indicate that reaction pathway branching into the various dissociation channels occurs in the early stages of electron attachment and is primarily determined by the electronic states being accessed. This represents a new paradigm for the discussion of peptide dissociations in electron based methods of mass spectrometry.
Collapse
Affiliation(s)
- Christopher L Moss
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA, USA
| | | | | | | |
Collapse
|
50
|
Dong J, Vachet RW. Coordination sphere tuning of the electron transfer dissociation behavior of Cu(II)-peptide complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:321-9. [PMID: 22161629 PMCID: PMC3265685 DOI: 10.1007/s13361-011-0299-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/04/2011] [Accepted: 11/15/2011] [Indexed: 05/21/2023]
Abstract
In contrast to previous electron capture dissociation (ECD) studies, we find that electron transfer dissociation (ETD) of Cu(II)-peptide complexes can generate c- and z-type product ions when the peptide has a sufficient number of strongly coordinating residues. Double-resonance experiments, ion-molecule reactions, and collision-induced dissociation (CID) prove that the c and z product ions are formed via typical radical pathways without the associated reduction of Cu(II), despite the high second ionization energy of Cu. A positive correlation between the number of Cu(II) binding groups in the peptide sequence and the extent of c and z ion formation was also observed. This trend is rationalized by considering that the recombination energy of Cu(II) can be lowered by strong binding ligands to an extent that enables electron transfer to non-Cu sites (e.g., protonation sites) to compete with Cu(II) reduction, thereby generating c/z ions in a manner similar to that observed for protonated (i.e., nonmetalated) peptides.
Collapse
Affiliation(s)
| | - Richard W. Vachet
- Corresponding author address: Department of Chemistry, LGRT 701, 710 N. Pleasant St., University of Massachusetts, Amherst, MA 01003, Fax: 413-545-4490,
| |
Collapse
|