1
|
Denti V, Monza N, Bindi G, Porto NS, L’Imperio V, Pagni F, Piga I, Smith A. 6-Aza-2-Thiothymine as an Alternative Matrix for Spatial Proteomics with MALDI-MSI. Int J Mol Sci 2024; 25:13678. [PMID: 39769439 PMCID: PMC11678892 DOI: 10.3390/ijms252413678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Matrix Assisted Laser Desorption/Ionisation-Mass Spectrometry Imaging (MALDI-MSI) is a well-established spatial omic technique which enables the untargeted mapping of various classes of biomolecules, including tryptic peptides, directly on tissue. This method relies on the use of matrices for the ionisation and volatilisation of analytes, and α-Cyano-4-hydroxycinnamic acid (CHCA) represents the most widespread matrix for tryptic peptides analysis. However, CHCA also presents certain limitations that foster the quest for novel matrix compounds. 6-aza-2-thiothymine (ATT), traditionally used in MALDI mass spectrometry (MS) for oligonucleotides, small molecules and oxidised phospholipids, has not been thoroughly investigated as a potential matrix for tryptic peptide analysis in MALDI-MS or MALDI-MSI. Therefore, this study addresses this gap by evaluating the capability of ATT to ionise tryptic peptides from Bovine Serum Albumin (BSA) and map in situ-digested peptides from formalin-fixed paraffin-embedded (FFPE) tissue sections in these respective applications. Comparative analysis with CHCA demonstrated the complementary strengths of these matrices for detecting tryptic peptides, establishing ATT as a feasible alternative to CHCA in the MALDI-MSI field and paving the way for future advancements in spatial proteomics.
Collapse
Affiliation(s)
- Vanna Denti
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (V.D.); (N.M.); (G.B.); (N.S.P.)
| | - Nicole Monza
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (V.D.); (N.M.); (G.B.); (N.S.P.)
| | - Greta Bindi
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (V.D.); (N.M.); (G.B.); (N.S.P.)
| | - Natalia Shelly Porto
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (V.D.); (N.M.); (G.B.); (N.S.P.)
| | - Vincenzo L’Imperio
- Pathology Unit, Department of Medicine and Surgery, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, 20900 Monza, Italy; (V.L.); (F.P.)
| | - Fabio Pagni
- Pathology Unit, Department of Medicine and Surgery, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, 20900 Monza, Italy; (V.L.); (F.P.)
| | - Isabella Piga
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (V.D.); (N.M.); (G.B.); (N.S.P.)
| | - Andrew Smith
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (V.D.); (N.M.); (G.B.); (N.S.P.)
| |
Collapse
|
2
|
Riggi VS, Watson EB, Steele A, Rogers KL. Mineral-Mediated Oligoribonucleotide Condensation: Broadening the Scope of Prebiotic Possibilities on the Early Earth. Life (Basel) 2023; 13:1899. [PMID: 37763303 PMCID: PMC10532843 DOI: 10.3390/life13091899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The origin of life on earth requires the synthesis of protobiopolymers in realistic geologic environments along strictly abiotic pathways that rely on inorganic phases (such as minerals) instead of cellular machinery to promote condensation. One such class of polymer central to biochemistry is the polynucleotides, and oligomerization of activated ribonucleotides has been widely studied. Nonetheless, the range of laboratory conditions tested to date is limited and the impact of realistic early Earth conditions on condensation reactions remains unexplored. Here, we investigate the potential for a variety of minerals to enhance oligomerization using ribonucleotide monomers as one example to model condensation under plausible planetary conditions. The results show that several minerals differing in both structure and composition enhance oligomerization. Sulfide minerals yielded oligomers of comparable lengths to those formed in the presence of clays, with galena being the most effective, yielding oligonucleotides up to six bases long. Montmorillonite continues to excel beyond other clays. Chemical pretreatment of the clay was not required, though maximum oligomer lengths decreased from ~11 to 6 bases. These results demonstrate the diversity of mineral phases that can impact condensation reactions and highlight the need for greater consideration of environmental context when assessing prebiotic synthesis and the origin of life.
Collapse
Affiliation(s)
- Vincent S. Riggi
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (E.B.W.); (A.S.); (K.L.R.)
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - E. Bruce Watson
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (E.B.W.); (A.S.); (K.L.R.)
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Andrew Steele
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (E.B.W.); (A.S.); (K.L.R.)
- Earth and Planets Laboratory, Carnegie Institution for Science, 5251 Broad Branch Rd NW, Washington, DC 20015, USA
| | - Karyn L. Rogers
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (E.B.W.); (A.S.); (K.L.R.)
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
3
|
Salim H, Pero-Gascon R, Pont L, Giménez E, Benavente F. A review of sample preparation for purification of microRNAs and analysis by mass spectrometry methods. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Kaysheva AL, Isaeva AI, Pleshakova TO, Shumov ID, Valueva AA, Ershova MO, Ivanova IA, Ziborov VS, Iourov IY, Vorsanova SG, Ryabtsev SV, Archakov AI, Ivanov YD. Detection of Circulating Serum microRNA/Protein Complexes in ASD Using Functionalized Chips for an Atomic Force Microscope. Molecules 2021; 26:5979. [PMID: 34641523 PMCID: PMC8512613 DOI: 10.3390/molecules26195979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs, which circulate in blood, are characterized by high diagnostic value; in biomedical research, they can be considered as candidate markers of various diseases. Mature microRNAs of glial cells and neurons can cross the blood-brain barrier and can be detected in the serum of patients with autism spectrum disorders (ASD) as components of macrovesicles, macromolecular protein and low-density lipoprotein particles. In our present study, we have proposed an approach, in which microRNAs in protein complexes can be concentrated on the surface of AFM chips with oligonucleotide molecular probes, specific against the target microRNAs. MicroRNAs, associated with the development of ASD in children, were selected as targets. The chips with immobilized molecular probes were incubated in serum samples of ASD patients and healthy volunteers. By atomic force microscopy (AFM), objects on the AFM chip surface have been revealed after incubation in the serum samples. The height of these objects amounted to 10 nm and 6 nm in the case of samples of ASD patients and healthy volunteers, respectively. MALDI-TOF-MS analysis of protein components on the chip surface allowed us to identify several cell proteins. These proteins are involved in the binding of nucleic acids (GBG10, RT24, RALYL), in the organization of proteasomes and nucleosomes (PSA4, NP1L4), and participate in the functioning of the channel of active potassium transport (KCNE5, KCNV2).
Collapse
Affiliation(s)
- Anna L. Kaysheva
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Arina I. Isaeva
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Tatyana O. Pleshakova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Ivan D. Shumov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Anastasia A. Valueva
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Maria O. Ershova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Irina A. Ivanova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Vadim S. Ziborov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
- Laboratory of Shock Wave Impacts, Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya St. 13 Bd.2, 125412 Moscow, Russia
| | | | - Svetlana G. Vorsanova
- Veltischev Research and Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University, Ministry of Health of Russian Federation, Taldomskaya St. 2, 125412 Moscow, Russia;
| | | | - Alexander I. Archakov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Yuri D. Ivanov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (A.L.K.); (T.O.P.); (I.D.S.); (A.A.V.); (M.O.E.); (I.A.I.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| |
Collapse
|
5
|
Ionic matrices for matrix-assisted laser desorption/ionization mass spectrometry analysis of microRNA biomarkers. Anal Chim Acta 2020; 1139:169-177. [PMID: 33190701 DOI: 10.1016/j.aca.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 11/20/2022]
Abstract
The use of ionic matrices (IMs) was evaluated as an alternative to conventional matrices to analyze microRNAs (miRNAs) by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). 2, 4, 6-Trihydroxyacetophenone (THAP), 6-aza-2-thiothymine (ATT) and 3-hydroxypicolinic acid (3-HPA) and their IMs with pyridine (PYR) and butylamine (BA) were studied to analyze a standard mixture of miRNAs: miR-21, let-7g and iso-miR-16. Among all the studied matrices, ATT-PYR at 75 mg/mL in acetonitrile (MeCN):H2O (50:50, v/v) was selected as the optimal. Furthermore, addition of ammonium citrate dibasic (AC) as signal enhancer was mandatory to obtain an appropriate miRNA detection. ATT-PYR provided the best sensitivity, with limit of detection (LOD) up to 5 nM (equivalent to 1 fmol in the spot) and excellent spot-to-spot repeatability due to the improved homogeneity of the spots compared to the conventional matrices. The applicability of the established method to direct, multiplex and untargeted analysis of miRNAs in serum samples was also investigated.
Collapse
|
6
|
Mungi CV, Bapat NV, Hongo Y, Rajamani S. Formation of Abasic Oligomers in Nonenzymatic Polymerization of Canonical Nucleotides. Life (Basel) 2019; 9:E57. [PMID: 31277469 PMCID: PMC6789551 DOI: 10.3390/life9030057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 12/02/2022] Open
Abstract
Polymerization of nucleotides under prebiotically plausible conditions has been a focus of several origins of life studies. Non-activated nucleotides have been shown to undergo polymerization under geothermal conditions when subjected to dry-wet cycles. They do so by a mechanism similar to acid-catalyzed ester-bond formation. However, one study showed that the low pH of these reactions resulted in predominantly depurination, thereby resulting in the formation of abasic sites in the oligomers. In this study, we aimed to systematically characterize the nature of the oligomers that resulted in reactions that involved one or more of the canonical ribonucleotides. All the reactions analyzed showed the presence of abasic oligomers, with purine nucleotides being affected the most due to deglycosylation. Even in the reactions that contained nucleotide mixtures, the presence of abasic oligomers was detected, which suggested that information transfer would be severely hampered due to losing the capacity to base pair via H-bonds. Importantly, the stability of the N-glycosidic linkage, under conditions used for dry-wet cycling, was also determined. Results from this study further strengthen the hypothesis that chemical evolution in a pre-RNA World would have been vital for the evolution of informational molecules of an RNA World. This is evident in the high degree of instability displayed by N-glycosidic bonds of canonical purine ribonucleotides under the same geothermal conditions that otherwise readily favors polymerization. Significantly, the resultant product characterization in the reactions concerned underscores the difficulty associated with analyzing complex prebiotically relevant reactions due to inherent limitation of current analytical methods.
Collapse
Affiliation(s)
- Chaitanya V. Mungi
- Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India
| | - Niraja V. Bapat
- Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India
| | - Yayoi Hongo
- ELSI, Tokyo-Tech (Earth-Life Science Institute, Tokyo Institute of Technology), 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- OIST, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Okinawa 904-0412, Japan
| | - Sudha Rajamani
- Indian Institute of Science Education and Research (IISER), Pune 411008, Maharashtra, India
| |
Collapse
|
7
|
Antireflection Surfaces for Biological Analysis Using Laser Desorption Ionization Mass Spectrometry. RESEARCH 2018; 2018:5439729. [PMID: 31549031 PMCID: PMC6750120 DOI: 10.1155/2018/5439729] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022]
Abstract
Laser desorption ionization mass spectrometry (LDI-MS) is a primary tool for biological analysis. Its success relies on the use of chemical matrices that facilitate soft desorption and ionization of the biomolecules, which, however, also limits its application for metabolomics study due to the chemical interference by the matrix compounds. The requirement for sample pretreatment is also undesirable for direct sampling analysis or tissue imaging. In this study, antireflection (AR) metal surfaces were investigated as sample substrates for matrix-free LDI-MS. They were prepared through ultrafast laser processing, with high light-to-heat energy conversion efficiency. The morphology and micro/nanostructures on the metal surfaces could be adjusted and optimized by tuning the laser fabrication process. The super-high UV absorption at 97% enabled highly efficient thermal desorption and ionization of analytes. The analytical performance for the matrix-free LDI was explored by analyzing a variety of biological compounds, including carbohydrates, drugs, metabolites, and amino acids. Its applicability for direct analysis of complex biological samples was also demonstrated by direct analysis of metabolites in yeast cells.
Collapse
|
8
|
Aldersley MF, Joshi PC, Huang Y. The Comparison of Hydrochloric Acid and Phosphoric Acid Treatments in the Preparation of Montmorillonite Catalysts for RNA Synthesis. ORIGINS LIFE EVOL B 2017; 47:297-304. [PMID: 28210992 DOI: 10.1007/s11084-017-9533-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/26/2017] [Indexed: 11/27/2022]
Abstract
The treatment of clay minerals with a preliminary acid wash and titration to pH 7 has proven to generate catalysts for the most interesting of oligomerization reactions in which activated RNA-nucleotides generate oligomers up to 40-mers. Significantly, not all clay minerals become catalytic following this treatment and none are catalytic in the absence of such treatment. The washing procedure has been modified and explored further using phosphoric acid and the outcomes are compared to those obtained when clay samples are prepared following a hydrochloric acid wash.
Collapse
Affiliation(s)
- Michael Frank Aldersley
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Prakash C Joshi
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Yixing Huang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
9
|
Coari KM, Martin RC, Jain K, McGown LB. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions. ORIGINS LIFE EVOL B 2017; 47:305-321. [PMID: 28160163 DOI: 10.1007/s11084-017-9532-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/25/2017] [Indexed: 11/30/2022]
Abstract
In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.
Collapse
Affiliation(s)
- Kristin M Coari
- The New York Center for Astrobiology and the Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA
| | - Rebecca C Martin
- The New York Center for Astrobiology and the Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA
| | - Kopal Jain
- The New York Center for Astrobiology and the Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA
| | - Linda B McGown
- The New York Center for Astrobiology and the Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA.
| |
Collapse
|
10
|
Guinan TM, Kirkbride P, Della Vedova CB, Kershaw SG, Kobus H, Voelcker NH. Direct detection of illicit drugs from biological fluids by desorption/ionization mass spectrometry with nanoporous silicon microparticles. Analyst 2015; 140:7926-33. [DOI: 10.1039/c5an01754h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface assisted laser desorption/ionization mass spectrometry (SALDI-MS) with porous silicon microparticles was used for the all-in-one extraction and detection of illicit drugs from saliva, urine and plasma.
Collapse
Affiliation(s)
- T. M. Guinan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- Australia
| | - P. Kirkbride
- School of Physical and Chemical Sciences
- Flinders University
- Bedford Park
- Australia
| | - C. B. Della Vedova
- School of Pharmacy and Medical Sciences
- University of South Australia
- Adelaide
- Australia
| | - S. G. Kershaw
- School of Pharmacy and Medical Sciences
- University of South Australia
- Adelaide
- Australia
| | - H. Kobus
- School of Physical and Chemical Sciences
- Flinders University
- Bedford Park
- Australia
| | - N. H. Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- Australia
| |
Collapse
|
11
|
Gong L, McCullagh JSO. Comparing ion-pairing reagents and sample dissolution solvents for ion-pairing reversed-phase liquid chromatography/electrospray ionization mass spectrometry analysis of oligonucleotides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:339-350. [PMID: 24395501 DOI: 10.1002/rcm.6773] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/19/2013] [Accepted: 10/20/2013] [Indexed: 06/03/2023]
Abstract
RATIONALE A sensitive and selective liquid chromatography/mass spectrometry (LC/MS) method is essential for quality control of synthetic oligonucleotides. However, researchers are still searching for improvements to ion-pairing reagents for ion-pairing reversed-phase LC/MS. This study performed a comprehensive comparison of six ion-pairing reagents to determine their performance as mobile phase modifiers for oligonucleotide LC/MS. METHODS The study was performed using a Waters ultra-performance liquid chromatography (UPLC®) system coupled to a Waters LCT premier XE ESI-TOF mass spectrometer by using a UPLC® OST column (2.1 mm × 100 mm, 1.7 µm). Buffer systems containing ion-pairing reagents (triethylamine, tripropylamine, hexylamine, N,N-dimethylbutylamine, dibutylamine, N,N-diisopropylethylamine) and hexafluoro-2-propanol were compared by measuring the adduct ion formation, chromatographic separation, and MS signal intensity of four oligonucleotides (10mer to 40mer). The effect of dissolution solvents on MS signal intensity and adduct ion formation was also investigated. RESULTS Results showed that the type of dissolution solvent can have a signficiant impact on adduct ion formation with oligonucleotides. Results also showed that the maximum separation for small, medium and large oligonucleotides occured when using tripropylamine, N,N-dimethylbutylamine, and dibutylamine, respectively. However, on average 15 mM hexylamine and 50 mM hexafluoro-2-propanol provided the best chromtatographic performance (resolution values: 14.1 ± 0.34, 11.0 ± 0.17, and 6.4 ± 0.11 for the pairs of oligonucleotides T10 & T15, T15 & T25, and T25 & T40, respectively (3 replicates)). CONCLUSIONS The impact of dissolution solvent on the MS signal of oligonucleotides depends on the type of ion-pairing reagent. Buffer combining 15 mM hexylamine and 50 mM hexafluoro-2-propanol produced the highest overall performance for oligonucleotides (10mer to 40mer) with respect to chromatographic resolution and mass detection.
Collapse
Affiliation(s)
- Lingzhi Gong
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | | |
Collapse
|
12
|
Burcar BT, Cassidy LM, Moriarty EM, Joshi PC, Coari KM, McGown LB. Potential pitfalls in MALDI-TOF MS analysis of abiotically synthesized RNA oligonucleotides. ORIGINS LIFE EVOL B 2013; 43:247-61. [PMID: 23793938 DOI: 10.1007/s11084-013-9334-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 05/02/2013] [Indexed: 01/31/2023]
Abstract
Demonstration of the abiotic polymerization of ribonucleotides under conditions consistent with conditions that may have existed on the prebiotic Earth is an important goal in "RNA world" research. Recent reports of abiotic RNA polymerization with and without catalysis rely on techniques such as HPLC, gel electrophoresis, and MALDI-TOF MS to analyze the reaction products. It is essential to understand the limitations of these techniques in order to accurately interpret the results of these analyses. In particular, techniques that rely on mass for peak identification may not be able to distinguish between a single, linear RNA oligomer and stable aggregates of smaller linear and/or cyclic RNA molecules. In the case of MALDI-TOF MS, additional complications may arise from formation of salt adducts and MALDI matrix complexes. This is especially true for abiotic RNA polymerization reactions because the concentration of longer RNA chains can be quite low and RNA, as a polyelectrolyte, is highly susceptible to adduct formation and aggregation. Here we focus on MALDI-TOF MS analysis of abiotic polymerization products of imidazole-activated AMP in the presence and absence of montmorillonite clay as a catalyst. A low molecular weight oligonucleotide standard designed for use in MALDI-TOF MS and a 3'-5' polyadenosine monophosphate reference standard were also run for comparison and calibration. Clay-catalyzed reaction products of activated GMP and UMP were also examined. The results illustrate the ambiguities associated with assignment of m/z values in MALDI mass spectra and the need for accurate calibration of mass spectra and careful sample preparation to minimize the formation of adducts and other complications arising from the MALDI process.
Collapse
Affiliation(s)
- Bradley T Burcar
- Department of Chemistry and Chemical Biology, The New York Center for Astrobiology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | | | | | | | | | | |
Collapse
|
13
|
Joshi PC, Aldersley MF, Zagorevskii DV, Ferris JP. A nucleotide dimer synthesis without protecting groups using montmorillonite as catalyst. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:536-66. [PMID: 22849647 DOI: 10.1080/15257770.2012.701787] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A synthesis has been developed providing nucleotide dimers comprising natural or unnatural nucleoside residues. A ribonucleoside 5'-phosphorimidazolide is added to a nucleoside adsorbed on montmorillonite at neutral pH with the absence of protecting groups. Approximately 30% of the imidazolide is converted into each 2'-5' dimer and 3'-5' dimer with the rest hydrolyzed to the 5'-monophosphate. Experiments with many combinations have suggested the limits to which this method may be applied, including heterochiral and chimeric syntheses. This greener chemistry has enabled the synthesis of dimers from activated nucleotides themselves, activated nucleotides with nucleosides, and activated nucleotides with nucleotide 5'-monophosphates. [Supplemental materials are available for this article. Go to the publisher's online edition of Nucleosides, Nucleotides & Nucleic Acids to view the free supplemental files.].
Collapse
Affiliation(s)
- Prakash C Joshi
- Department of Chemistry & Chemical Biology and The New York Center for Astrobiology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | |
Collapse
|
14
|
Chirowodza H, Hartmann PC, Pasch H. MALDI-TOF MS Analysis of the Grafting of Clay Nanoparticles with Poly(butyl acrylate). MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201100671] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Lu M, Lai Y, Chen G, Cai Z. Matrix interference-free method for the analysis of small molecules by using negative ion laser desorption/ionization on graphene flakes. Anal Chem 2011; 83:3161-9. [PMID: 21428301 DOI: 10.1021/ac2002559] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This work presents a new approach for the analysis of small molecules with direct negative ion laser desorption/ionization (LDI) on graphene flakes. A series of matrix interference-free mass spectra were obtained for the analysis of a wide range of small molecules including peptides, amino acids, fatty acids, as well as nucleosides and nucleotides. The mixture of analytes and graphene flakes suspension were directly pipetted onto a sample plate for LDI-time-of-flight mass spectrometry (TOFMS) analysis. Deprotonated monomeric species [M-H](-) ions were homogeneously obtained on uniform graphene flakes film when negative ion mode was applied. In positive ion mode, the analytes were detected in form of multiple adduct ions such as sodium adduct [M+Na](+), potassium adduct [M+K](+), double sodium adduct [M+2Na-H](+), double potassium adduct [M+2K-H](+), as well as sodium and potassium mixed adduct [M+Na+K-H](+). Better sensitivity and reproducibility were achieved in negative ion mode compared to positive ion mode. It is believed that the new method of matrix interference-free negative ion LDI on graphene flakes may be expanded for LDI-MS analysis of various small molecules.
Collapse
Affiliation(s)
- Minghua Lu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | | | | | | |
Collapse
|
16
|
Joshi PC, Aldersley MF, Ferris JP. Homochiral selectivity in RNA synthesis: montmorillonite-catalyzed quaternary reactions of D, L-purine with D, L- pyrimidine nucleotides. ORIGINS LIFE EVOL B 2010; 41:213-36. [PMID: 20725859 DOI: 10.1007/s11084-010-9222-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 06/17/2010] [Indexed: 10/19/2022]
Abstract
Selective adsorption of D, L-ImpA with D, L-ImpU on the platelets of montmorillonite demonstrates an important reaction pathway for the origin of homochirality in RNA synthesis. Our earlier studies have shown that the individual reactions of D, L-ImpA or D, L-ImpU on montmorillonite catalyst produced oligomers which were only partially inhibited by the incorporation of both D- and L-enantiomers. Homochirality in these reactions was largely due to the formation of cyclic dimers that cannot elongate. We investigated the quaternary reactions of D, L-ImpA with D, L-ImpU on montmorillonite. The chain length of these oligomers increased from 9-mer to 11-mer as observed by HPLC, with a concomitant increase in the yield of linear dimers and higher oligomers in the reactions involving D, L-ImpA with D, L-ImpU as compared to the similar reactions carried out with D-enantiomers only. The formation of cyclic dimers of U was completely inhibited in the quaternary reactions. The yield of cyclic dimers of A was reduced from 60% to 10% within the dimer fraction. 12 linear dimers and 3 cyclic dimers were isolated and characterized from the quaternary reaction. The homochirality and regioselectivity of dimers were 64.1% and 71.7%, respectively. Their sequence selectivity was shown by the formation of purine-pyrimidine (54-59%) linkages, followed by purine-purine (29-32%) linkages and pyrimidine-pyrimidine (9-13%) linkages. Of the 16 trimers detected, 10 were homochiral with an overall homochirality of 73-76%. In view of the greater homochirality, sequence- and regio- selectivity, the quaternary reactions on montmorillonite demonstrate an unexpectedly favorable route for the prebiotic synthesis of homochiral RNA compared with the separate reactions of enantiomeric activated mononucleotides.
Collapse
Affiliation(s)
- Prakash C Joshi
- Rensselaer Polytechnic Institute, Department of Chemistry & Chemical Biology, The New York Center for Astrobiology, Troy, NY 12180, USA
| | | | | |
Collapse
|
17
|
Mathew DC, Luthey-Schulten Z. Influence of montmorillonite on nucleotide oligomerization reactions: a molecular dynamics study. ORIGINS LIFE EVOL B 2010; 40:303-17. [PMID: 20213159 DOI: 10.1007/s11084-010-9207-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 12/28/2009] [Indexed: 02/04/2023]
Abstract
We investigate a proposed origins of life scenario involving the clay montmorillonite and its catalytic role in forming oligonucleotides from activated mononucleotides. Clay and mineral surfaces are important for concentrating the reactants and for promoting nucleotide polymerization reactions. Using classical molecular dynamics methods we provide atomic details of reactant conformations prior to polynucleotide formation, lending insight into previously reported experimental observations of this phenomenon. The simulations clarify the catalytic role of metal ions, demonstrate that reactions leading to correct linkages take place primarily in the interlayer, and explain the observed sequence selectivity in the elongation of the chain. The study comparing reaction probabilities involving L- and D-chiral forms of the reactants has found enhancement of homochiral over heterochiral products when catalyzed by montmorillonite.
Collapse
Affiliation(s)
- Damien C Mathew
- School of Chemical Sciences, University of Illinois, 600 S Mathews Ave., MC-712, Box 68-6, Urbana, IL 61801, USA.
| | | |
Collapse
|
18
|
Joshi PC, Aldersley MF, Delano JW, Ferris JP. Mechanism of montmorillonite catalysis in the formation of RNA oligomers. J Am Chem Soc 2010; 131:13369-74. [PMID: 19719166 DOI: 10.1021/ja9036516] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The montmorillonite clay-catalyzed reactions of nucleotides generate oligomers as long as 50-mers. The extent of catalysis depends on the magnitude of the negative charge on the montmorillonite lattice and the number of cations associated with it. When cations in raw montmorillonites are replaced by sodium ions, the resulting Na(+)-montmorillonite does not catalyze oligomer formation because they saturate the interlayers between the platelets of montmorillonites, which blocks the binding of the activated monomers. Treating the montmorillonite with dilute hydrochloric acid replaces the cations on the raw montmorillonite with protons. The protonated montmorillonite, titrated to pH 6-7, serves as a catalyst for the formation of RNA oligomers. The titration does not add sufficient sodium ions to the interlayers of the montmorillonite platelets to prevent the activated monomer from entering. It was noted that noncatalytic montmorillonites have a higher negative charge on their platelets that is due mainly to the natural substitution of the tetravalent and trivalent elements in the montmorillonite lattice with trivalent and divalent metal ions, respectively. The larger negative charge on these montmorillonites was demonstrated by the almost 2-fold greater amounts of sodium hydroxide needed to titrate noncatalytic montmorillonites as compared to the catalytic montmorillonites. Adsorption isotherms established that the equilibrium binding is strongest for ImpA and weakest for ImpU. Of the 22 montmorillonites investigated, 12 were catalysts. This research provides insight into the mechanism of the catalytic process.
Collapse
Affiliation(s)
- Prakash C Joshi
- Department of Chemistry and Chemical Biology and the New York Center for Astrobiology and Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | |
Collapse
|
19
|
Li X, Wu X, Kim JM, Kim SS, Jin M, Li D. MALDI-TOF-MS analysis of small molecules using modified mesoporous material SBA-15 as assisted matrix. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:2167-2173. [PMID: 19762253 DOI: 10.1016/j.jasms.2009.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 08/05/2009] [Accepted: 08/05/2009] [Indexed: 05/28/2023]
Abstract
Mesoporous silica, SBA-15 was successfully functionalized with quinoline moiety, and was applied as a matrix in the MALDI-TOF-MS analysis of small molecules. The modified SBA-15 material [SBA-15-8-(3-(triethoxysilyl)propoxy) quinoline, SBA-15-8QSi] was obtained by using calcined SBA-15 and 8-hydroxy quinoline. The structure of the functionalized mesoporous material was systemically characterized by TEM, the N(2) adsorption-desorption isotherm technique and FT-IR spectra. Compared with DHB and SBA-15, SBA-15-8QSi demonstrated several advantages in the analysis of small molecules with MALDI-TOF-MS, such as less background interference ions, high homogeneity, and better reproducibility. Based on these results, the various analytical parameters were optimized. The ideal operating conditions were (1) methanol used as the dissolving solvent; (2) sample first dropping method; (3) a ratio between the analyte and the matrix of 3.5:10. Under these optimization conditions, a low detection limit (8 pmol for L-Arginine-HCl) and high reproducibility (< or = 29%) were obtained. This technique was successfully applied to the analysis of various types of small molecules, such as saccharides, amino acids, metabolites, and natural honey.
Collapse
Affiliation(s)
- Xiuhua Li
- Key Laboratory of Nature Resource of Changbai Mountain and Functional Molecular (Yanbian University), Ministry of Education, Jilin, China
| | | | | | | | | | | |
Collapse
|
20
|
Mulkidjanian AY, Galperin MY. On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biol Direct 2009; 4:27. [PMID: 19703275 PMCID: PMC2749021 DOI: 10.1186/1745-6150-4-27] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 08/24/2009] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The accompanying article (A.Y. Mulkidjanian, Biology Direct 4:26) puts forward a detailed hypothesis on the role of zinc sulfide (ZnS) in the origin of life on Earth. The hypothesis suggests that life emerged within compartmentalized, photosynthesizing ZnS formations of hydrothermal origin (the Zn world), assembled in sub-aerial settings on the surface of the primeval Earth. RESULTS If life started within photosynthesizing ZnS compartments, it should have been able to evolve under the conditions of elevated levels of Zn2+ ions, byproducts of the ZnS-mediated photosynthesis. Therefore, the Zn world hypothesis leads to a set of testable predictions regarding the specific roles of Zn2+ ions in modern organisms, particularly in RNA and protein structures related to the procession of RNA and the "evolutionarily old" cellular functions. We checked these predictions using publicly available data and obtained evidence suggesting that the development of the primeval life forms up to the stage of the Last Universal Common Ancestor proceeded in zinc-rich settings. Testing of the hypothesis has revealed the possible supportive role of manganese sulfide in the primeval photosynthesis. In addition, we demonstrate the explanatory power of the Zn world concept by elucidating several points that so far remained without acceptable rationalization. In particular, this concept implies a new scenario for the separation of Bacteria and Archaea and the origin of Eukarya. CONCLUSION The ability of the Zn world hypothesis to generate non-trivial veritable predictions and explain previously obscure items gives credence to its key postulate that the development of the first life forms started within zinc-rich formations of hydrothermal origin and was driven by solar UV irradiation. This concept implies that the geochemical conditions conducive to the origin of life may have persisted only as long as the atmospheric CO2 pressure remained above ca. 10 bar. This work envisions the first Earth biotopes as photosynthesizing and habitable areas of porous ZnS and MnS precipitates around primeval hot springs. Further work will be needed to provide details on the life within these communities and to elucidate the primordial (bio)chemical reactions. REVIEWERS This article was reviewed by Arcady Mushegian, Eugene Koonin, and Patrick Forterre. For the full reviews, please go to the Reviewers' reports section.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- School of Physics, Universität Osnabrück, D-49069 Osnabrück, Germany
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
21
|
John Wiley & Sons, Ltd.. Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:689-700. [PMID: 17474104 DOI: 10.1002/jms.1074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|