1
|
Holden DT, Shira BA, Le MT, Cooks RG. Electrophoresis-enhanced paper spray mass spectrometry. Talanta 2025; 293:128099. [PMID: 40215719 DOI: 10.1016/j.talanta.2025.128099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/30/2025] [Accepted: 04/05/2025] [Indexed: 05/14/2025]
Abstract
The development of ambient ionization methods, such as paper spray (PS), has streamlined the transition from a collection of molecules in a condensed-phase sample to the gas-phase ions represented in a mass spectrum. In many cases, time and resources are saved by omitting chromatography and sample preparation; yet this strategy also eliminates the opportunity to process mixtures in the condensed phase. We here report a PS method that, without additional hardware or expertise, enhances mass spectrometry (MS) analysis of mixtures through electrophoresis. By loading analyte solution onto pre-wetted paper and applying spray potential, analytes were spatiotemporally processed according to their electrophoretic mobility before being subjected to MS. The fundamental and analytical aspects of this electrophoresis-enhanced PS (EePS) were probed with polarity switching, pH changes, complex environmental matrices, and a variety of analytes, including natural products obtained directly from plant material, without chromatography. EePS provides only modest separations but exhibits wide pH tolerance, high compatibility with complex environmental matrices, excellent robustness, superb cost-effectiveness, and is amenable to novel mass analysis strategies using portable mass spectrometers in situ.
Collapse
Affiliation(s)
- Dylan T Holden
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| | - Brison A Shira
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| | - MyPhuong T Le
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| | - R Graham Cooks
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Plastid Phosphatidylglycerol Homeostasis Is Required for Plant Growth and Metabolism in Arabidopsis thaliana. Metabolites 2023; 13:metabo13030318. [PMID: 36984758 PMCID: PMC10058643 DOI: 10.3390/metabo13030318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
A unique feature of plastid phosphatidylglycerol (PG) is a trans-double bond specifically at the sn-2 position of 16C fatty acid (16:1t- PG), which is catalyzed by FATTY ACID DESATURASE 4 (FAD4). To offer additional insights about the in vivo roles of FAD4 and its product 16:1t-PG, FAD4 overexpression lines (OX-FAD4s) were generated in Arabidopsis thaliana Columbia ecotype. When grown under continuous light condition, the fad4-2 and OX-FAD4s plants exhibited higher growth rates compared to WT control. Total lipids were isolated from Col, fad4-2, and OX-FAD4_2 plants, and polar lipids quantified by lipidomic profiling. We found that disrupting FAD4 expression altered prokaryotic and eukaryotic PG content and composition. Prokaryotic and eukaryotic monogalactosyl diacylglycerol (MGDG) was up-regulated in OX-FAD4 plants but not in fad4-2 mutant. We propose that 16:1t-PG homeostasis in plastid envelope membranes may coordinate plant growth and stress response by restricting photoassimilate export from the chloroplast.
Collapse
|
3
|
Castellaneta A, Losito I, Leoni B, Santamaria P, Calvano CD, Cataldi TRI. Glycerophospholipidomics of Five Edible Oleaginous Microgreens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2410-2423. [PMID: 35144380 DOI: 10.1021/acs.jafc.1c07754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microgreens are a special type of vegetal product, born as a culinary novelty (traditionally used to garnish gourmet dishes) and then progressively studied for their potentially high content in nutraceuticals, like polyphenolic compounds, carotenoids, and glucosinolates, also in the perspective of implementing their cultivation in space stations/colonies. Among further potential nutraceuticals of microgreens, lipids have received very limited attention so far. Here, glycerophospholipids contained in microgreens of typical oleaginous plants, namely, soybean, chia, flax, sunflower, and rapeseed, were studied using hydrophilic interaction liquid chromatography (HILIC), coupled to high-resolution Fourier transform mass spectrometry (FTMS) or low-resolution collisionally induced dissociation tandem mass spectrometry (CID-MS2) with electrospray ionization (ESI). Specifically, this approach was employed to obtain qualitative and quantitative profiling of the four main classes of glycerophospholipids (GPL) found in the five microgreens, i.e., phosphatidylcholines (PC), phosphatidylethanolamines (PE), phosphatidylglycerols (PG), and phosphatidylinositols (PI). Saturated chains with 16 and 18 carbon atoms and unsaturated 18:X (with X = 1-3) chains emerged as the most common fatty acyl substituents of those GPL; a characteristic 16:1 chain (including a C═C bond between carbon atoms 3 and 4) was also found in some PG species. Among polyunsaturated acyl chains, the 18:3 one, likely referred mainly to α-linolenic acid, exhibited a relevant incidence, with the highest estimated amount (corresponding to 160 mg per 100 g of lyophilized vegetal tissue) found for chia. This outcome opens interesting perspectives for the use of oleaginous microgreens as additional sources of essential fatty acids, especially in vegetarian/vegan diets.
Collapse
|
4
|
Castellaneta A, Losito I, Losacco V, Leoni B, Santamaria P, Calvano CD, Cataldi TRI. HILIC-ESI-MS analysis of phosphatidic acid methyl esters artificially generated during lipid extraction from microgreen crops. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4784. [PMID: 34528340 PMCID: PMC9286551 DOI: 10.1002/jms.4784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 05/14/2023]
Abstract
The uncontrolled activation of endogenous enzymes may introduce both qualitative and quantitative artefacts when lipids are extracted from vegetal matrices. In the present study, a method based on hydrophilic interaction liquid chromatography coupled either to high-resolution/accuracy Fourier-transform mass spectrometry (HILIC-ESI-FTMS) or to linear ion trap multiple stage mass spectrometry (HILIC-ESI-MSn , with n = 2 and 3) with electrospray ionization was developed to unveil one of those artefacts. Specifically, the artificial generation of methyl esters of phosphatidic acids (MPA), catalysed by endogenous phospholipase D (PLD) during lipid extraction from five oleaginous microgreen crops (chia, soy, flax, sunflower and rapeseed), was studied. Phosphatidylcholines (PC) and phosphatidylglycerols (PG) were found to be the most relevant precursors of MPA among glycerophospholipids (GPLs), being involved in a transphosphatidylation process catalysed by PLD and having methanol as a coreactant. The combination of MS2 and MS3 measurements enabled the unambiguous recognition of MPA from their fragmentation pathways, leading to distinguish them from isobaric PA including a further CH2 group on their side chains. PLD was also found to catalyse the hydrolysis of PC and PG to phosphatidic acids (PAs). The described transformations were confirmed by the remarkable decrease of MPA abundance observed when isopropanol, known to inhibit PLD, was tentatively adopted instead of water during the homogenization of microgreens. The unequivocal identification of MPA might be exploited to assess if GPL alterations are actually triggered by endogenous PLD during lipid extractions from specific vegetal tissues.
Collapse
Affiliation(s)
| | - Ilario Losito
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”BariItaly
- Centro Interdipartimentale SMARTUniversità degli Studi di Bari “Aldo Moro”BariItaly
| | - Valentina Losacco
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”BariItaly
| | - Beniamino Leoni
- Dipartimento di Scienze Agro‐Ambientali e TerritorialiUniversità degli Studi di Bari “Aldo Moro”BariItaly
| | - Pietro Santamaria
- Centro Interdipartimentale SMARTUniversità degli Studi di Bari “Aldo Moro”BariItaly
- Dipartimento di Scienze Agro‐Ambientali e TerritorialiUniversità degli Studi di Bari “Aldo Moro”BariItaly
| | - Cosima D. Calvano
- Centro Interdipartimentale SMARTUniversità degli Studi di Bari “Aldo Moro”BariItaly
- Dipartimento di Farmacia e Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”BariItaly
| | - Tommaso R. I. Cataldi
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”BariItaly
- Centro Interdipartimentale SMARTUniversità degli Studi di Bari “Aldo Moro”BariItaly
| |
Collapse
|
5
|
Gao J, Lunn D, Wallis JG, Browse J. Phosphatidylglycerol Composition Is Central to Chilling Damage in the Arabidopsis fab1 Mutant. PLANT PHYSIOLOGY 2020; 184:1717-1730. [PMID: 33028639 PMCID: PMC7723110 DOI: 10.1104/pp.20.01219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 06/01/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) fatty acid biosynthesis1 (fab1) mutant has increased levels of the saturated fatty acid 16:0, resulting from decreased activity of 3-ketoacyl-ACP synthase II. In fab1 leaves, phosphatidylglycerol, the major chloroplast phospholipid, contains >40% high-melting-point molecular species (HMP-PG; molecules that contain only 16:0, 16:1-trans, and 18:0 fatty acids)-a trait associated with chilling-sensitive plants-compared with <10% in wild-type Arabidopsis. Although they do not exhibit short-term chilling sensitivity when exposed to low temperatures (2°C to 6°C) for long periods, fab1 plants do suffer collapse of photosynthesis, degradation of chloroplasts, and eventually death. To test the relevance of HMP-PG to the fab1 phenotype, we used transgenic 16:0 desaturases targeted to the endoplasmic reticulum and the chloroplast to lower 16:0 in leaf lipids of fab1 plants. We produced two lines that had very similar lipid compositions except that one, ER-FAT5, contained high HMP-PG, similar to the fab1 parent, while the second, TP-DES9*, contained <10% HMP-PG, similar to the wild type. TP-DES9* plants, but not ER-FAT5 plants, showed strong recovery and growth following 75 d at 2°C, demonstrating the role of HMP-PG in low-temperature damage and death in fab1, and in chilling-sensitive plants more broadly.
Collapse
Affiliation(s)
- Jinpeng Gao
- Institute of Biological Chemistry, Clark Hall, Washington State University, Pullman, Washington 99164-6340
| | - Daniel Lunn
- Institute of Biological Chemistry, Clark Hall, Washington State University, Pullman, Washington 99164-6340
| | - James G Wallis
- Institute of Biological Chemistry, Clark Hall, Washington State University, Pullman, Washington 99164-6340
| | - John Browse
- Institute of Biological Chemistry, Clark Hall, Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
6
|
Han X, Shi Y, Liu G, Guo Y, Yang Y. Activation of ROP6 GTPase by Phosphatidylglycerol in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:347. [PMID: 29599797 PMCID: PMC5862815 DOI: 10.3389/fpls.2018.00347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/01/2018] [Indexed: 05/05/2023]
Abstract
Plant Rho-like GTPases (ROPs) are switch-like proteins which play essential roles in controlling cell polarity development and cellular activities. ROPs are regulated by many factors, such as auxin, light, and RopGEFs and RopGAPs proteins. However, it has not been reported yet whether small molecules play a role in the regulation of ROP activity. Here, we showed that AtROP6 specially bound to a phospholipid, phosphatidylglycerol (PG), by the protein-lipid overlay and liposome sedimentation assays, and further MST assay gave a dissociation constant (Kd) of 4.8 ± 0.4 μM for binding of PG to His-AtROP6. PG profile analysis in Arabidopsis revealed that PG existed both in leaves and roots but with distinctive fatty acyl chain patterns. By evaluating AtROP6 activity using RIC1 effector binding-based assay, we found that PG stimulated AtROP6 activity. In the FM4-64 uptake experiment, PG inhibited AtROP6-mediated endocytosis process. By evaluating internalization of PIN2, PG was shown to regulate endocytosis process coordinately with NAA. Further root gravitropism experiment revealed that PG enhanced the AtROP6-mediated root gravity response. These results suggest that the phospholipid PG physically binds AtROP6, stimulates its activity and influences AtROP6-mediated root gravity response in Arabidopsis.
Collapse
|
7
|
Dueñas ME, Klein AT, Alexander LE, Yandeau-Nelson MD, Nikolau BJ, Lee YJ. High spatial resolution mass spectrometry imaging reveals the genetically programmed, developmental modification of the distribution of thylakoid membrane lipids among individual cells of maize leaf. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:825-838. [PMID: 27859865 DOI: 10.1111/tpj.13422] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/04/2016] [Indexed: 05/13/2023]
Abstract
Metabolism in plants is compartmentalized among different tissues, cells and subcellular organelles. Mass spectrometry imaging (MSI) with matrix-assisted laser desorption ionization (MALDI) has recently advanced to allow for the visualization of metabolites at single-cell resolution. Here we applied 5- and 10 μm high spatial resolution MALDI-MSI to the asymmetric Kranz anatomy of Zea mays (maize) leaves to study the differential localization of two major anionic lipids in thylakoid membranes, sulfoquinovosyldiacylglycerols (SQDG) and phosphatidylglycerols (PG). The quantification and localization of SQDG and PG molecular species, among mesophyll (M) and bundle sheath (BS) cells, are compared across the leaf developmental gradient from four maize genotypes (the inbreds B73 and Mo17, and the reciprocal hybrids B73 × Mo17 and Mo17 × B73). SQDG species are uniformly distributed in both photosynthetic cell types, regardless of leaf development or genotype; however, PG shows photosynthetic cell-specific differential localization depending on the genotype and the fatty acyl chain constituent. Overall, 16:1-containing PGs primarily contribute to the thylakoid membranes of M cells, whereas BS chloroplasts are mostly composed of 16:0-containing PGs. Furthermore, PG 32:0 shows genotype-specific differences in cellular distribution, with preferential localization in BS cells for B73, but more uniform distribution between BS and M cells in Mo17. Maternal inheritance is exhibited within the hybrids, such that the localization of PG 32:0 in B73 × Mo17 is similar to the distribution in the B73 parental inbred, whereas that of Mo17 × B73 resembles the Mo17 parent. This study demonstrates the power of MALDI-MSI to reveal unprecedented insights on metabolic outcomes in multicellular organisms at single-cell resolution.
Collapse
Affiliation(s)
- Maria Emilia Dueñas
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
- Ames Laboratory-US DOE, Ames, IA, 50011, USA
| | - Adam T Klein
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
- Ames Laboratory-US DOE, Ames, IA, 50011, USA
| | - Liza E Alexander
- Ames Laboratory-US DOE, Ames, IA, 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, 50011, USA
| | - Marna D Yandeau-Nelson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, 50011, USA
| | - Basil J Nikolau
- Ames Laboratory-US DOE, Ames, IA, 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, 50011, USA
| | - Young Jin Lee
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
- Ames Laboratory-US DOE, Ames, IA, 50011, USA
| |
Collapse
|
8
|
Tzin V, Fernandez-Pozo N, Richter A, Schmelz EA, Schoettner M, Schäfer M, Ahern KR, Meihls LN, Kaur H, Huffaker A, Mori N, Degenhardt J, Mueller LA, Jander G. Dynamic Maize Responses to Aphid Feeding Are Revealed by a Time Series of Transcriptomic and Metabolomic Assays. PLANT PHYSIOLOGY 2015; 169:1727-43. [PMID: 26378100 PMCID: PMC4634079 DOI: 10.1104/pp.15.01039] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/15/2015] [Indexed: 05/18/2023]
Abstract
As a response to insect attack, maize (Zea mays) has inducible defenses that involve large changes in gene expression and metabolism. Piercing/sucking insects such as corn leaf aphid (Rhopalosiphum maidis) cause direct damage by acquiring phloem nutrients as well as indirect damage through the transmission of plant viruses. To elucidate the metabolic processes and gene expression changes involved in maize responses to aphid attack, leaves of inbred line B73 were infested with corn leaf aphids for 2 to 96 h. Analysis of infested maize leaves showed two distinct response phases, with the most significant transcriptional and metabolic changes occurring in the first few hours after the initiation of aphid feeding. After 4 d, both gene expression and metabolite profiles of aphid-infested maize reverted to being more similar to those of control plants. Although there was a predominant effect of salicylic acid regulation, gene expression changes also indicated prolonged induction of oxylipins, although not necessarily jasmonic acid, in aphid-infested maize. The role of specific metabolic pathways was confirmed using Dissociator transposon insertions in maize inbred line W22. Mutations in three benzoxazinoid biosynthesis genes, Bx1, Bx2, and Bx6, increased aphid reproduction. In contrast, progeny production was greatly decreased by a transposon insertion in the single W22 homolog of the previously uncharacterized B73 terpene synthases TPS2 and TPS3. Together, these results show that maize leaves shift to implementation of physical and chemical defenses within hours after the initiation of aphid feeding and that the production of specific metabolites can have major effects in maize-aphid interactions.
Collapse
Affiliation(s)
- Vered Tzin
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Noe Fernandez-Pozo
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Annett Richter
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Eric A Schmelz
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Matthias Schoettner
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Martin Schäfer
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Kevin R Ahern
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Lisa N Meihls
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Harleen Kaur
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Alisa Huffaker
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Naoki Mori
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Joerg Degenhardt
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Lukas A Mueller
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| |
Collapse
|
9
|
Hankin JA, Murphy RC, Barkley RM, Gijón MA. Ion Mobility and Tandem Mass Spectrometry of Phosphatidylglycerol and Bis(monoacylglycerol)phosphate (BMP). INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 378:255-263. [PMID: 25883529 PMCID: PMC4394388 DOI: 10.1016/j.ijms.2014.08.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The tandem mass spectrometry, ion mobility, and normal phase HPLC of isomeric phosphatidylglycerol (PG) and bis(monoacylglycerol)phosphate (BMP) have been investigated in this study with the objective of differentiating these unique classes of lipids. Measurement of ion mobility using the traveling wave method for negative molecular and product ions from isomeric PG and BMP yielded identical results, but different ion mobilities were observed for positive product ions arising from collision-induced dissociation (CID). The fastest moving positive product ions from the ion mobility analysis of BMP(18:1/18:1) were monoglyceride-like, and the slowest moving product ions from this BMP corresponded to [M+H-2H2O]+, which were readily observed for BMP but were only at very low abundance in the CID spectra of PG. The major product ions observed from the sodium adduct of PG(18:1/18:1) were consistent with diglyceride-like ion formation, but for BMP(18:1/18:1) only monoglyceride-like product ions were formed. The usefulness of ion mobility separation was tested with the selection of positive product ions derived from the isomeric PG and BMP molecular species in the lipid extract of RAW 264.7 cells. The ion mobility spectra of monoglyceride-like ions derived from BMP species with various esterified fatty acyl groups displayed some separation in ion mobility based on fatty acyl chain length and presence of a double bond in the acyl chain. The mechanism of ion formation of the diglyceride- and monoglyceride-like ions from PG and BMP respectively was examined using deuterium-labeled species including PG(D3116:0/18:1) and PG and BMP labeled by deuterium exchange.
Collapse
Affiliation(s)
- Joseph A Hankin
- Department of Pharmacology, University of Colorado Denver, Mail Stop 8303, 12801 E. 17 Avenue, Aurora, CO 80045, USA
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Mail Stop 8303, 12801 E. 17 Avenue, Aurora, CO 80045, USA
| | - Robert M Barkley
- Department of Pharmacology, University of Colorado Denver, Mail Stop 8303, 12801 E. 17 Avenue, Aurora, CO 80045, USA
| | - Miguel A Gijón
- Department of Pharmacology, University of Colorado Denver, Mail Stop 8303, 12801 E. 17 Avenue, Aurora, CO 80045, USA
| |
Collapse
|
10
|
Gazos-Lopes F, Oliveira MM, Hoelz LVB, Vieira DP, Marques AF, Nakayasu ES, Gomes MT, Salloum NG, Pascutti PG, Souto-Padrón T, Monteiro RQ, Lopes AH, Almeida IC. Structural and functional analysis of a platelet-activating lysophosphatidylcholine of Trypanosoma cruzi. PLoS Negl Trop Dis 2014; 8:e3077. [PMID: 25101628 PMCID: PMC4125143 DOI: 10.1371/journal.pntd.0003077] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/13/2014] [Indexed: 12/15/2022] Open
Abstract
Background Trypanosoma cruzi is the causative agent of the life-threatening Chagas disease, in which increased platelet aggregation related to myocarditis is observed. Platelet-activating factor (PAF) is a potent intercellular lipid mediator and second messenger that exerts its activity through a PAF-specific receptor (PAFR). Previous data from our group suggested that T. cruzi synthesizes a phospholipid with PAF-like activity. The structure of T. cruzi PAF-like molecule, however, remains elusive. Methodology/Principal findings Here, we have purified and structurally characterized the putative T. cruzi PAF-like molecule by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Our ESI-MS/MS data demonstrated that the T. cruzi PAF-like molecule is actually a lysophosphatidylcholine (LPC), namely sn-1 C18:1(delta 9)-LPC. Similar to PAF, the platelet-aggregating activity of C18:1-LPC was abrogated by the PAFR antagonist, WEB 2086. Other major LPC species, i.e., C16:0-, C18:0-, and C18:2-LPC, were also characterized in all T. cruzi stages. These LPC species, however, failed to induce platelet aggregation. Quantification of T. cruzi LPC species by ESI-MS revealed that intracellular amastigote and trypomastigote forms have much higher levels of C18:1-LPC than epimastigote and metacyclic trypomastigote forms. C18:1-LPC was also found to be secreted by the parasite in extracellular vesicles (EV) and an EV-free fraction. A three-dimensional model of PAFR was constructed and a molecular docking study was performed to predict the interactions between the PAFR model and PAF, and each LPC species. Molecular docking data suggested that, contrary to other LPC species analyzed, C18:1-LPC is predicted to interact with the PAFR model in a fashion similar to PAF. Conclusions/Significance Taken together, our data indicate that T. cruzi synthesizes a bioactive C18:1-LPC, which aggregates platelets via PAFR. We propose that C18:1-LPC might be an important lipid mediator in the progression of Chagas disease and its biosynthesis could eventually be exploited as a potential target for new therapeutic interventions. Chagas disease, caused by the parasite Trypanosoma cruzi, was exclusively confined to Latin America but it has recently spread to other regions of the world. Chagas disease affects 8–10 million people and kills thousands of them every year. Lysophosphatidylcholine (LPC) is a major bioactive phospholipid of human plasma low-density lipoproteins (LDL). Platelet-activating factor (PAF) is a phospholipid similar to LPC and a potent intercellular mediator. Both PAF and LPC have been reported to act on mammalian cells through PAF receptor (PAFR). Previous data from our group suggested that T. cruzi produces a phospholipid with PAF activity. Here, we describe the structural and functional analysis of different species of LPC from T. cruzi, including a LPC with a fatty acid chain of 18 carbon atoms and one double bond (C18:1-LPC). We also show that C18:1-LPC is able to induce rabbit platelet aggregation, which is abrogated by a PAFR antagonist. In addition, a three-dimensional model of human PAFR was constructed. Contrary to other T. cruzi LPC molecules, C18:1-LPC is predicted to interact with the PAFR model in a fashion similar to PAF. Further studies are needed to validate the biosynthesis of T. cruzi C18:1-LPC as a potential drug target in Chagas disease.
Collapse
Affiliation(s)
- Felipe Gazos-Lopes
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
| | - Mauricio M. Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco I, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas V. B. Hoelz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco G, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle P. Vieira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco I, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre F. Marques
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Ernesto S. Nakayasu
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
| | - Marta T. Gomes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco I, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco H, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nasim G. Salloum
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
| | - Pedro G. Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco G, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaïs Souto-Padrón
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco I, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Q. Monteiro
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco H, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela H. Lopes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Cidade Universitária, Centro de Ciências da Saúde, Bloco I, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (AHL); (ICA)
| | - Igor C. Almeida
- The Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, Texas, United States of America
- * E-mail: (AHL); (ICA)
| |
Collapse
|
11
|
Metabolic study of grapevine leaves infected by downy mildew using negative ion electrospray – Fourier transform ion cyclotron resonance mass spectrometry. Anal Chim Acta 2013; 795:44-51. [DOI: 10.1016/j.aca.2013.07.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 12/30/2022]
|
12
|
Rainteau D, Humbert L, Delage E, Vergnolle C, Cantrel C, Maubert MA, Lanfranchi S, Maldiney R, Collin S, Wolf C, Zachowski A, Ruelland E. Acyl chains of phospholipase D transphosphatidylation products in Arabidopsis cells: a study using multiple reaction monitoring mass spectrometry. PLoS One 2012; 7:e41985. [PMID: 22848682 PMCID: PMC3405027 DOI: 10.1371/journal.pone.0041985] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/27/2012] [Indexed: 12/26/2022] Open
Abstract
Background Phospholipases D (PLD) are major components of signalling pathways in plant responses to some stresses and hormones. The product of PLD activity is phosphatidic acid (PA). PAs with different acyl chains do not have the same protein targets, so to understand the signalling role of PLD it is essential to analyze the composition of its PA products in the presence and absence of an elicitor. Methodology/Principal findings Potential PLD substrates and products were studied in Arabidopsis thaliana suspension cells treated with or without the hormone salicylic acid (SA). As PA can be produced by enzymes other than PLD, we analyzed phosphatidylbutanol (PBut), which is specifically produced by PLD in the presence of n-butanol. The acyl chain compositions of PBut and the major glycerophospholipids were determined by multiple reaction monitoring (MRM) mass spectrometry. PBut profiles of untreated cells or cells treated with SA show an over-representation of 160/18∶2- and 16∶0/18∶3-species compared to those of phosphatidylcholine and phosphatidylethanolamine either from bulk lipid extracts or from purified membrane fractions. When microsomal PLDs were used in in vitro assays, the resulting PBut profile matched exactly that of the substrate provided. Therefore there is a mismatch between the acyl chain compositions of putative substrates and the in vivo products of PLDs that is unlikely to reflect any selectivity of PLDs for the acyl chains of substrates. Conclusions MRM mass spectrometry is a reliable technique to analyze PLD products. Our results suggest that PLD action in response to SA is not due to the production of a stress-specific molecular species, but that the level of PLD products per se is important. The over-representation of 160/18∶2- and 16∶0/18∶3-species in PLD products when compared to putative substrates might be related to a regulatory role of the heterogeneous distribution of glycerophospholipids in membrane sub-domains.
Collapse
|
13
|
Hartler J, Tharakan R, Köfeler HC, Graham DR, Thallinger GG. Bioinformatics tools and challenges in structural analysis of lipidomics MS/MS data. Brief Bioinform 2012; 14:375-90. [PMID: 22764120 DOI: 10.1093/bib/bbs030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Lipidomics, the systematic study of the lipid composition of a cell or tissue, is an invaluable complement to knowledge gained by genomics and proteomics research. Mass spectrometry provides a means to detect hundreds of lipids in parallel, and this includes low abundance species of lipids. Nevertheless, frequently occurring isobaric and isomeric lipid species complicate lipidomics analyses from an analytical and bioinformatics perspective. Various MS/MS strategies have evolved to resolve ambiguous identifications of lipid species, and these strategies have been supported by corresponding bioinformatics analysis tools. This review intends to familiarize readers with available bioinformatics MS/MS analysis tools and databases, the structural information obtainable from these, and their applicability to different MS/MS strategies. Finally, future challenges in detecting double bond positions are investigated from a bioinformatics perspective.
Collapse
|
14
|
Gaudin M, Imbert L, Libong D, Chaminade P, Brunelle A, Touboul D, Laprévote O. Atmospheric pressure photoionization as a powerful tool for large-scale lipidomic studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:869-879. [PMID: 22359092 DOI: 10.1007/s13361-012-0341-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/13/2012] [Accepted: 01/14/2012] [Indexed: 05/31/2023]
Abstract
Lipidomic studies often use liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) for separation, identification, and quantification. However, due to the wide structural diversity of lipids, the most apolar part of the lipidome is often detected with low sensitivity in ESI. Atmospheric pressure (APPI) can be an alternative ionization source since normal-phase solvents are known to enhance photoionization of these classes. In this paper, we intend to show the efficiency of APPI to identify different lipid classes, with a special interest on sphingolipids. In-source APPI fragmentation appears to be an added value for the structural analysis of lipids. It provides a detailed characterization of both the polar head and the non polar moiety of most lipid classes, and it makes possible the detection of all lipids in both polarities, which is not always possible with ESI.
Collapse
Affiliation(s)
- Mathieu Gaudin
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Samarakoon T, Shiva S, Lowe K, Tamura P, Roth MR, Welti R. Arabidopsis thaliana membrane lipid molecular species and their mass spectral analysis. Methods Mol Biol 2012; 918:179-268. [PMID: 22893293 DOI: 10.1007/978-1-61779-995-2_13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, current approaches to electrospray ionization mass spectrometry-based analyses of membrane lipid molecular species found in Arabidopsis thaliana are summarized. Additionally, the identities of over 500 reported membrane lipid molecular species are assembled.
Collapse
Affiliation(s)
- Thilani Samarakoon
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS, USA
| | | | | | | | | | | |
Collapse
|
16
|
Hsu FF, Turk J. Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: mechanisms of fragmentation and structural characterization. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2673-95. [PMID: 19269264 PMCID: PMC2723218 DOI: 10.1016/j.jchromb.2009.02.033] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 01/14/2009] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
Abstract
This review describes the use of low-energy collisionally activated dissociation (CAD) with both tandem quadrupole and ion-trap mass spectrometry toward structural characterization of glycerophospholipids (GPLs), including classes of glycerophosphocholine, glycerophosphoethanolamine, glycerophosphoserine, glycerophosphoglycerol glycerophosphoinositol and glycerophosphatidic acid, as well as their lyso-, plasmanyl-, and plasmenylphospholipid subclasses. The mechanisms underlying the fragmentation processes leading to structural characterization of GPLs in various ion forms desorbed by electrospray ionization in the positive-ion and negative-ion modes are also discussed. The tandem mass spectrometric approaches afford the identification of the polar head group, the fatty acid substituents and the location of the radyl groups on the glycerol backbone of all the GPLs.
Collapse
Affiliation(s)
- Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States.
| | | |
Collapse
|
17
|
Cox D, Fox L, Tian R, Bardet W, Skaley M, Mojsilovic D, Gumperz J, Hildebrand W. Determination of cellular lipids bound to human CD1d molecules. PLoS One 2009; 4:e5325. [PMID: 19415116 PMCID: PMC2673035 DOI: 10.1371/journal.pone.0005325] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 02/24/2009] [Indexed: 11/19/2022] Open
Abstract
CD1 molecules are glycoproteins that present lipid antigens at the cell surface for immunological recognition by specialized populations of T lymphocytes. Prior experimental data suggest a wide variety of lipid species can bind to CD1 molecules, but little is known about the characteristics of cellular ligands that are selected for presentation. Here we have molecularly characterized lipids bound to the human CD1d isoform. Ligands were eluted from secreted CD1d molecules and separated by normal phase HPLC, then characterized by mass spectroscopy. A total of 177 lipid species were molecularly identified, comprising glycerophospholipids and sphingolipids. The glycerophospholipids included common diacylglycerol species, reduced forms known as plasmalogens, lyso-phospholipids (monoacyl species), and cardiolipins (tetraacyl species). The sphingolipids included sphingomyelins and glycosylated forms, such as the ganglioside GM3. These results demonstrate that human CD1d molecules bind a surprising diversity of lipid structures within the secretory pathway, including compounds that have been reported to play roles in cancer, autoimmune diseases, lipid signaling, and cell death.
Collapse
Affiliation(s)
- Daryl Cox
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Chemistry, Southern Nazarene University, Bethany, Oklahoma, United States of America
| | - Lisa Fox
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Runying Tian
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Wilfried Bardet
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Matthew Skaley
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Danijela Mojsilovic
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jenny Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| | - William Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
18
|
Basconcillo LS, Zaheer R, Finan TM, McCarry BE. A shotgun lipidomics approach in Sinorhizobium meliloti as a tool in functional genomics. J Lipid Res 2008; 50:1120-32. [PMID: 19096048 DOI: 10.1194/jlr.m800443-jlr200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A shotgun lipidomics approach that allowed the analysis of eight lipid classes directly from crude extracts of the soil bacterium Sinorhizobium meliloti is presented. New MS-MS transitions are reported for the analysis of monomethylphosphatidylethanolamines, dimethylphosphatidylethanolamines, and three bacterial non-phosphorus-containing lipid classes [sulfoquinovosyldiacylglycerols, ornithines, and diacylglyceryl-(N,N,N-trimethyl)-homoserines]. Unique MS-MS transitions allowed the analysis of isomeric species from various lipid classes without chromatography. Analyses required small sample amounts and minimal preparation; thus, this methodology has excellent potential to be used as a screening tool for the analysis of large numbers of samples in functional genomics studies. FA distributions within lipid classes of S. meliloti are described for the first time, and the relative positions of fatty acyl substituents (sn-1, sn-2) in phospholipids are presented. FA distributions in diacylglyceryl-(N,N,N-trimethyl)-homoserines were identical to those of phospholipids, indicating a common biosynthetic origin for these lipids. The method was applied to the analysis of mutants deficient in the PhoB regulator protein. Increased lipid cyclopropanation was observed in PhoB-deficient mutants under P(i) starvation.
Collapse
|
19
|
John Wiley & Sons, Ltd.. Current awareness in phytochemical analysis. PHYTOCHEMICAL ANALYSIS : PCA 2008; 19:91-98. [PMID: 18340659 DOI: 10.1002/pca.1036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
20
|
Li W, Wang R, Li M, Li L, Wang C, Welti R, Wang X. Differential degradation of extraplastidic and plastidic lipids during freezing and post-freezing recovery in Arabidopsis thaliana. J Biol Chem 2007; 283:461-468. [PMID: 17962199 DOI: 10.1074/jbc.m706692200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in membrane lipid composition play important roles in plant adaptation to and survival after freezing. Plant response to cold and freezing involves three distinct phases: cold acclimation, freezing, and post-freezing recovery. Considerable progress has been made toward understanding lipid changes during cold acclimation and freezing, but little is known about lipid alteration during post-freezing recovery. We previously showed that phospholipase D (PLD) is involved in lipid hydrolysis and Arabidopsis thaliana freezing tolerance. This study was undertaken to determine how lipid species change during post-freezing recovery and to determine the effect of two PLDs, PLDalpha1 and PLDdelta, on lipid changes during post-freezing recovery. During post-freezing recovery, hydrolysis of plastidic lipids, monogalactosyldiacylglycerol and plastidic phosphatidylglycerol, is the most prominent change. In contrast, during freezing, hydrolysis of extraplastidic phospholipids, phosphatidylcholine and phosphatidylethanolamine, occurs. Suppression of PLDalpha1 decreased phospholipid hydrolysis and phosphatidic acid production in both the freezing and post-freezing phases, whereas ablation of PLDdelta increased lipid hydrolysis and phosphatidic acid production during post-freezing recovery. Thus, distinctly different changes in lipid hydrolysis occur in freezing and post-freezing recovery. The presence of PLDalpha1 correlates with phospholipid hydrolysis in both freezing and post-freezing phases, whereas the presence of PLDdelta correlates with reduced lipid hydrolysis during post-freezing recovery. These data suggest a negative role for PLDalpha1 and a positive role for PLDdelta in freezing tolerance.
Collapse
Affiliation(s)
- Weiqi Li
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650204, China.
| | - Ruiping Wang
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650204, China
| | - Maoyin Li
- Department of Biology, University of Missouri and Donald Danforth Plant Science Center, St. Louis, Missouri 63121
| | - Lixia Li
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650204, China
| | - Chuanming Wang
- Department of Biology, Honghe University, Mengzi, Yunnan 661100, China
| | - Ruth Welti
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, Kansas 66506
| | - Xuemin Wang
- Department of Biology, University of Missouri and Donald Danforth Plant Science Center, St. Louis, Missouri 63121
| |
Collapse
|
21
|
Song H, Hsu FF, Ladenson J, Turk J. Algorithm for processing raw mass spectrometric data to identify and quantitate complex lipid molecular species in mixtures by data-dependent scanning and fragment ion database searching. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1848-58. [PMID: 17720531 PMCID: PMC2044497 DOI: 10.1016/j.jasms.2007.07.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 07/19/2007] [Accepted: 07/22/2007] [Indexed: 05/13/2023]
Abstract
We developed the Lipid Qualitative/Quantitative Analysis (LipidQA) software platform to identify and quantitate complex lipid molecular species in biological mixtures. LipidQA can process raw electronic data files from the TSQ-7000 triple stage quadrupole and LTQ linear ion trap mass spectrometers from Thermo-Finnigan and the Q-TOF hybrid quadrupole/time-of-flight instrument from Waters-Micromass and could readily be modified to accommodate data from others. The program processes multiple spectra in a few seconds and includes a deisotoping algorithm that increases the accuracy of structural identification and quantitation. Identification is achieved by comparing MS(2) spectra obtained in a data-dependent manner to a library of reference spectra of complex lipids that we have acquired or constructed from established fragmentation rules. The current form of the algorithm can process data acquired in negative or positive ion mode for glycerophospholipid species of all major head-group classes.
Collapse
Affiliation(s)
- Haowei Song
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|