1
|
Angelis J, Schröder EA, Xiao Z, Gabriel W, Wilhelm M. Peptide Property Prediction for Mass Spectrometry Using AI: An Introduction to State of the Art Models. Proteomics 2025; 25:e202400398. [PMID: 40211610 PMCID: PMC12076536 DOI: 10.1002/pmic.202400398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 05/15/2025]
Abstract
This review explores state of the art machine learning and deep learning models for peptide property prediction in mass spectrometry-based proteomics, including, but not limited to, models for predicting digestibility, retention time, charge state distribution, collisional cross section, fragmentation ion intensities, and detectability. The combination of these models enables not only the in silico generation of spectral libraries but also finds many additional use cases in the design of targeted assays or data-driven rescoring. This review serves as both an introduction for newcomers and an update for experienced researchers aiming to develop accessible and reproducible models for peptide property predictions. Key limitations of the current models, including difficulties in handling diverse post-translational modifications and instrument variability, highlight the need for large-scale, harmonized datasets, and standardized evaluation metrics for benchmarking.
Collapse
Affiliation(s)
- Jesse Angelis
- Computational Mass SpectrometryTechnical University of MunichFreisingGermany
| | - Eva Ayla Schröder
- Computational Mass SpectrometryTechnical University of MunichFreisingGermany
| | - Zixuan Xiao
- Computational Mass SpectrometryTechnical University of MunichFreisingGermany
| | - Wassim Gabriel
- Computational Mass SpectrometryTechnical University of MunichFreisingGermany
| | - Mathias Wilhelm
- Computational Mass SpectrometryTechnical University of MunichFreisingGermany
- Munich Data Science Institute (MDSI)Technical University of MunichGarchingGermany
| |
Collapse
|
2
|
Yang G, Zhang L, Xie S, Wu J, Khan M, Zhang Y, Liu L, Li J. Protonation State-Induced Unfolding of Protein Secondary Structure in the Gas Phase. J Phys Chem Lett 2024; 15:9374-9379. [PMID: 39240543 DOI: 10.1021/acs.jpclett.4c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The combination of infrared spectroscopy (IR) and ion mobility mass spectrometry (IM-MS) has revealed that protein secondary structures are retained upon transformation from aqueous solution to the gas phase under gentle conditions. Yet the details about where and how these structural elements are embedded in the gas phase remain elusive. In this study, we employ long time scale molecular dynamics (MD) simulations to examine the extent to which proteins retain their solution structures and the impact of protonation state on the stability of secondary structures in the gas phase. Our investigation focuses on two well-studied proteins, myoglobin and β-lactoglobulin, representing typical helical and β-sheet proteins, respectively. Our simulations accurately reproduce the experimental collision cross section (CCS) data measured by IM-MS. Based on accurately reproducing previous experimental collision cross section data and dominant secondary structural species obtained from IM-MS and IR, we confirm that both proteins largely retain their native secondary structural components upon passing from aqueous solution to the gas phase. However, we observe significant reductions in secondary structure contents (19.2 ± 1.2% for myoglobin and 7.3 ± 0.6% for β-lactoglobulin) in specific regions predominantly composed of ionizable residues. Further mechanistic analysis suggests that alterations in protonation states of these residues after phase transition induce changes in their local interaction networks and backbone dihedral angles, which potentially promote the unfolding of secondary structures in the gas phase. We anticipate that similar protonation state induced unfolding may be observed in other proteins possessing distinct secondary structures. Further studies on a broader array of proteins will be essential to refine our understanding of protein structural behavior during the transition to the gas phase.
Collapse
Affiliation(s)
- Guiqian Yang
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Lanbi Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Song Xie
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Juhong Wu
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Majid Khan
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yongqi Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Lin Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
3
|
Phan M, Chandrashekaran IR, Akhtar N, Konstantinidou E, Devine SM, Doak BC, Nebl T, Creek DJ, Scanlon MJ, Norton RS. Multiplexed Native Mass Spectrometry Determination of Ligand Selectivity for Fatty Acid-Binding Proteins. ACS Med Chem Lett 2024; 15:1071-1079. [PMID: 39015264 PMCID: PMC11247632 DOI: 10.1021/acsmedchemlett.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Although multiple approaches for characterizing protein-ligand interactions are available in target-based drug discovery, their throughput for determining selectivity is quite limited. Herein, we describe the application of native mass spectrometry for rapid, multiplexed screening of the selectivity of eight small-molecule ligands for five fatty acid-binding protein isoforms. Using high-resolution mass spectrometry, we were able to identify and quantify up to 20 different protein species in a single spectrum. We show that selectivity profiles generated by native mass spectrometry are in good agreement with those of traditional solution-phase techniques such as isothermal titration calorimetry and fluorescence polarization. Furthermore, we propose strategies for effective investigation of selectivity by native mass spectrometry, thus highlighting the potential of this technique to be used as an orthogonal method to traditional biophysical approaches for rapid, multiplexed screening of protein-ligand complexes.
Collapse
Affiliation(s)
- Michelle
Q. Phan
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Indu R. Chandrashekaran
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Naureen Akhtar
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Evgenia Konstantinidou
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Shane M. Devine
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bradley C. Doak
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Thomas Nebl
- Biologics
Research and Development Group, Biomedical Manufacturing Program, CSIRO, Clayton, Victoria 3168, Australia
| | - Darren J. Creek
- Drug
Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Martin J. Scanlon
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Raymond S. Norton
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Fragment-Based Design, Monash Institute of Pharmaceutical
Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
4
|
Kundlacz T, Schmidt C. Deciphering Solution and Gas-Phase Interactions between Peptides and Lipids by Native Mass Spectrometry. Anal Chem 2023; 95:17292-17299. [PMID: 37956985 PMCID: PMC10688224 DOI: 10.1021/acs.analchem.3c03428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023]
Abstract
Many biological processes depend on the interactions between proteins and lipids. Accordingly, the analysis of protein-lipid complexes has become increasingly important. Native mass spectrometry is often used to identify and characterize specific protein-lipid interactions. However, it requires the transfer of the analytes into the gas phase, where electrostatic interactions are enhanced and hydrophobic interactions do not exist. Accordingly, the question remains whether interactions that are observed in the gas phase accurately reflect interactions that are formed in solution. Here, we systematically explore noncovalent interactions between the antimicrobial peptide LL-37 and glycerophospholipids containing different headgroups or varying in fatty acyl chain length. We observe differences in peak intensities for different peptide-lipid complexes, as well as their relative binding strength in the gas phase. Accordingly, we found that ion intensities and gas-phase stability correlate well for complexes formed by electrostatic interactions. Probing hydrophobic interactions by varying the length of fatty acyl chains, we detected differences in ion intensities based on hydrophobic interactions formed in solution. The relative binding strength of these peptide-lipid complexes revealed only minor differences originating from van der Waals interactions and different binding modes of lipid headgroups in solution. In summary, our results demonstrate that hydrophobic interactions are reflected by ion intensities, while electrostatic interactions, including van der Waals interactions, determine the gas-phase stability of complexes.
Collapse
Affiliation(s)
- Til Kundlacz
- Interdisciplinary
Research Centre HALOmem, Institute of Biochemistry and Biotechnology,
Charles Tanford Protein Centre, Martin Luther
University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
- Institute
of Chemistry, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Carla Schmidt
- Interdisciplinary
Research Centre HALOmem, Institute of Biochemistry and Biotechnology,
Charles Tanford Protein Centre, Martin Luther
University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
- Department
of Chemistry—Biochemistry, Johannes
Gutenberg University Mainz, Biocenter II, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| |
Collapse
|
5
|
Konermann L, Liu Z, Haidar Y, Willans MJ, Bainbridge NA. On the Chemistry of Aqueous Ammonium Acetate Droplets during Native Electrospray Ionization Mass Spectrometry. Anal Chem 2023; 95:13957-13966. [PMID: 37669319 DOI: 10.1021/acs.analchem.3c02546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Ammonium acetate (NH4Ac) is a widely used solvent additive in native electrospray ionization (ESI) mass spectrometry. NH4Ac can undergo proton transfer to form ammonia and acetic acid (NH4+ + Ac- → NH3 + HAc). The volatility of these products ensures that electrosprayed ions are free of undesired adducts. NH4Ac dissolution in water yields pH 7, providing "physiological" conditions. However, NH4Ac is not a buffer at pH 7 because NH4+ and Ac- are not a conjugate acid/base pair (Konermann, L. J. Am. Soc. Mass Spectrom. 2017, 28, 1827-1835.). In native ESI, it is desirable that analytes experience physiological conditions not only in bulk solution but also while they reside in ESI droplets. Little is known about the internal milieu of NH4Ac-containing ESI droplets. The current work explored the acid/base chemistry of such droplets, starting from a pH 7 analyte solution. We used a two-pronged approach involving evaporation experiments on bulk solutions under ESI-mimicking conditions, as well as molecular dynamics simulations using a newly developed algorithm that allows for proton transfer. Our results reveal that during droplet formation at the tip of the Taylor cone, electrolytically generated protons get neutralized by Ac-, making NH4+ the net charge carriers in the weakly acidic nascent droplets. During the subsequent evaporation, the droplets lose water as well as NH3 and HAc that were generated by proton transfer. NH3 departs more quickly because of its greater volatility, causing the accumulation of HAc. Together with residual Ac-, these HAc molecules form an acetate buffer that stabilizes the average droplet pH at 5.4 ± 0.1, as governed by the Henderson-Hasselbalch equation. The remarkable success of native ESI investigations in the literature implies that this pH drop by ∼1.6 units relative to the initially neutral analyte solution can be tolerated by most biomolecular analytes on the short time scale of the ESI process.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Zeyuan Liu
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Yousef Haidar
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Mathew J Willans
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Nicholas A Bainbridge
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
6
|
Reid DJ, Thibert S, Zhou M. Dissecting the structural heterogeneity of proteins by native mass spectrometry. Protein Sci 2023; 32:e4612. [PMID: 36851867 PMCID: PMC10031758 DOI: 10.1002/pro.4612] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
A single gene yields many forms of proteins via combinations of posttranscriptional/posttranslational modifications. Proteins also fold into higher-order structures and interact with other molecules. The combined molecular diversity leads to the heterogeneity of proteins that manifests as distinct phenotypes. Structural biology has generated vast amounts of data, effectively enabling accurate structural prediction by computational methods. However, structures are often obtained heterologously under homogeneous states in vitro. The lack of native heterogeneity under cellular context creates challenges in precisely connecting the structural data to phenotypes. Mass spectrometry (MS) based proteomics methods can profile proteome composition of complex biological samples. Most MS methods follow the "bottom-up" approach, which denatures and digests proteins into short peptide fragments for ease of detection. Coupled with chemical biology approaches, higher-order structures can be probed via incorporation of covalent labels on native proteins that are maintained at the peptide level. Alternatively, native MS follows the "top-down" approach and directly analyzes intact proteins under nondenaturing conditions. Various tandem MS activation methods can dissect the intact proteins for in-depth structural elucidation. Herein, we review recent native MS applications for characterizing heterogeneous samples, including proteins binding to mixtures of ligands, homo/hetero-complexes with varying stoichiometry, intrinsically disordered proteins with dynamic conformations, glycoprotein complexes with mixed modification states, and active membrane protein complexes in near-native membrane environments. We summarize the benefits, challenges, and ongoing developments in native MS, with the hope to demonstrate an emerging technology that complements other tools by filling the knowledge gaps in understanding the molecular heterogeneity of proteins.
Collapse
Affiliation(s)
- Deseree J. Reid
- Chemical and Biological Signature SciencesPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Stephanie Thibert
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Mowei Zhou
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWashingtonUSA
| |
Collapse
|
7
|
Byrd E, Wilkinson M, Radford SE, Sobott F. Taking Charge: Metal Ions Accelerate Amyloid Aggregation in Sequence Variants of α-Synuclein. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:493-504. [PMID: 36794792 PMCID: PMC9983014 DOI: 10.1021/jasms.2c00379] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Αlpha-synuclein (αS) is an intrinsically disordered protein which exhibits a high degree of conformational heterogeneity. In vivo, αS experiences various environments which cause adaptation of its structural ensemble. Divalent metal ions are prominent in synaptic terminals where αS is located and are thought to bind to the αS C-terminal region. Herein, we used native nanoelectrospray ionization ion mobility-mass spectrometry to investigate changes in the charge state distribution and collision cross sections of wild-type N-terminally acetylated (NTA) αS, along with a deletion variant (ΔΔNTA) which inhibits amyloid formation and a C-terminal truncated variant (119NTA) which increases the rate of amyloid formation. We also examine the effect of the addition of divalent metal ions, Ca2+, Mn2+, and Zn2+, and correlate the conformational properties of the αS monomer with the ability to aggregate into amyloid, measured using Thioflavin T fluorescence and negative stain transmission electron microscopy. We find a correlation between the population of species with a low collision cross section and accelerated amyloid assembly kinetics, with the presence of metal ions resulting in protein compaction and causing ΔΔ to regain its ability to form an amyloid. The results portray how the αS conformational ensemble is governed by specific intramolecular interactions that influence its amyloidogenic behavior.
Collapse
Affiliation(s)
- Emily
J. Byrd
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Martin Wilkinson
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sheena E. Radford
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Frank Sobott
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
8
|
Insights into the atypical autokinase activity of the Pseudomonas aeruginosa GacS histidine kinase and its interaction with RetS. Structure 2022; 30:1285-1297.e5. [PMID: 35767996 DOI: 10.1016/j.str.2022.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/30/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022]
Abstract
Virulence in Pseudomonas aeruginosa (PA) depends on complex regulatory networks, involving phosphorelay systems based on two-component systems (TCSs). The GacS/GacA TCS is a master regulator of biofilm formation, swarming motility, and virulence. GacS is a membrane-associated unorthodox histidine kinase (HK) whose phosphorelay signaling pathway is inhibited by the RetS hybrid HK. Here we provide structural and functional insights into the interaction of GacS with RetS. The structure of the GacS-HAMP-H1 cytoplasmic regions reveals an unusually elongated homodimer marked by a 135 Å long helical bundle formed by the HAMP, the signaling helix (S helix) and the DHp subdomain. The HAMP and S helix regions are essential for GacS signaling and contribute to the GacS/RetS binding interface. The structure of the GacS D1 domain together with the discovery of an unidentified functional ND domain, essential for GacS full autokinase activity, unveils signature motifs in GacS required for its atypical autokinase mechanism.
Collapse
|
9
|
Studying protein structure and function by native separation–mass spectrometry. Nat Rev Chem 2022; 6:215-231. [PMID: 37117432 DOI: 10.1038/s41570-021-00353-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
Alterations in protein structure may have profound effects on biological function. Analytical techniques that permit characterization of proteins while maintaining their conformational and functional state are crucial for studying changes in the higher order structure of proteins and for establishing structure-function relationships. Coupling of native protein separations with mass spectrometry is emerging rapidly as a powerful approach to study these aspects in a reliable, fast and straightforward way. This Review presents the available native separation modes for proteins, covers practical considerations on the hyphenation of these separations with mass spectrometry and highlights the involvement of affinity-based separations to simultaneously obtain structural and functional information of proteins. The impact of these approaches is emphasized by selected applications addressing biomedical and biopharmaceutical research questions.
Collapse
|
10
|
Venu AC, Nasser Din R, Rudszuck T, Picchetti P, Chakraborty P, Powell AK, Krämer S, Guthausen G, Ibrahim M. NMR Relaxivities of Paramagnetic Lanthanide-Containing Polyoxometalates. Molecules 2021; 26:7481. [PMID: 34946561 PMCID: PMC8703889 DOI: 10.3390/molecules26247481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
The current trend for ultra-high-field magnetic resonance imaging (MRI) technologies opens up new routes in clinical diagnostic imaging as well as in material imaging applications. MRI selectivity is further improved by using contrast agents (CAs), which enhance the image contrast and improve specificity by the paramagnetic relaxation enhancement (PRE) mechanism. Generally, the efficacy of a CA at a given magnetic field is measured by its longitudinal and transverse relaxivities r1 and r2, i.e., the longitudinal and transverse relaxation rates T1-1 and T2-1 normalized to CA concentration. However, even though basic NMR sensitivity and resolution become better in stronger fields, r1 of classic CA generally decreases, which often causes a reduction of the image contrast. In this regard, there is a growing interest in the development of new contrast agents that would be suitable to work at higher magnetic fields. One of the strategies to increase imaging contrast at high magnetic field is to inspect other paramagnetic ions than the commonly used Gd(III)-based CAs. For lanthanides, the magnetic moment can be higher than that of the isotropic Gd(III) ion. In addition, the symmetry of electronic ground state influences the PRE properties of a compound apart from diverse correlation times. In this work, PRE of water 1H has been investigated over a wide range of magnetic fields for aqueous solutions of the lanthanide containing polyoxometalates [DyIII(H2O)4GeW11O39]5- (Dy-W11), [ErIII(H2O)3GeW11O39]5- (Er-W11) and [{ErIII(H2O)(CH3COO)(P2W17O61)}2]16- (Er2-W34) over a wide range of frequencies from 20 MHz to 1.4 GHz. Their relaxivities r1 and r2 increase with increasing applied fields. These results indicate that the three chosen POM systems are potential candidates for contrast agents, especially at high magnetic fields.
Collapse
Affiliation(s)
- Aiswarya Chalikunnath Venu
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (A.C.V.); (P.P.); (P.C.)
| | - Rami Nasser Din
- LNCMI-EMFL, CNRS, INSA-T and UPS, Université Grenoble Alpes, Boîte Postale 166, CEDEX 9, 38042 Grenoble, France;
| | - Thomas Rudszuck
- Karlsruhe Institute of Technology (KIT), MVM-VM, Adenauerring 20b, 76131 Karlsruhe, Germany;
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (A.C.V.); (P.P.); (P.C.)
| | - Papri Chakraborty
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (A.C.V.); (P.P.); (P.C.)
| | - Annie K. Powell
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (A.C.V.); (P.P.); (P.C.)
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Steffen Krämer
- LNCMI-EMFL, CNRS, INSA-T and UPS, Université Grenoble Alpes, Boîte Postale 166, CEDEX 9, 38042 Grenoble, France;
| | - Gisela Guthausen
- Karlsruhe Institute of Technology (KIT), MVM-VM, Adenauerring 20b, 76131 Karlsruhe, Germany;
- Karlsruhe Institute of Technology (KIT), EBI-WCWT, Adenauerring 20b, 76131 Karlsruhe, Germany
| | - Masooma Ibrahim
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; (A.C.V.); (P.P.); (P.C.)
| |
Collapse
|
11
|
|
12
|
Aliyari E, Konermann L. Atomistic Insights into the Formation of Nonspecific Protein Complexes during Electrospray Ionization. Anal Chem 2021; 93:12748-12757. [PMID: 34494821 DOI: 10.1021/acs.analchem.1c02836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Native electrospray ionization (ESI)-mass spectrometry (MS) is widely used for the detection and characterization of multi-protein complexes. A well-known problem with this approach is the possible occurrence of nonspecific protein clustering in the ESI plume. This effect can distort the results of binding affinity measurements, and it can even generate gas-phase complexes from proteins that are strictly monomeric in bulk solution. By combining experiments and molecular dynamics (MD) simulations, the current work for the first time provides detailed insights into the ESI clustering of proteins. Using ubiquitin as a model system, we demonstrate how the entrapment of more than one protein molecule in an ESI droplet can generate nonspecific clusters (e.g., dimers or trimers) via solvent evaporation to dryness. These events are in line with earlier proposals, according to which protein clustering is associated with the charged residue model (CRM). MD simulations on cytochrome c (which carries a large intrinsic positive charge) confirmed the viability of this CRM avenue. In addition, the cytochrome c data uncovered an alternative mechanism where protein-protein contacts were formed early within ESI droplets, followed by cluster ejection from the droplet surface. This second pathway is consistent with the ion evaporation model (IEM). The observation of these IEM events for large protein clusters is unexpected because the IEM has been thought to be associated primarily with low-molecular-weight analytes. In all cases, our MD simulations produced protein clusters that were stabilized by intermolecular salt bridges. The MD-generated charge states agreed with experiments. Overall, this work reveals that ESI-induced protein clustering does not follow a tightly orchestrated pathway but can proceed along different avenues.
Collapse
Affiliation(s)
- Elnaz Aliyari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
13
|
Bennett JL, Nguyen GTH, Donald WA. Protein-Small Molecule Interactions in Native Mass Spectrometry. Chem Rev 2021; 122:7327-7385. [PMID: 34449207 DOI: 10.1021/acs.chemrev.1c00293] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Small molecule drug discovery has been propelled by the continual development of novel scientific methodologies to occasion therapeutic advances. Although established biophysical methods can be used to obtain information regarding the molecular mechanisms underlying drug action, these approaches are often inefficient, low throughput, and ineffective in the analysis of heterogeneous systems including dynamic oligomeric assemblies and proteins that have undergone extensive post-translational modification. Native mass spectrometry can be used to probe protein-small molecule interactions with unprecedented speed and sensitivity, providing unique insights into polydisperse biomolecular systems that are commonly encountered during the drug discovery process. In this review, we describe potential and proven applications of native MS in the study of interactions between small, drug-like molecules and proteins, including large multiprotein complexes and membrane proteins. Approaches to quantify the thermodynamic and kinetic properties of ligand binding are discussed, alongside a summary of gas-phase ion activation techniques that have been used to interrogate the structure of protein-small molecule complexes. We additionally highlight some of the key areas in modern drug design for which native mass spectrometry has elicited significant advances. Future developments and applications of native mass spectrometry in drug discovery workflows are identified, including potential pathways toward studying protein-small molecule interactions on a whole-proteome scale.
Collapse
Affiliation(s)
- Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
14
|
Crack JC, Gray E, Le Brun NE. Sensing mechanisms of iron-sulfur cluster regulatory proteins elucidated using native mass spectrometry. Dalton Trans 2021; 50:7887-7897. [PMID: 34037038 PMCID: PMC8204329 DOI: 10.1039/d1dt00993a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022]
Abstract
The ability to sense and respond to various key environmental cues is important for the survival and adaptability of many bacteria, including pathogens. The particular sensitivity of iron-sulfur (Fe-S) clusters is exploited in nature, such that multiple sensor-regulator proteins, which coordinate the detection of analytes with a (in many cases) global transcriptional response, are Fe-S cluster proteins. The fragility and sensitivity of these Fe-S clusters make studying such proteins difficult, and gaining insight of what they sense, and how they sense it and transduce the signal to affect transcription, is a major challenge. While mass spectrometry is very widely used in biological research, it is normally employed under denaturing conditions where non-covalently attached cofactors are lost. However, mass spectrometry under conditions where the protein retains its native structure and, thus, cofactors, is now itself a flourishing field, and the application of such 'native' mass spectrometry to study metalloproteins is now relatively widespread. Here we describe recent advances in using native MS to study Fe-S cluster proteins. Through its ability to accurately measure mass changes that reflect chemistry occurring at the cluster, this approach has yielded a remarkable richness of information that is not accessible by other, more traditional techniques.
Collapse
Affiliation(s)
- Jason C. Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research ParkNorwichNR4 7TJUK
| | - Elizabeth Gray
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research ParkNorwichNR4 7TJUK
| | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research ParkNorwichNR4 7TJUK
| |
Collapse
|
15
|
Konermann L, Aliyari E, Lee JH. Mobile Protons Limit the Stability of Salt Bridges in the Gas Phase: Implications for the Structures of Electrosprayed Protein Ions. J Phys Chem B 2021; 125:3803-3814. [PMID: 33848419 DOI: 10.1021/acs.jpcb.1c00944] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Electrosprayed protein ions can retain native-like conformations. The intramolecular contacts that stabilize these compact gas-phase structures remain poorly understood. Recent work has uncovered abundant salt bridges in electrosprayed proteins. Salt bridges are zwitterionic BH+/A- contacts. The low dielectric constant in the vacuum strengthens electrostatic interactions, suggesting that salt bridges could be a key contributor to the retention of compact protein structures. A problem with this assertion is that H+ are mobile, such that H+ transfer can convert salt bridges into neutral B0/HA0 contacts. This possible salt bridge annihilation puts into question the role of zwitterionic motifs in the gas phase, and it calls for a detailed analysis of BH+/A- versus B0/HA0 interactions. Here, we investigate this issue using molecular dynamics (MD) simulations and electrospray experiments. MD data for short model peptides revealed that salt bridges with static H+ have dissociation energies around 700 kJ mol-1. The corresponding B0/HA0 contacts are 1 order of magnitude weaker. When considering the effects of mobile H+, BH+/A- bond energies were found to be between these two extremes, confirming that H+ migration can significantly weaken salt bridges. Next, we examined the protein ubiquitin under collision-induced unfolding (CIU) conditions. CIU simulations were conducted using three different MD models: (i) Positive-only runs with static H+ did not allow for salt bridge formation and produced highly expanded CIU structures. (ii) Zwitterionic runs with static H+ resulted in abundant salt bridges, culminating in much more compact CIU structures. (iii) Mobile H+ simulations allowed for the dynamic formation/annihilation of salt bridges, generating CIU structures intermediate between scenarios (i) and (ii). Our results uncover that mobile H+ limit the stabilizing effects of salt bridges in the gas phase. Failure to consider the effects of mobile H+ in MD simulations will result in unrealistic outcomes under CIU conditions.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Elnaz Aliyari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Justin H Lee
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
16
|
Abstract
Iron-sulfur clusters constitute a large and widely distributed group of protein cofactors that play key roles in a wide range of metabolic processes. The inherent reactivity of iron-sulfur clusters toward small molecules, for example, O2, NO, or free Fe, makes them ideal for sensing changes in the cellular environment. Nondenaturing, or native, MS is unique in its ability to preserve the noncovalent interactions of many (if not all) species, including stable intermediates, while providing accurate mass measurements in both thermodynamic and kinetic experimental regimes. Here, we provide practical guidance for the study of iron-sulfur proteins by native MS, illustrated by examples where it has been used to unambiguously determine the type of cluster coordinated to the protein framework. We also describe the use of time-resolved native MS to follow the kinetics of cluster conversion, allowing the elucidation of the precise series of molecular events for all species involved. Finally, we provide advice on a unique approach to a typical thermodynamic titration, uncovering early, quasi-stable, intermediates in the reaction of a cluster with nitric oxide, resulting in cluster nitrosylation.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, UK.
| |
Collapse
|
17
|
Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry. J Proteomics 2020; 222:103799. [DOI: 10.1016/j.jprot.2020.103799] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
|
18
|
Ozdemir A, Gulfen M, Lin JL, Chen CH. A Comparative Study for Sonic Spray and Electrospray Ionization Methods to Determine Noncovalent Protein–Ligand Interactions. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1622558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Abdil Ozdemir
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, 54187 Esentepe, Sakarya, Turkey
| | - Mustafa Gulfen
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, 54187 Esentepe, Sakarya, Turkey
| | - Jung-Lee Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
19
|
Bakhtiari M, Konermann L. Protein Ions Generated by Native Electrospray Ionization: Comparison of Gas Phase, Solution, and Crystal Structures. J Phys Chem B 2019; 123:1784-1796. [DOI: 10.1021/acs.jpcb.8b12173] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Maryam Bakhtiari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
20
|
Konermann L, Metwally H, Duez Q, Peters I. Charging and supercharging of proteins for mass spectrometry: recent insights into the mechanisms of electrospray ionization. Analyst 2019; 144:6157-6171. [DOI: 10.1039/c9an01201j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Molecular dynamics simulations have uncovered mechanistic details of the protein ESI process under various experimental conditions.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Haidy Metwally
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Quentin Duez
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Insa Peters
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| |
Collapse
|
21
|
Eyers CE, Vonderach M, Ferries S, Jeacock K, Eyers PA. Understanding protein–drug interactions using ion mobility–mass spectrometry. Curr Opin Chem Biol 2018; 42:167-176. [DOI: 10.1016/j.cbpa.2017.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/08/2017] [Accepted: 12/22/2017] [Indexed: 01/23/2023]
|
22
|
Konermann L. Addressing a Common Misconception: Ammonium Acetate as Neutral pH "Buffer" for Native Electrospray Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1827-1835. [PMID: 28710594 DOI: 10.1007/s13361-017-1739-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 05/12/2023]
Abstract
Native ESI-MS involves the transfer of intact proteins and biomolecular complexes from solution into the gas phase. One potential pitfall is the occurrence of pH-induced changes that can affect the analyte while it is still surrounded by solvent. Most native ESI-MS studies employ neutral aqueous ammonium acetate solutions. It is a widely perpetuated misconception that ammonium acetate buffers the analyte solution at neutral pH. By definition, a buffer consists of a weak acid and its conjugate weak base. The buffering range covers the weak acid pKa ± 1 pH unit. NH4+ and CH3-COO- are not a conjugate acid/base pair, which means that they do not constitute a buffer at pH 7. Dissolution of ammonium acetate salt in water results in pH 7, but this pH is highly labile. Ammonium acetate does provide buffering around pH 4.75 (the pKa of acetic acid) and around pH 9.25 (the pKa of ammonium). This implies that neutral ammonium acetate solutions electrosprayed in positive ion mode will likely undergo acidification down to pH 4.75 ± 1 in the ESI plume. Ammonium acetate nonetheless remains a useful additive for native ESI-MS. It is a volatile electrolyte that can mimic the solvation properties experienced by proteins under physiological conditions. Also, a drop from pH 7 to around pH 4.75 is less dramatic than the acidification that would take place in pure water. It is hoped that the habit of referring to pH 7 solutions as ammonium acetate "buffer" will disappear from the literature. Ammonium acetate "solution" should be used instead. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
23
|
Rautenbach M, Vlok NM, Eyéghé-Bickong HA, van der Merwe MJ, Stander MA. An Electrospray Ionization Mass Spectrometry Study on the "In Vacuo" Hetero-Oligomers Formed by the Antimicrobial Peptides, Surfactin and Gramicidin S. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1623-1637. [PMID: 28560564 DOI: 10.1007/s13361-017-1685-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
It was previously observed that the lipopeptide surfactants in surfactin (Srf) have an antagonistic action towards the highly potent antimicrobial cyclodecapeptide, gramicidin S (GS). This study reports on some of the molecular aspects of the antagonism as investigated through complementary electrospray ionization mass spectrometry techniques. We were able to detect stable 1:1 and 2:1 hetero-oligomers in a mixture of surfactin and gramicidin S. The noncovalent interaction between GS and Srf, with the proposed equilibrium: GS~Srf↔GS+Srf correlated to apparent K d values of 6-9 μM in gas-phase and 1 μM in aqueous solution. The apparent K d values decreased with a longer incubation time and indicated a slow oligomerization equilibrium. Furthermore, the low μM K dapp values of GS~Srf↔GS+Srf fell within the biological concentration range and related to the 2- to 3-fold increase in [GS] needed for bacterial growth inhibition in the presence of Srf. Competition studies indicated that neither Na+ nor Ca2+ had a major effect on the stability of preformed heterodimers and that GS in fact out-competed Ca2+ and Na+ from Srf. Traveling wave ion mobility mass spectrometry revealed near symmetrical peaks of the heterodimers correlating to a compact dimer conformation that depend on specific interactions. Collision-induced dissociation studies indicated that the peptide interaction is most probably between one Orn residue in GS and the Asp residue, but not the Glu residue in Srf. We propose that flanking hydrophobic residues in both peptides stabilize the antagonistic and inactive peptide hetero-oligomers and shield the specific polar interactions in an aqueous environment. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Marina Rautenbach
- BIOPEP® Peptide Group, University of Stellenbosch, Stellenbosch, 7602, Republic of South Africa.
- Department of Biochemistry, University of Stellenbosch, Stellenbosch, 7602, Republic of South Africa.
| | - N Maré Vlok
- BIOPEP® Peptide Group, University of Stellenbosch, Stellenbosch, 7602, Republic of South Africa
- Department of Biochemistry, University of Stellenbosch, Stellenbosch, 7602, Republic of South Africa
| | - Hans A Eyéghé-Bickong
- BIOPEP® Peptide Group, University of Stellenbosch, Stellenbosch, 7602, Republic of South Africa
- Department of Biochemistry, University of Stellenbosch, Stellenbosch, 7602, Republic of South Africa
| | - Marthinus J van der Merwe
- Department of Biochemistry, University of Stellenbosch, Stellenbosch, 7602, Republic of South Africa
- LCMS Central Analytical Facility, University of Stellenbosch, Stellenbosch, 7602, Republic of South Africa
| | - Marietjie A Stander
- Department of Biochemistry, University of Stellenbosch, Stellenbosch, 7602, Republic of South Africa
- LCMS Central Analytical Facility, University of Stellenbosch, Stellenbosch, 7602, Republic of South Africa
| |
Collapse
|
24
|
Biswas S, Sen S, Im J, Biswas S, Krstic P, Ashcroft B, Borges C, Zhao Y, Lindsay S, Zhang P. Universal Readers Based on Hydrogen Bonding or π-π Stacking for Identification of DNA Nucleotides in Electron Tunnel Junctions. ACS NANO 2016; 10:11304-11316. [PMID: 28024337 DOI: 10.1021/acsnano.6b06466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A reader molecule, which recognizes all the naturally occurring nucleobases in an electron tunnel junction, is required for sequencing DNA by a recognition tunneling (RT) technique, referred to as a universal reader. In the present study, we have designed a series of heterocyclic carboxamides based on hydrogen bonding and a large-sized pyrene ring based on a π-π stacking interaction as universal reader candidates. Each of these compounds was synthesized to bear a thiolated linker for attachment to metal electrodes and examined for their interactions with naturally occurring DNA nucleosides and nucleotides by 1H NMR, ESI-MS, computational calculations, and surface plasmon resonance. RT measurements were carried out in a scanning tunnel microscope. All of these molecules generated electrical signals with DNA nucleotides in tunneling junctions under physiological conditions (phosphate buffered aqueous solution, pH 7.4). Using a support vector machine as a tool for data analysis, we found that these candidates distinguished among naturally occurring DNA nucleotides with the accuracy of pyrene (by π-π stacking interactions) > azole carboxamides (by hydrogen-bonding interactions). In addition, the pyrene reader operated efficiently in a larger tunnel junction. However, the azole carboxamide could read abasic (AP) monophosphate, a product from spontaneous base hydrolysis or an intermediate of base excision repair. Thus, we envision that sequencing DNA using both π-π stacking and hydrogen-bonding-based universal readers in parallel should generate more comprehensive genome sequences than sequencing based on either reader molecule alone.
Collapse
Affiliation(s)
| | | | | | | | - Predrag Krstic
- Institute for Advanced Computational Science, Stony Brook University , Stony Brook, New York 11794-5250, United States
| | | | | | | | | | | |
Collapse
|
25
|
Seetoh WG, Abell C. Disrupting the Constitutive, Homodimeric Protein-Protein Interface in CK2β Using a Biophysical Fragment-Based Approach. J Am Chem Soc 2016; 138:14303-14311. [PMID: 27726344 PMCID: PMC5257173 DOI: 10.1021/jacs.6b07440] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Identifying small molecules that
induce the disruption of constitutive
protein–protein interfaces is a challenging objective. Here,
a targeted biophysical screening cascade was employed to specifically
identify small molecules that could disrupt the constitutive, homodimeric
protein–protein interface within CK2β. This approach
could potentially be applied to achieve subunit disassembly of other
homo-oligomeric proteins as a means of modulating protein function.
Collapse
Affiliation(s)
- Wei-Guang Seetoh
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Chris Abell
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
26
|
Native Mass Spectrometry in Fragment-Based Drug Discovery. Molecules 2016; 21:molecules21080984. [PMID: 27483215 PMCID: PMC6274484 DOI: 10.3390/molecules21080984] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/14/2016] [Accepted: 07/23/2016] [Indexed: 11/17/2022] Open
Abstract
The advent of native mass spectrometry (MS) in 1990 led to the development of new mass spectrometry instrumentation and methodologies for the analysis of noncovalent protein-ligand complexes. Native MS has matured to become a fast, simple, highly sensitive and automatable technique with well-established utility for fragment-based drug discovery (FBDD). Native MS has the capability to directly detect weak ligand binding to proteins, to determine stoichiometry, relative or absolute binding affinities and specificities. Native MS can be used to delineate ligand-binding sites, to elucidate mechanisms of cooperativity and to study the thermodynamics of binding. This review highlights key attributes of native MS for FBDD campaigns.
Collapse
|
27
|
Abstract
On the basis of many literature measurements, a critical overview is given on essential noncovalent interactions in synthetic supramolecular complexes, accompanied by analyses with selected proteins. The methods, which can be applied to derive binding increments for single noncovalent interactions, start with the evaluation of consistency and additivity with a sufficiently large number of different host-guest complexes by applying linear free energy relations. Other strategies involve the use of double mutant cycles, of molecular balances, of dynamic combinatorial libraries, and of crystal structures. Promises and limitations of these strategies are discussed. Most of the analyses stem from solution studies, but a few also from gas phase. The empirically derived interactions are then presented on the basis of selected complexes with respect to ion pairing, hydrogen bonding, electrostatic contributions, halogen bonding, π-π-stacking, dispersive forces, cation-π and anion-π interactions, and contributions from the hydrophobic effect. Cooperativity in host-guest complexes as well as in self-assembly, and entropy factors are briefly highlighted. Tables with typical values for single noncovalent free energies and polarity parameters are in the Supporting Information.
Collapse
Affiliation(s)
- Frank Biedermann
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hans-Jörg Schneider
- FR Organische Chemie der Universität des Saarlandes , D-66041 Saarbrücken, Germany
| |
Collapse
|
28
|
Woods LA, Dolezal O, Ren B, Ryan JH, Peat TS, Poulsen SA. Native State Mass Spectrometry, Surface Plasmon Resonance, and X-ray Crystallography Correlate Strongly as a Fragment Screening Combination. J Med Chem 2016; 59:2192-204. [PMID: 26882437 DOI: 10.1021/acs.jmedchem.5b01940] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fragment-based drug discovery (FBDD) is contingent on the development of analytical methods to identify weak protein-fragment noncovalent interactions. Herein we have combined an underutilized fragment screening method, native state mass spectrometry, together with two proven and popular fragment screening methods, surface plasmon resonance and X-ray crystallography, in a fragment screening campaign against human carbonic anhydrase II (CA II). In an initial fragment screen against a 720-member fragment library (the "CSIRO Fragment Library") seven CA II binding fragments, including a selection of nonclassical CA II binding chemotypes, were identified. A further 70 compounds that comprised the initial hit chemotypes were subsequently sourced from the full CSIRO compound collection and screened. The fragment results were extremely well correlated across the three methods. Our findings demonstrate that there is a tremendous opportunity to apply native state mass spectrometry as a complementary fragment screening method to accelerate drug discovery.
Collapse
Affiliation(s)
- Lucy A Woods
- Griffith University , Eskitis Institute for Drug Discovery, Brisbane, Queensland Australia
| | - Olan Dolezal
- CSIRO Biomedical Manufacturing Program, Melbourne, Victoria Australia
| | - Bin Ren
- CSIRO Biomedical Manufacturing Program, Melbourne, Victoria Australia
| | - John H Ryan
- CSIRO Biomedical Manufacturing Program, Melbourne, Victoria Australia
| | - Thomas S Peat
- CSIRO Biomedical Manufacturing Program, Melbourne, Victoria Australia
| | - Sally-Ann Poulsen
- Griffith University , Eskitis Institute for Drug Discovery, Brisbane, Queensland Australia
| |
Collapse
|
29
|
Kovalenko E, Vilaseca M, Díaz-Lobo M, Masliy AN, Vicent C, Fedin VP. Supramolecular Adducts of Cucurbit[7]uril and Amino Acids in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:265-276. [PMID: 26443564 DOI: 10.1007/s13361-015-1274-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
The complexation of the macrocyclic cavitand cucurbit[7]uril (Q7) with a series of amino acids (AA) with different side chains (Asp, Asn, Gln, Ser, Ala, Val, and Ile) is investigated by ESI-MS techniques. The 1:1 [Q7 + AA + 2H](2+) adducts are observed as the base peak when equimolar Q7:AA solutions are electrosprayed, whereas the 1:2 [Q7 + 2AA + 2H](2+) dications are dominant when an excess of the amino acid is used. A combination of ion mobility mass spectrometry (IM-MS) and DFT calculations of the 1:1 [Q7 + AA + 2H](2+) (AA = Tyr, Val, and Ser) adducts is also reported and proven to be unsuccessful at discriminating between exclusion or inclusion-type conformations in the gas phase. Collision induced dissociation (CID) revealed that the preferred dissociation pathways of the 1:1 [Q7 + AA + 2H](2+) dications are strongly influenced by the identity of the amino acid side chain, whereas ion molecule reactions towards N-butylmethylamine displayed a common reactivity pattern comprising AA displacement. Special emphasis is given on the differences between the gas-phase behavior of the supramolecular adducts with amino acids (AA = Asp, Asn, Gln, Ser, Ala, Val, and Ile) and those featuring basic (Lys and Arg) and aromatic (Tyr and Phe) side chains.
Collapse
Affiliation(s)
- Ekaterina Kovalenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 3, 630090, Novosibirsk, Russia.
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Mireia Díaz-Lobo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - A N Masliy
- Kazan National Research Technological University, 420015, K.Marx St 68, Kazan, Russia
| | - Cristian Vicent
- Serveis Centrals d'Instrumentació Científica, Universitat Jaume I, Avda. Sos Baynat s/n, E-12071, Castelló, Spain.
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 3, 630090, Novosibirsk, Russia.
| |
Collapse
|
30
|
Faggi E, Vicent C, Luis SV, Alfonso I. Stereoselective recognition of the Ac-Glu-Tyr-OH dipeptide by pseudopeptidic cages. Org Biomol Chem 2015; 13:11721-31. [PMID: 26481115 DOI: 10.1039/c5ob01889g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pseudopeptidic molecular cages are appealing receptors since they can display different polar and non-polar interaction sites in a modular framework and a controlled disposition. Inspired by previous host-guest knowledge, two pseudopeptidic molecular cages based on serine and threonine (CySer and CyThr, respectively) were designed and synthesized as hosts for the binding of the four possible stereoisomers of the Ac-Glu-Tyr-OH dipeptide, a target sequence of tyrosine kinases. The careful NMR titration experiments in aqueous acetonitrile allowed the determination of the binding constants and reflected a difference in the stability of the corresponding diastereomeric host-guest complexes. The CySer cage proved to be slightly more efficient than the CyThr counterpart, although both showed similar stereoselectivity trends: LL > DD ≥ LD > DL. This stereoselective binding was retained in the gas phase, as shown by ESI-MS competition experiments using the enantiomer-labelled method (EL), as well as CID experiments. Thus, the MS-determined discriminations follow the same trends observed by NMR, suggesting that the stereoselectivity observed for these systems must be mainly dictated by the polar host-guest interactions. Despite the stereoselective binding of short peptide sequences in competitive media being a challenging issue in supramolecular chemistry, our results demonstrate the power of pseudopeptidic cages in molecular recognition with foreseen implications in chemical biology.
Collapse
Affiliation(s)
- Enrico Faggi
- Department of Biological Chemistry and Molecular Modeling, IQAC-CSIC, Jordi Girona, 18-26, E-08034, Barcelona, Spain.
| | | | | | | |
Collapse
|
31
|
McAllister RG, Metwally H, Sun Y, Konermann L. Release of Native-like Gaseous Proteins from Electrospray Droplets via the Charged Residue Mechanism: Insights from Molecular Dynamics Simulations. J Am Chem Soc 2015; 137:12667-76. [DOI: 10.1021/jacs.5b07913] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Robert G. McAllister
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Haidy Metwally
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Yu Sun
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
32
|
Sowole MA, Vuong S, Konermann L. Interactions of hemoglobin and myoglobin with their ligands CN(-), CO, and O2 monitored by electrospray ionization-mass spectrometry. Anal Chem 2015; 87:9538-45. [PMID: 26327529 DOI: 10.1021/acs.analchem.5b02506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Electrospray ionization (ESI)-mass spectrometry (MS) can provide information on protein-ligand interactions via detection of the corresponding complexes as gaseous ions. Unfortunately, some systems are prone to dissociation upon transfer into the gas phase. The reversible oxygen binding to hemoglobin (Hb) has been extensively studied in solution using a wide range of biophysical techniques. In addition to O2, ferrous (Fe(II)) Hb can bind CO. High affinity interactions with CN(-) are limited to the ferric (Fe(III)) state. In analogous fashion, CN(-), CO, and O2 bind to myoglobin (Mb). It remains unclear whether any of these ligand-bound forms can be observed by ESI-MS. In this work we demonstrate the successful detection of MbCN, while MbCO and MbO2 do not survive under ESI-MS conditions. Control experiments suggest that an older report of "MbO2" detection by ESI-MS may involve the misassignment of oxidation artifacts formed under corona discharge conditions. The situation is more favorable for ESI-MS studies on Hb. The most intense signal in the HbCN mass distribution corresponds to the expected complex with four cyanide moieties bound. Ligand loss during ESI-MS is around 20%. HbCO is detectable as well, albeit with a more noticeable level of ligand dissociation (∼50%) which produces the 2CO-bound state as the highest intensity ion in the spectrum. In addition, our data suggest that low levels of HbO2 can survive the transition into the gas phase, evident from +64 Da and +128 Da signals that can be assigned to Hb carrying two and four oxygen molecules, respectively. The application of collisional activation induces neutral ligand loss for all three Hb derivatives. It appears that this is the first report on the detection of MbCN, HbCO, and HbO2 in the gas phase. We hope that this work will pave the way towards future spectroscopic investigations of desolvated Mb and Hb, complementing the extensive literature on CN(-), CO, and O2 bound globins in the condensed phase.
Collapse
Affiliation(s)
- Modupeola A Sowole
- Department of Chemistry, The University of Western Ontario , London, Ontario N6A 5B7, Canada
| | - Stephanie Vuong
- Department of Chemistry, The University of Western Ontario , London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario , London, Ontario N6A 5B7, Canada
| |
Collapse
|
33
|
Boeri Erba E, Petosa C. The emerging role of native mass spectrometry in characterizing the structure and dynamics of macromolecular complexes. Protein Sci 2015; 24:1176-92. [PMID: 25676284 DOI: 10.1002/pro.2661] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 12/31/2022]
Abstract
Mass spectrometry (MS) is a powerful tool for determining the mass of biomolecules with high accuracy and sensitivity. MS performed under so-called "native conditions" (native MS) can be used to determine the mass of biomolecules that associate noncovalently. Here we review the application of native MS to the study of protein-ligand interactions and its emerging role in elucidating the structure of macromolecular assemblies, including soluble and membrane protein complexes. Moreover, we discuss strategies aimed at determining the stoichiometry and topology of subunits by inducing partial dissociation of the holo-complex. We also survey recent developments in "native top-down MS", an approach based on Fourier Transform MS, whereby covalent bonds are broken without disrupting non-covalent interactions. Given recent progress, native MS is anticipated to play an increasingly important role for researchers interested in the structure of macromolecular complexes.
Collapse
Affiliation(s)
- Elisabetta Boeri Erba
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV, IBS, F-38044, Grenoble, France.,Centre National de la Recherche Scientifique (CNRS), IBS, F-38044, Grenoble, France
| | - Carlo Petosa
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, F-38044, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV, IBS, F-38044, Grenoble, France.,Centre National de la Recherche Scientifique (CNRS), IBS, F-38044, Grenoble, France
| |
Collapse
|
34
|
Otsuka Y, Minamisawa T. Evaluation of intermolecular association of glycosaminoglycan oligosaccharides using nanoelectrospray ionization mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:669-678. [PMID: 26353989 DOI: 10.1255/ejms.1376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study examines the non-covalent interactions between glycosaminoglycan (GAG) oligosaccharides using nanoelectrospray ionization mass spectrometry (nanoESI-MS). It is the first time that interactions between oligosaccharides have been observed using MS. The importance of interactions between GAGs has recently attracted much interest because they are related to biological functions. For instance, hyaluronic acid (HA) is known to associate with chondroitin sulfates (CSs), although the details of the interaction remain unclear. In general, non-covalent interactions between glycans are too weak to detect by general means. In this work, we applied nanoESI-MS with high sensitivity, which is widely used to observe non-covalent interactions, to investigate the interaction between HA and CSs. HA and CS oligosaccharides are used to discuss the results in a simplified manner. Our approach is aimed at interpreting the behavior of GAG polysaccharides from the information obtained using the oligosaccharides. HA and CS tetrasaccharides were demonstrated to associate to form heterodimer ions that were easily detected using nanoESI-MS. We also determined the stoichiometry of the interaction and calculated the K(d) values of the interactions between HA and CS tetrasaccharides. How these structures affect the strength and stability of the non-covalent complexes is discussed. Further study of the interactions between HA and CS oligosaccharides will clarify the biological meaning of the coexistence of HA and CS in body fluids and tissues.
Collapse
Affiliation(s)
- Yuya Otsuka
- Central Research Laboratories, Seikagaku Corporation, 1253, Tateno 3-chome, Higashiyamato-shi, Tokyo, 207-0021, Japan.
| | - Toshikazu Minamisawa
- Central Research Laboratories, Seikagaku Corporation, 1253, Tateno 3-chome, Higashiyamato-shi, Tokyo, 207-0021, Japan.
| |
Collapse
|
35
|
Carrer DC, Higa LH, Tesoriero MVD, Morilla MJ, Roncaglia DI, Romero EL. Structural features of ultradeformable archaeosomes for topical delivery of ovalbumin. Colloids Surf B Biointerfaces 2014; 121:281-9. [DOI: 10.1016/j.colsurfb.2014.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/03/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
|
36
|
Maple HJ, Scheibner O, Baumert M, Allen M, Taylor RJ, Garlish RA, Bromirski M, Burnley RJ. Application of the Exactive Plus EMR for automated protein-ligand screening by non-covalent mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1561-8. [PMID: 24861608 DOI: 10.1002/rcm.6925] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 05/12/2023]
Abstract
RATIONALE Non-covalent mass spectrometry (MS) offers considerable potential for protein-ligand screening in drug discovery programmes. However, there are some limitations with the time-of-flight (TOF) instrumentation typically employed that restrict the application of non-covalent MS in industrial laboratories. METHODS An Exactive Plus EMR mass spectrometer was investigated for its ability to characterise non-covalent protein-small molecule interactions. Nano-electrospray ionisation (nanoESI) infusion was achieved with a TriVersa NanoMate. The transport multipole and ion lens voltages, dissociation energies and pressure in the Orbitrap™ were optimised. Native MS was performed, with ligand titrations to judge retention of protein-ligand interactions, serial dilutions of native proteins as an indication of sensitivity, and a heterogeneous protein analysed for spectral resolution. RESULTS Interactions between native proteins and ligands are preserved during analysis on the Exactive Plus EMR, with the binding affinities determined in good agreement with expected values. High spectral resolution allows baseline separation of adduct ions, which should improve the accuracy and limit of detection for measuring ligand interactions. Data are also presented showing baseline resolution of glycoforms of a highly glycosylated protein, allowing binding of a fragment molecule to be detected. CONCLUSIONS The high sensitivity and spectral resolution achievable with the Orbitrap technology confer significant advantages over TOF mass spectrometers, and offer a solution to current limitations regarding throughput, data analysis and sample requirements. A further benefit of improved spectral resolution is the possibility of using heterogeneous protein samples such as glycoproteins for fragment screening. This would significantly expand the scope of applicability of non-covalent MS in the pharmaceutical and other industries.
Collapse
|
37
|
Landreh M, Alvelius G, Johansson J, Jörnvall H. Protective effects of dimethyl sulfoxide on labile protein interactions during electrospray ionization. Anal Chem 2014; 86:4135-9. [PMID: 24754426 DOI: 10.1021/ac500879c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrospray ionization mass spectrometry is a valuable tool to probe noncovalent interactions. However, the integrity of the interactions in the gas-phase is heavily influenced by the ionization process. Investigating oligomerization and ligand binding of transthyretin (TTR) and the chaperone domain from prosurfactant protein C, we found that dimethyl sulfoxide (DMSO) can improve the stability of the noncovalent interactions during the electrospray process, both regarding ligand binding and the protein quaternary structure. Low amounts of DMSO can reduce in-source dissociation of native protein oligomers and their interactions with hydrophobic ligands, even under destabilizing conditions. We interpret the effects of DMSO as being derived from its enrichment in the electrospray droplets during evaporation. Protection of labile interactions can arise from the decrease in ion charges to reduce the contributions from Coulomb repulsions, as well as from the cooling effect of adduct dissociation. The protective effects of DMSO on labile protein interactions are an important property given its widespread use in protein analysis by electrospray ionization mass spectrometry (ESI-MS).
Collapse
Affiliation(s)
- Michael Landreh
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, S-171 77, Sweden
| | | | | | | |
Collapse
|
38
|
Davison J, Dorival J, Rabeharindranto H, Mazon H, Chagot B, Gruez A, Weissman KJ. Insights into the function of trans-acyl transferase polyketide synthases from the SAXS structure of a complete module. Chem Sci 2014. [DOI: 10.1039/c3sc53511h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Combined analysis by SAXS, NMR and homology modeling reveals the structure of an apo module from a trans-acyltransferase polyketide synthase.
Collapse
Affiliation(s)
- Jack Davison
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| | - Jonathan Dorival
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| | - Hery Rabeharindranto
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| | - Hortense Mazon
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| | - Benjamin Chagot
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| | - Arnaud Gruez
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| | - Kira J. Weissman
- Molecular and Structural Enzymology Group
- Université de Lorraine
- Vandœuvre-Lès-Nancy, France
| |
Collapse
|
39
|
Konermann L, Vahidi S, Sowole MA. Mass Spectrometry Methods for Studying Structure and Dynamics of Biological Macromolecules. Anal Chem 2013; 86:213-32. [DOI: 10.1021/ac4039306] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Siavash Vahidi
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Modupeola A. Sowole
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| |
Collapse
|
40
|
Vahidi S, Stocks BB, Konermann L. Partially Disordered Proteins Studied by Ion Mobility-Mass Spectrometry: Implications for the Preservation of Solution Phase Structure in the Gas Phase. Anal Chem 2013; 85:10471-8. [DOI: 10.1021/ac402490r] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Siavash Vahidi
- Departments
of Chemistry
and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Bradley B. Stocks
- Departments
of Chemistry
and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Lars Konermann
- Departments
of Chemistry
and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
41
|
Abstract
Native state mass spectrometry (MS) has been recognised as a rapid, sensitive, and high throughput method to directly investigate protein-ligand interactions for some time, however there are few examples reporting this approach as a screening method to identify relevant protein–fragment interactions in fragment-based drug discovery (FBDD). In this paper an overview of native state MS will be presented, highlighting the attractive properties of this method within the context of fragment screening applications. A summary of published examples using MS for fragment screening will be described and reflection on the outlook for the future adoption and implementation of native state MS as a complementary fragment screening method will be presented.
Collapse
|
42
|
Cubrilovic D, Biela A, Sielaff F, Steinmetzer T, Klebe G, Zenobi R. Quantifying protein-ligand binding constants using electrospray ionization mass spectrometry: a systematic binding affinity study of a series of hydrophobically modified trypsin inhibitors. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1768-77. [PMID: 22869298 DOI: 10.1007/s13361-012-0451-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/12/2012] [Accepted: 07/17/2012] [Indexed: 05/22/2023]
Abstract
NanoESI-MS is used for determining binding strengths of trypsin in complex with two different series of five congeneric inhibitors, whose binding affinity in solution depends on the size of the P3 substituent. The ligands of the first series contain a 4-amidinobenzylamide as P1 residue, and form a tight complex with trypsin. The inhibitors of the second series have a 2-aminomethyl-5-chloro-benzylamide as P1 group, and represent a model system for weak binders. The five different inhibitors of each group are based on the same scaffold and differ only in the length of the hydrophobic side chain of their P3 residue, which modulates the interactions in the S3/4 binding pocket of trypsin. The dissociation constants (K(D)) for high affinity ligands investigated by nanoESI-MS ranges from 15 nM to 450 nM and decreases with larger hydrophobic P3 side chains. Collision-induced dissociation (CID) experiments of five trypsin and benzamidine-based complexes show a correlation between trends in K(D) and gas-phase stability. For the second inhibitor series we could show that the effect of imidazole, a small stabilizing additive, can avoid the dissociation of the complex ions and as a result increases the relative abundance of weakly bound complexes. Here the K(D) values ranging from 2.9 to 17.6 μM, some 1-2 orders of magnitude lower than the first series. For both ligand series, the dissociation constants (K(D)) measured via nanoESI-MS were compared with kinetic inhibition constants (K(i)) in solution.
Collapse
Affiliation(s)
- Dragana Cubrilovic
- Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
43
|
Hilton GR, Benesch JLP. Two decades of studying non-covalent biomolecular assemblies by means of electrospray ionization mass spectrometry. J R Soc Interface 2012; 9:801-16. [PMID: 22319100 PMCID: PMC3306659 DOI: 10.1098/rsif.2011.0823] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/16/2012] [Indexed: 12/31/2022] Open
Abstract
Mass spectrometry (MS) is a recognized approach for characterizing proteins and the complexes they assemble into. This application of a long-established physico-chemical tool to the frontiers of structural biology has stemmed from experiments performed in the early 1990s. While initial studies focused on the elucidation of stoichiometry by means of simple mass determination, developments in MS technology and methodology now allow researchers to address questions of shape, inter-subunit connectivity and protein dynamics. Here, we chart the remarkable rise of MS and its application to biomolecular complexes over the last two decades.
Collapse
Affiliation(s)
| | - Justin L. P. Benesch
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX3 1QZ, UK
| |
Collapse
|
44
|
Brand GD, Salbo R, Jørgensen TJD, Bloch C, Boeri Erba E, Robinson CV, Tanjoni I, Moura-da-Silva AM, Roepstorff P, Domont GB, Perales J, Valente RH, Neves-Ferreira AGC. The interaction of the antitoxin DM43 with a snake venom metalloproteinase analyzed by mass spectrometry and surface plasmon resonance. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:567-73. [PMID: 22549991 DOI: 10.1002/jms.2990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
DM43 is a circulating dimeric antitoxin isolated from Didelphis aurita, a South American marsupial naturally immune to snake envenomation. This endogenous inhibitor binds non-covalently to jararhagin, the main hemorrhagic metalloproteinase from Bothrops jararaca snake venom, and efficiently neutralizes its toxicity. The aim of this study was to apply mass spectrometry (MS) and surface plasmon resonance (SPR) to improve the molecular characterization of this heterocomplex. The stoichiometry of the interaction was confirmed by nanoelectrospray ionization-quadrupole-time-of-flight MS; from native solution conditions, the complex showed a molecular mass of ~94 kDa, indicating that one molecule of jararhagin (50 kDa) interacts with one monomer of DM43 (43 kDa). Although readily observed in solution, the dimeric structure of the inhibitor was barely preserved in the gas phase. This result suggests that, in contrast to the toxin-antitoxin complex, hydrophobic interactions are the primary driving force for the inhibitor dimerization. For the real-time interaction analysis, the toxin was captured on a sensor chip derivatized with the anti-jararhagin monoclonal antibody MAJar 2. The sensorgrams obtained after successive injections of DM43 in a concentration series were globally fitted to a simple bimolecular interaction, yielding the following kinetic rates for the DM43/jararhagin interaction: k(a) = 3.54 ± 0.03 × 10(4) M(-1) s(-1) and k(d) = 1.16 ± 0.07 × 10(-5) s(-1), resulting in an equilibrium dissociation constant (K(D) ) of 0.33 ± 0.06 nM. Taken together, MS and SPR results show that DM43 binds to its target toxin with high affinity and constitute the first accurate quantitative study on the extent of the interaction between a natural inhibitor and a metalloproteinase toxin, with unequivocal implications for the use of this kind of molecule as template for the rational development of novel antivenom therapies.
Collapse
Affiliation(s)
- Guilherme D Brand
- Laboratório de Espectrometria de Massa, Embrapa-Recursos Genéticos e Biotecnologia, Estação Parque Biológico, Final W5, Asa Norte, 70770-900, Brasília, DF, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Liu Y, Su B, Wang X. Study on the noncovalent interactions of saikosaponins and cytochrome c by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:719-27. [PMID: 22368050 DOI: 10.1002/rcm.6151] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
RATIONALE The study of interactions between protein and pharmaceutical molecules including natural extracts has become of increasing interest in biological and biomedical research. An investigation of the interaction between saikosaponins and cytochrome c (Cyt c) by electrospray ionization mass spectrometry (ESI-MS) is described in this study. Saikosaponins are found in Bupleurum falcatum (a flowering plant), and they are glycosides that consist of saccharides and the sapogenins of triterpenoids. METHODS Seven model molecules of saccharides and triterpenes, namely maltose (Mal II), maltotriose (Mal III), raffinose (Raf), and stachyose (Sta), glycyrrhetinic acid (Gly), ursolic acid (Urs) and oleanic acid (Ole), were chosen to perform a series of ESI-MS control experiments for the exploration of the interaction groups in saikosaponins with Cyt c. The dissociation constants of detected noncovalent complexes were determined by using a direct ESI-MS assay. RESULTS We have observed in the ESI mass spectra the formation of Cyt c complexes with saikosaponins a and c, and these saccharides, with 1:1 and 1:2 stoichiometry. Our results showed that no complex ions of triterpenes and Cyt c were detected in the ESI-MS and similar Kd values were obtained for the Cyt c complexes of saikosaponins and saccharides. This demonstrates that the glycosyl moiety in the saikosaponins is the effective interaction group with Cyt c. We propose that saikosaponins and saccharides interact with Cyt c by hydrogen bonds. The binding affinity of these six ligands with Cyt c is shown to be in the order Ssa > Ssc > Raf, Mal III > Sta ≥ Mal II. CONCLUSIONS The ESI-MS methodology presented in this study enables us to investigate the interactions of saikosaponins with Cyt c, and allows the direct determination of binding constants. These results could guide further research for providing insights into the structure-binding relationship of ligands with Cyt c.
Collapse
Affiliation(s)
- Yingzhi Liu
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, PR China
| | | | | |
Collapse
|
46
|
Kitova EN, El-Hawiet A, Schnier PD, Klassen JS. Reliable determinations of protein-ligand interactions by direct ESI-MS measurements. Are we there yet? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:431-41. [PMID: 22270873 DOI: 10.1007/s13361-011-0311-9] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/25/2011] [Accepted: 11/29/2011] [Indexed: 05/11/2023]
Abstract
The association-dissociation of noncovalent interactions between protein and ligands, such as other proteins, carbohydrates, lipids, DNA, or small molecules, are critical events in many biological processes. The discovery and characterization of these interactions is essential to a complete understanding of biochemical reactions and pathways and to the design of novel therapeutic agents that may be used to treat a variety of diseases and infections. Over the last 20 y, electrospray ionization mass spectrometry (ESI-MS) has emerged as a versatile tool for the identification and quantification of protein-ligand interactions in vitro. Here, we describe the implementation of the direct ESI-MS assay for the determination of protein-ligand binding stoichiometry and affinity. Additionally, we outline common sources of error encountered with these measurements and various strategies to overcome them. Finally, we comment on some of the outstanding challenges associated with the implementation of the assay and highlight new areas where direct ESI-MS measurements are expected to make significant contributions in the future.
Collapse
Affiliation(s)
- Elena N Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | | | | | | |
Collapse
|
47
|
Li Z, Couzijn EPA, Zhang X. Intrinsic Properties of α-Cyclodextrin Complexes with Benzoate Derivatives in the Gas Phase: An Experimental and Theoretical Study. J Phys Chem B 2012; 116:943-50. [DOI: 10.1021/jp210329a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhongshu Li
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093, Switzerland
| | - Erik P. A. Couzijn
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093, Switzerland
| | - Xiangyang Zhang
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093, Switzerland
| |
Collapse
|
48
|
Maple HJ, Garlish RA, Rigau-Roca L, Porter J, Whitcombe I, Prosser CE, Kennedy J, Henry AJ, Taylor RJ, Crump MP, Crosby J. Automated Protein–Ligand Interaction Screening by Mass Spectrometry. J Med Chem 2012; 55:837-51. [DOI: 10.1021/jm201347k] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hannah J. Maple
- School of Chemistry, University of Bristol, Cantock’s
Close, Clifton, Bristol BS8 1TS, United Kingdom
| | - Rachel A. Garlish
- UCB Pharma, 216 Bath Road, Slough, Berkshire SL1 4EN, United Kingdom
| | - Laura Rigau-Roca
- School of Chemistry, University of Bristol, Cantock’s
Close, Clifton, Bristol BS8 1TS, United Kingdom
| | - John Porter
- UCB Pharma, 216 Bath Road, Slough, Berkshire SL1 4EN, United Kingdom
| | - Ian Whitcombe
- UCB Pharma, 216 Bath Road, Slough, Berkshire SL1 4EN, United Kingdom
| | | | - Jeff Kennedy
- UCB Pharma, 216 Bath Road, Slough, Berkshire SL1 4EN, United Kingdom
| | - Alistair J. Henry
- UCB Pharma, 216 Bath Road, Slough, Berkshire SL1 4EN, United Kingdom
| | - Richard J. Taylor
- UCB Pharma, 216 Bath Road, Slough, Berkshire SL1 4EN, United Kingdom
| | - Matthew P. Crump
- School of Chemistry, University of Bristol, Cantock’s
Close, Clifton, Bristol BS8 1TS, United Kingdom
| | - John Crosby
- School of Chemistry, University of Bristol, Cantock’s
Close, Clifton, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
49
|
Mädler S, Boeri Erba E, Zenobi R. MALDI-ToF mass spectrometry for studying noncovalent complexes of biomolecules. Top Curr Chem (Cham) 2012; 331:1-36. [PMID: 22371170 DOI: 10.1007/128_2011_311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been demonstrated to be a valuable tool to investigate noncovalent interactions of biomolecules. The direct detection of noncovalent assemblies is often more troublesome than with electrospray ionization. Using dedicated sample preparation techniques and carefully optimized instrumental parameters, a number of biomolecule assemblies were successfully analyzed. For complexes dissociating under MALDI conditions, covalent stabilization with chemical cross-linking is a suitable alternative. Indirect methods allow the detection of noncovalent assemblies by monitoring the fading of binding partners or altered H/D exchange patterns.
Collapse
Affiliation(s)
- Stefanie Mädler
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | | | | |
Collapse
|
50
|
Da Silva JP, Kulasekharan R, Cordeiro C, Jockusch S, Turro NJ, Ramamurthy V. Capsular complexes of nonpolar guests with octa amine host detected in the gas phase. Org Lett 2011; 14:560-3. [PMID: 22195767 DOI: 10.1021/ol203139v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanocapsules, made up of the deep cavitand octa amine and several guests, were prepared in aqueous acidic solution and were found to be stable in the gas phase as detected by electrospray ionization mass spectrometry (ESI-MS). The observed gas phase host-guest complexes contained five positive charges and were associated with several acid molecules (HCl or HBr).
Collapse
Affiliation(s)
- José P Da Silva
- Centro de Investigação em Química do Algarve, FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | | | | | |
Collapse
|