1
|
Fan KQ, Li YY, Jin J. Ubiquitination in the T Cell Metabolism-Based Immunotherapy in Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:19-34. [PMID: 39546133 DOI: 10.1007/978-981-97-7288-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Metabolism refers to the exchange of matter and energy between the organism and the environment and the self-renewal process of matter and energy in the organism. Metabolic activities in cells provide them with energy and various substrates required for development. Naive T cells differentiate into effector T cells and memory T cells after activation, and this process is accompanied by reprogramming of metabolism-related gene expression. These metabolic changes reflect physiological changes in different stages of T cell activation and differentiation. An increasing number of studies have shown that many autoimmune diseases and organ transplantation are accompanied by disorders and imbalances in T cell metabolism. To treat these diseases, related drugs can be used to regulate T cell activation, differentiation, and function. Therefore, T cell metabolism can serve as a new potential target for regulating immune responses.
Collapse
Affiliation(s)
- Ke-Qi Fan
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.
| | - Jin Jin
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
- Center for Neuroimmunology and Health Longevity, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Yang Y, Sheng Y, Wang J, Zhou X, Li W, Zhang C, Guo L, Han C. Double-Negative T Cells Regulate Hepatic Stellate Cell Activation to Promote Liver Fibrosis Progression via NLRP3. Front Immunol 2022; 13:857116. [PMID: 35371052 PMCID: PMC8964496 DOI: 10.3389/fimmu.2022.857116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 01/30/2023] Open
Abstract
Aim We mainly explored the role and mechanism of double-negative T cells (DNTs) in liver fibrosis. Methods DNTs were co-cultured with mouse hepatic stellate cells (HSCs). Later, cell viability was detected by Cell Counting Kit-8 (CCK-8) assay; α-SMA expression was measured through fluorescence staining; TNF-α, IL-6, and MMP-9 levels were measured by ELISA; and the expression of Bcl-2, TGF-β1, NLRP3, ASC, and TNFR1 proteins in HSCs was detected by Western blotting (WB) assay. At the same time, HSC-NLRP3-/- and HSC-TNFR1-/- are used to explore the mechanism. In mouse experiments, mice were intraperitoneally injected with DNTs; afterward, the hepatic tissue fibrosis degree was detected by Masson staining, α-SMA expression was measured through immunohistochemistry (IHC) assay, and histopathological changes were detected by sirius-red staining and H&E staining. Results The results suggested that DNTs promoted HSC activation and NLRP3 activation. The effect of DNTs on activating HSC-NLRP3-/- was suppressed, and the difference was significant as compared with HSCs. HSC-TNFR1-/- activation was also inhibited. To explore the mechanism of DNT-secreted TNF-α in TNFR1-NLRP3 activation, we transfected DNTs with TNF-α siRNA; as a result, DNTs with TNF-α silencing did not significantly affect HSC activation. DNTs promoted hepatic tissue fibrosis progression and HSC activation; after treatment with NLRP3 inhibitor, the effect of DNTs on promoting fibrosis was suppressed. Conclusion We discovered that DNTs played an important role in liver fibrosis and that DNTs promoted HSC activation via the TNF-α-TNFR1-NLRP3 signal axis, thus further promoting liver fibrosis progression.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yongjia Sheng
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jin Wang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaohong Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wenyan Li
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Caiqun Zhang
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Li Guo
- Department of Center Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chenyang Han
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
3
|
Ruan S, Zhai L, Wu S, Zhang C, Guan Q. SCFAs promote intestinal double-negative T cells to regulate the inflammatory response mediated by NLRP3 inflammasome. Aging (Albany NY) 2021; 13:21470-21482. [PMID: 34491906 PMCID: PMC8457588 DOI: 10.18632/aging.203487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/11/2021] [Indexed: 01/16/2023]
Abstract
Short-chain fatty acids (SCFAs) are a product of intestinal bacteria metabolism. Our previous study has found that intestinal bacteria in patients with Alzheimer's disease (AD) can promote the activation of NLRP3 inflammasome and mediate neuroinflammation. In this study, we mainly explored the regulation of intestinal microenvironmental immunity by intestinal bacterial metabolite SCFAs and the mechanism of NLRP3 activation. First, wild-type (WT) and APP/PS1 mice were intervened with SCFAs. As a result, the proportion of double-negative T cells (CD3+CD4-CD8-, DNTs) in the intestine was increased, SCFAs could promote the expression of intestinal NLRP3 and inflammatory factors (IL-18, IL-6 and TNF-α). Moreover, SCAFs could also promote the level of inflammatory factors in the cerebrospinal fluid (CSF) of mice and aggravate the cognitive impairment in AD mice. CD3+ T cells isolated from the spleen were pre-treated with SCFAs, followed by detection of the proportion of DNTs. Consequently, SCFAs could promote the formation of DNTs, activate OX40 signal and simultaneously up-regulate the protein expression of Bcl-2, Bcl-xl and Survivin. Knockdown of OX40 could inhibit SCFAs-induced differentiation of DNTs. The co-culture of DNTs and intestinal macrophages showed that DNTs could activate Fas/FasL-TNF-α signal and induce the activation of NLRP3 inflammasome. In AD mouse models, treatment with Fas and TNFR1 inhibitors could significantly inhibit SCFAs-induced NLRP3 activation and inflammatory factors, while attenuate the inflammatory response in the brain tissue of mice and improve the cognitive ability of mice, however, without significant effect on the level of DNTs. The present study showed that SCFAs can promote the formation of DNTs through OX40. DNTs could induce the activation of NLRP3 inflammasome and the release of inflammatory factors in macrophages through Fas/FasL-TNF-α signals, thereby increasing the level of inflammatory factors in the central nervous system. When Fas and TNFR1 were inhibited by suppressing the functions of DNTs and macrophages, the activation of NLRP3 was inhibited. DNTs are affected by SCFAs, which is a new mechanism of neuroinflammation in AD.
Collapse
Affiliation(s)
- Shuiliang Ruan
- Department of Center Laboratory, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Liping Zhai
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Shasha Wu
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Caiqun Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Qiaobing Guan
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| |
Collapse
|
4
|
Wang X, Kong B, He B, Wei L, Zhu J, Jin Y, Shan Y, Wang W, Pan C, Fu Z. 8:2 Fluorotelomer alcohol causes immunotoxicity and liver injury in adult male C57BL/6 mice. ENVIRONMENTAL TOXICOLOGY 2019; 34:141-149. [PMID: 30536526 DOI: 10.1002/tox.22668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 06/09/2023]
Abstract
8:2 Fluorotelomer alcohol (8:2 FTOH) is widely used in houseware and industrial goods and is ubiquitous in the surrounding environment. 8:2 FTOH has been linked to hepatoxicity, nephrotoxicity, and reproductive toxicity, as well as endocrine-disrupting effects. However, as of yet, the research regarding immunotoxicity of 8:2 FTOH remains largely limited. In the present study, adult male C57BL/6 mice were administered with 10, 30, and 100 mg/kg/d 8:2 FTOH by gavage for 28 days to investigate its immunotoxicity in vivo. The results showed that exposure to 8:2 FTOH caused increases in liver weight and histological changes in the liver, including vacuolation, cell swelling, immune cell infiltration, karyopyknosis and nuclear swelling. No histological change in either the spleen or the thymus was observed after administration of 8:2 FTOH. In addition, exposure to 8:2 FTOH reduced the concentration of IL-1β in serum, and mRNA levels of IL-1β, IL-6, and TNF-α in both the thymus and spleen. CXCL-1 mRNA expression was downregulated in both the liver and thymus after 8:2 FTOH administration, while only IL-1β mRNA expression was upregulated in the liver. Moreover, the exposure of primary cultured splenocytes to 8:2 FTOH inhibited the ConA-stimulated proliferation of splenocytes at concentrations of 30 and 100 μM, and the LPS-stimulated proliferation of splenocytes at 100 μM. Furthermore, 8:2 FTOH inhibited the level of secreted IFN-γ in ConA-stimulated splenocytes. The results obtained in the study demonstrated that 8:2 FTOH posed potential immunotoxicity and liver injury in mice. Our findings will provide novel data for the health risk assessment of 8:2 FTOH.
Collapse
Affiliation(s)
- Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Baida Kong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Lai Wei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yudong Shan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Weitao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Chunqiang Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
5
|
Zhang X, Zhou X, Li L, Sun M, Gao Q, Zhang P, Tang J, He Y, Zhu D, Xu Z. Chronic hypoxia in pregnancy affects thymus development in Balb/c mouse offspring via IL2 Signaling. Mol Reprod Dev 2016; 83:337-46. [PMID: 26918321 DOI: 10.1002/mrd.22630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/29/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Xiaopeng Zhang
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Xiuwen Zhou
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Lingjun Li
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Miao Sun
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Qingqing Gao
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Pengjie Zhang
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Jiaqi Tang
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Yu He
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Di Zhu
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Zhice Xu
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
- Center for Perinatal Biology; Loma Linda University; California
| |
Collapse
|
6
|
Pearson H, Britt RD, Pabelick CM, Prakash Y, Amrani Y, Pandya HC. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone. Pediatr Res 2015; 78:650-6. [PMID: 26331770 PMCID: PMC4725051 DOI: 10.1038/pr.2015.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 06/11/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. METHODS Cultured fetal human ASM cells stimulated with TNF-α (0-20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. RESULTS CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. CONCLUSION Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases.
Collapse
MESH Headings
- Antibodies/pharmacology
- Cells, Cultured
- Chemokine CCL5/genetics
- Chemokine CCL5/metabolism
- Chemokine CXCL10/genetics
- Chemokine CXCL10/metabolism
- Chemotaxis, Leukocyte/drug effects
- Cytokines/immunology
- Cytokines/metabolism
- Dose-Response Relationship, Drug
- Fluticasone/pharmacology
- Gestational Age
- Glucocorticoids/pharmacology
- Humans
- Interleukin-8/genetics
- Interleukin-8/metabolism
- Lung/drug effects
- Lung/embryology
- Lung/immunology
- Lung/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation
- Receptors, Glucocorticoid/agonists
- Receptors, Glucocorticoid/metabolism
- Receptors, Tumor Necrosis Factor, Type I/drug effects
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/drug effects
- Receptors, Tumor Necrosis Factor, Type II/immunology
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Serine
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Helen Pearson
- Department of Infection, Immunity and inflammation, University of Leicester, Leicester, UK
| | - Rodney D. Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Christine M. Pabelick
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Y.S. Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Yassine Amrani
- Department of Infection, Immunity and inflammation, University of Leicester, Leicester, UK
- Institute of Lung Health, Glenfield Hospital Leicester, Leicester, UK
| | - Hitesh C. Pandya
- Department of Infection, Immunity and inflammation, University of Leicester, Leicester, UK
- Institute of Lung Health, Glenfield Hospital Leicester, Leicester, UK
| |
Collapse
|
7
|
Kermani H, Goffinet L, Mottet M, Bodart G, Morrhaye G, Dardenne O, Renard C, Overbergh L, Baron F, Beguin Y, Geenen V, Martens HJ. Expression of the growth hormone/insulin-like growth factor axis during Balb/c thymus ontogeny and effects of growth hormone upon ex vivo T cell differentiation. Neuroimmunomodulation 2012; 19:137-47. [PMID: 22261974 DOI: 10.1159/000328844] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/13/2011] [Indexed: 02/02/2023] Open
Abstract
AIMS We address the question of the expression and the role of the growth hormone/insulin-like growth factor (GH/IGF) axis in the thymus. METHODS Using RT-qPCR, the expression profile of various components of the somatotrope GH/IGF axis was measured in different thymic cell types and during thymus embryogenesis in Balb/c mice. The effect of GH on T cell differentiation was explored via thymic organotypic culture. RESULTS Transcription of Gh, Igf1, Igf2 and their related receptors predominantly occurred in thymic epithelial cells (TEC), while a low level of Gh and Igf1r transcription was also evidenced in thymic T cells (thymocytes). Gh, Ghr, Ins2, Igf1, Igf2, and Igfr1 displayed distinct expression profiles depending on the developmental stage. The protein concentrations of IGF-1 and IGF-2 were in accordance with the profile of their gene expression. In fetal thymus organ cultures (FTOC) derived from Balb/c mice, treatment with exogenous GH resulted in a significant increase of double negative CD4-CD8- T cells and CD4+ T cells, together with a decrease in double positive CD4+CD8+ T cells. These changes were inhibited by concomitant treatment with GH and the GH receptor (GHR) antagonist pegvisomant. However, GH treatment also induced a significant decrease in FTOC Gh, Ghr and Igf1 expression. CONCLUSION These data show that the thymotropic properties of the somatotrope GH/IGF-1 axis involve an interaction between exogenous GH and GHR expressed by TEC. Since thymic IGF-1 is not increased by GH treatment, the effects of GH upon T cell differentiation could implicate a different local growth factor or cytokine.
Collapse
Affiliation(s)
- Hamid Kermani
- Center of Immunology, Institute of Pathology, University of Liège, CHU-B23, Liège-Sart Tilman, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Dervović D, Zúñiga-Pflücker JC. Positive selection of T cells, an in vitro view. Semin Immunol 2010; 22:276-86. [DOI: 10.1016/j.smim.2010.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 04/23/2010] [Indexed: 12/16/2022]
|
9
|
Raychaudhuri SP, Nguyen CT, Raychaudhuri SK, Gershwin ME. Incidence and nature of infectious disease in patients treated with anti-TNF agents. Autoimmun Rev 2009; 9:67-81. [PMID: 19716440 DOI: 10.1016/j.autrev.2009.08.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2009] [Indexed: 12/19/2022]
Abstract
Tumor necrosis factor alpha (TNF-alpha) inhibitors offer a targeted therapeutic strategy that contrasts with the nonspecific immunosuppressive agents traditionally used to treat most inflammatory diseases. These biologic agents have had a significant impact in ameliorating the signs and symptoms of inflammatory rheumatoid disease and improving patient function. From the onset of clinical trials, a central concern of cytokine blockade has been a potential increase in susceptibility to infections. Not surprisingly, a variety of infections have been reported in association with the use of TNF-alpha inhibitor agents. In particular, there is evidence suggesting an increased rate of granulomatous infections in patients treated with monoclonal TNF-alpha inhibitors. This review provides the incidence and nature of infections in patients treated with TNF-alpha inhibitor agents and reminds the clinician of the required vigilance in monitoring patients.
Collapse
|
10
|
Family-based analysis of tumor necrosis factor and lymphotoxin-alpha tag polymorphisms with type 1 diabetes in the population of South Croatia. Hum Immunol 2009; 70:195-9. [PMID: 19167443 DOI: 10.1016/j.humimm.2008.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 12/16/2008] [Accepted: 12/23/2008] [Indexed: 11/22/2022]
Abstract
Tumor necrosis factor (TNF) and lymphotoxin-alpha (LTA) are cytokines with a wide range of inflammatory and immunomodulatory activities. Type 1 diabetes is an autoimmune disease characterized by destruction of insulin-producing pancreatic beta cells. The aim of the present study was to evaluate the association of polymorphisms in the TNF/LTA gene region with susceptibility to type 1 diabetes. We investigated 11 TNF/LTA tag polymorphisms, designed to capture the majority of common variation in the region, in 160 trio families from South Croatia. We observed overtransmission of alleles from parents to affected child at five variants: (rs909253, allele C, p = 1.2x10(-4); rs1041981, allele A, p = 1.1x10(-4); rs1800629 (G-308A), allele A, p = 1.2x10(-4); rs361525 (G-238A), allele G, p = 8.2x10(-3) and rs3093668, allele G, p = 0.014). We also identified overtransmission of the rs1800629(G-308A)-rs361525(G-238A) A-G haplotype, p = 2.384x10(-5). The present study found an association of the TNF/LTA gene region with type 1 diabetes. A careful assessment of TNF/LTA variants adjusted for linkage disequilibrium with HLA loci is needed to further clarify the role of these genes in type 1 diabetes susceptibility in the population of South Croatia.
Collapse
|