1
|
Wei X, Sui K, Peng Y, Li S, Fang Y, Chen Z, Du X, Xie X, Tang H, Wen Q, Li J, He M, Cheng Q, Zhang W. Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Loaded Mir-29-3p Targets AhR to Improve Juvenile Idiopathic Arthritis via Inhibiting the Expression of IL-22 in CD4 + T Cell. Stem Cell Rev Rep 2025; 21:536-553. [PMID: 39621151 DOI: 10.1007/s12015-024-10827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) is one of the most common chronic inflammatory rheumatic diseases in children. Human umbilical cord mesenchymal stem cells (HUCMSCs)-derived exosomes (HUCMSCs-Exos) are involved in autoimmune diseases. This study investigates the mechanism of HUCMSC-Exos in improving JIA by targeting AhR through delivery of miR-29-3p to inhibit IL-22 expression in CD4+ T cells. METHODS Collagen induced arthritis (CIA) mouse model was established, and mice were treated with HUCMSCs-Exos and miR-29-3p antagomir, respectively. CD4+ T cells from JIA patients were used for cell experiments. The mechanism was elucidated by histopathological staining, transmission electron microscopy (TEM), immunohistochemistry, CCK-8 assay, flow cytometry, Western blotting, real-time PCR, and enzyme-linked immunosorbent assay (ELISA), laser confocal microscopy, and luciferase assay. RESULT JIA-CD4+ T cells showed higher expression of IL-22 and lower the levels of miR-29-3p, while HUCMSCs-Exos significantly inhibited the expression of IL-22 and increased the levels of miR-29a-3p, miR-29b-3p, and miR-29c-3p in CD4+ T cells from JIA patients. The expression of miR-29a-3p, miR-29b-3p, miR-29c-3p, AhR, and IL-22 in CD4+ T cells was significantly reversed when co-cultured with HUCMSCs transfected with miR-29-3p mimic or miR-29-3p inhibitor. In vivo experiment, HUCMSCs-Exos ameliorated CIA mice by delivering miR-29-3p to inhibit AhR, IL-22, IL-22R1, MMP3, and MMP13 expression. Furthermore, HUCMSCs-Exos also deliver miR-29-3p targeting AhR expression to inhibit IL-22 in JIA-CD4 + T cells through alleviating arthritic synovial fibroblast activation. CONCLUSION HUCMSCs-Exos loaded miR-29-3p targets AhR to improve JIA via inhibiting the expression of IL-22 in CD4+ T cell, which provides a scientific basis for the treatment of JIA.
Collapse
Affiliation(s)
- Xinyi Wei
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Kunpeng Sui
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yuanyuan Peng
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Sha Li
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yu Fang
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zhi Chen
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiao Du
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xue Xie
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Haiming Tang
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - QiuYue Wen
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - JingWei Li
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Meilin He
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qin Cheng
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wei Zhang
- Pediatric Immunology and Rheumatology Department, School of Medicine, Chief Physician, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, No.1617, Riyue Avenue, Qingyang District, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Deng T, Wang Z, Geng Q, Wang Z, Jiao Y, Diao W, Xu J, Deng T, Luo J, Tao Q, Xiao C. Methylation of T and B Lymphocytes in Autoimmune Rheumatic Diseases. Clin Rev Allergy Immunol 2024; 66:401-422. [PMID: 39207646 DOI: 10.1007/s12016-024-09003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The role of abnormal epigenetic modifications, particularly DNA methylation, in the pathogenesis of autoimmune rheumatic diseases (ARDs) has garnered increasing attention. Lymphocyte dysfunction is a significant contributor to the pathogenesis of ARDs. Methylation is crucial for maintaining normal immune system function, and aberrant methylation can hinder lymphocyte differentiation, resulting in functional abnormalities that disrupt immune tolerance, leading to the excessive expression of inflammatory cytokines, thereby exacerbating the onset and progression of ARDs. Recent studies suggest that methylation-related factors have the potential to serve as biomarkers for monitoring the activity of ARDs. This review summarizes the current state of research on the impact of DNA and RNA methylation on the development, differentiation, and function of T and B cells and examines the progress of these epigenetic modifications in studies of six specific ARDs: systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, systemic sclerosis, juvenile idiopathic arthritis, and ankylosing spondylitis. Additionally, we propose that exploring the interplay between RNA methylation and DNA methylation may represent a novel direction for understanding the pathogenesis of ARDs and developing novel treatment strategies.
Collapse
Affiliation(s)
- Tiantian Deng
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zihan Wang
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Qishun Geng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Zhaoran Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yi Jiao
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wenya Diao
- Beijing University of Chinese Medicine, School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jiahe Xu
- China-Japan Friendship Hospital, Peking University, Beijing, 100029, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jing Luo
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Qingwen Tao
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
3
|
Fan S, Liu H, Li L. The REEP family of proteins: molecular targets and role in pathophysiology. Pharmacol Res 2022; 185:106477. [PMID: 36191880 DOI: 10.1016/j.phrs.2022.106477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022]
Abstract
Receptor expression-enhancing proteins (REEPs) are an evolutionarily conserved protein family that is pivotal to the structure and function of the endoplasmic reticulum (ER). The REEP family can be classified into two major subfamilies in higher species, the REEP1-4 and REEP5-6 subfamilies. Within the REEP1-4 subfamily, REEP1 and REEP2 are closely related, and REEP3 and REEP4 are similarly related. The REEP family is widely distributed in various tissues. Recent studies indicate that the REEP family is involved in many pathological and physiological processes, such as ER morphogenesis and remodeling, microtubule cytoskeleton regulation, and the trafficking and expression of G protein-coupled receptors (GPCRs). Moreover, the REEP family plays crucial roles in the occurrence and development of many diseases, including neurological diseases, diabetes, retinal diseases, cardiac diseases, infertility, obesity, oligoarticular juvenile idiopathic arthritis (OJIA), COVID-19, and cancer. In the present review, we describe the distribution and structure of the REEP family. Furthermore, we summarize the functions and the associated diseases of this family. Based on the pleiotropic actions of the REEP family, the study of its family members is crucial to understanding the relevant pathophysiological processes and developing strategies to modulate and control these related diseases. AVAILABILITY OF DATA AND MATERIAL: The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Sisi Fan
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Huimei Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
4
|
Gkoutsias A, Makis A. The role of epigenetics in childhood autoimmune diseases with hematological manifestations. Pediatr Investig 2022; 6:36-46. [PMID: 35382418 PMCID: PMC8960932 DOI: 10.1002/ped4.12309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
Autoimmune diseases with hematological manifestations are often characterized by chronicity and relapses despite treatment, and the underlying pathogenetic mechanisms remain unknown. Epigenetic alterations play a vital role in the deregulation of immune tolerance and the development of autoimmune diseases. In recent years, study of epigenetic mechanisms in both adult and childhood autoimmune disorders has been seeking to explain the pathophysiology of these heterogeneous diseases and to elucidate the interaction between genetic and environmental factors. Various mechanisms, including DNA methylation, histone modifications (chromatin remodeling), and noncoding RNAs (ncRNAs), have been studied extensively in the context of autoimmune diseases. This paper summarizes the epigenetic patterns in some of the most common childhood autoimmune disorders with hematological manifestations, based on epigenetic studies in children with primary immune thrombocytopenia (ITP), systemic lupus erythematosus (SLE), and juvenile idiopathic arthritis (JIA). Research findings indicate that methylation changes in genes expressed on T cells, modifications at a variety of histone sites, and alterations in the expression of several ncRNAs are involved in the pathogenesis of these diseases. These mechanisms not only determine the development of these diseases but also affect the severity of the clinical presentation and biochemical markers. Further studies will provide new tools for the prevention and diagnosis of childhood autoimmune disorders, and possible novel treatment options.
Collapse
Affiliation(s)
- Athanasios Gkoutsias
- Department of PediatricsFaculty of MedicineSchool of Health SciencesUniversity of IoanninaIoanninaGreece
| | - Alexandros Makis
- Department of PediatricsFaculty of MedicineSchool of Health SciencesUniversity of IoanninaIoanninaGreece
| |
Collapse
|
5
|
Harjacek M. Immunopathophysiology of Juvenile Spondyloarthritis (jSpA): The "Out of the Box" View on Epigenetics, Neuroendocrine Pathways and Role of the Macrophage Migration Inhibitory Factor (MIF). Front Med (Lausanne) 2021; 8:700982. [PMID: 34692718 PMCID: PMC8526544 DOI: 10.3389/fmed.2021.700982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Juvenile spondyloarthritis (jSpA) is a an umbrella term for heterogeneous group of related seronegative inflammatory disorders sharing common symptoms. Although it mainly affects children and adolescents, it often remains active during adulthood. Genetic and environmental factors are involved in its occurrence, although the exact underlying immunopathophysiology remains incompletely elucidated. Accumulated evidence suggests that, in affected patients, subclinical gut inflammation caused by intestinal dysbiosis, is pivotal to the future development of synovial-entheseal complex inflammation. While the predominant role of IL17/23 axis, TNF-α, and IL-7 in the pathophysiology of SpA, including jSpA, is firmly established, the role of the cytokine macrophage migration inhibitory factor (MIF) is generally overlooked. The purpose of this review is to discuss and emphasize the role of epigenetics, neuroendocrine pathways and the hypothalamic-pituitary (HPA) axis, and to propose a novel hypothesis of the role of decreased NLRP3 gene expression and possibly MIF in the early phases of jSpA development. The decreased NLRP3 gene expression in the latter, due to hypomethylation of promotor site, is (one of) the cause for inflammasome malfunction leading to gut dysbiosis observed in patients with early jSpA. In addition, we highlight the role of MIF in the complex innate, adaptive cellular and main effector cytokine network, Finally, since treatment of advanced bone pathology in SpA remains an unmet clinical need, I suggest possible new drug targets with the aim to ultimately improve treatment efficacy and long-term outcome of jSpA patients.
Collapse
Affiliation(s)
- Miroslav Harjacek
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Association of methylation level and transcript level in TRAF5 gene with ankylosing spondylitis: a case-control study. Genes Immun 2021; 22:101-107. [PMID: 34021268 DOI: 10.1038/s41435-021-00135-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 02/04/2023]
Abstract
To explore the association between methylation level and transcript level of TNF receptor-associated factor 5 (TRAF5) gene with ankylosing spondylitis (AS) in Chinese Han population. Methylation and mRNA expression level of the TRAF5 gene were tested in 98 patients and 98 healthy controls. Among the 21 CpG sites, methylation levels at eight sites were significantly different between AS patients and healthy controls. However, only three sites remained significantly different after the correction by the Benjamini-Hochberg method. Compared with controls, the CpG island of TRAF5 gene promoter was highly methylated in AS patients, and the relative mRNA expression level of TRAF5 was significantly reduced in AS patients. And the mRNA level was negatively correlated with the methylation level of TRAF5 gene in AS patients (rs = -0.453, P < 0.001). Subgroup analyses indicated that there was no significant difference in the level of methylation between groups of different status of HLA-B27 and medications in AS patients. Multiple linear regression showed that disease-modifying antirheumatic drugs could reduce methylation levels of AS patients after adjusting for the effects of other drugs. In conclusion, the hypermethylation of the TRAF5 might contribute to the pathogenesis of AS, but many open questions remain.
Collapse
|
7
|
Bellanti JA. Epigenetic studies and pediatric research. Pediatr Res 2020; 87:378-384. [PMID: 31731288 DOI: 10.1038/s41390-019-0644-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/04/2019] [Accepted: 10/21/2019] [Indexed: 02/08/2023]
Abstract
The 2020 Annual Review Issue, "Preventing Disease in the 21st Century" was selected by the Editors-in-Chief of Pediatric Research to include a variety of disease entities that confront health-care practitioners entrusted to the care of infants and children. In keeping with this mandate, this article reviews the subject of epigenetics, which impacts pediatric research from bench to bedside. Epigenetic mechanisms exert their effects through the interaction of environment, various susceptibility genes, and immunologic development and include: (1) DNA methylation; (2) posttranslational modifications of histone proteins through acetylation and methylation, and (3) RNA-mediated gene silencing by microRNA (miRNA) regulation. The effects of epigenetics during fetal life and early periods of development are first reviewed together with clinical applications of cardiovascular and metabolic disorders in later life. The relationships of epigenetics to the allergic and autoimmune diseases and cancer are next reviewed. A specific focus of the article is directed to the recent recognition that many of these disorders are driven by aberrant immune responses in which immunoregulatory events are often poorly functioning and where through interventive epigenetic measures prevention may be possible by alterations in programming of DNA during fetal and early periods as well as in later life.
Collapse
Affiliation(s)
- Joseph A Bellanti
- Departments of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, USA. .,International Center for Interdisciplinary Studies of Immunology (ICISI), Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
8
|
Tay SH, Yaung KN, Leong JY, Yeo JG, Arkachaisri T, Albani S. Immunomics in Pediatric Rheumatic Diseases. Front Med (Lausanne) 2019; 6:111. [PMID: 31231652 PMCID: PMC6558393 DOI: 10.3389/fmed.2019.00111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/03/2019] [Indexed: 02/04/2023] Open
Abstract
The inherent complexity in the immune landscape of pediatric rheumatic disease necessitates a holistic system approach. Uncertainty in the mechanistic workings and etiological driving forces presents difficulty in personalized treatments. The development and progression of immunomics are well suited to deal with this complexity. Immunomics encompasses a spectrum of biological processes that entail genomics, transcriptomics, epigenomics, proteomics, and cytomics. In this review, we will discuss how various high dimensional technologies in immunomics have helped to grow a wealth of data that provide salient clues and biological insights into the pathogenesis of autoimmunity. Interfaced with critical unresolved clinical questions and unmet medical needs, these platforms have helped to identify candidate immune targets, refine patient stratification, and understand treatment response or resistance. Yet the unprecedented growth in data has presented both opportunities and challenges. Researchers are now facing huge heterogeneous data sets from different origins that need to be integrated and exploited for further data mining. We believe that the utilization and integration of these platforms will help unravel the complexities and expedite both discovery and validation of clinical targets.
Collapse
Affiliation(s)
| | | | - Jing Yao Leong
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Joo Guan Yeo
- Duke-NUS Medical School, Singapore, Singapore.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Duke-NUS Medical School, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Salvatore Albani
- Duke-NUS Medical School, Singapore, Singapore.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
9
|
Ankylosing spondylitis is associated with aberrant DNA methylation of IFN regulatory factor 8 gene promoter region. Clin Rheumatol 2019; 38:2161-2169. [PMID: 30900036 DOI: 10.1007/s10067-019-04505-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/23/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To investigate the role of methylation levels of the IFN regulatory factor 8 (IRF8) gene promoter in the development of ankylosing spondylitis (AS). METHODS In this study, we compared the methylation levels of the IRF8 gene promoter between 99 AS patients and 99 healthy controls using MethylTarget approach. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) was performed to compare the mRNA levels of the IRF8 gene in the other 19 AS patients and 19 healthy controls. RESULTS Differential methylation was found in 91 CpG sites of the IRF8 gene promoter, and 4 CpG regions were highly methylated in AS patients compared to healthy controls (p < 0.05). In the verification stage, we found that the mRNA levels of the IRF8 gene in AS patients were significantly lower than that in controls (AS 0.77 (0.39-1.74), P = 0.038). Positive correlations between methylation of the IRF8 gene and the duration of disease, BASFI, and ESR were observed in AS patients. CONCLUSIONS We found a significant hypermethylation of the IRF8 gene promoter and a downregulation of the mRNA levels of the IRF8 gene in AS patients. This suggests that aberrant methylation of the IRF8 gene promoter may probably contribute to the development and pathogenesis of AS through regulating the expression of mRNA.
Collapse
|
10
|
Parashar S, Cheishvili D, Mahmood N, Arakelian A, Tanvir I, Khan HA, Kremer R, Mihalcioiu C, Szyf M, Rabbani SA. DNA methylation signatures of breast cancer in peripheral T-cells. BMC Cancer 2018; 18:574. [PMID: 29776342 PMCID: PMC5960123 DOI: 10.1186/s12885-018-4482-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 05/07/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Immune surveillance acts as a defense mechanism in cancer, and its disruption is involved in cancer progression. DNA methylation reflects the phenotypic identity of cells and recent data suggested that DNA methylation profiles of T cells and peripheral blood mononuclear cells (PBMC) are altered in cancer progression. METHODS We enrolled 19 females with stage 1 and 2, nine with stage 3 and 4 and 9 age matched healthy women. T cells were isolated from peripheral blood and extracted DNA was subjected to Illumina 450 K DNA methylation array analysis. Raw data was analyzed by BMIQ, ChAMP and ComBat followed by validation of identified genes by pyrosequencing. RESULTS Analysis of data revealed ~ 10,000 sites that correlated with breast cancer progression and established a list of 89 CG sites that were highly correlated (p < 0.01, r > 0.7, r < - 0.7) with breast cancer progression. The vast majority of these sites were hypomethylated and enriched in genes with functions in the immune system. CONCLUSIONS The study points to the possibility of using DNA methylation signatures as a noninvasive method for early detection of breast cancer and its progression which need to be tested in clinical studies.
Collapse
Affiliation(s)
- Surabhi Parashar
- Department of Medicine, McGill University Health Center, 1001 Décarie Blvd., Room EM1.3232, Montréal, QC, H4A3J1, Canada
| | - David Cheishvili
- Department of Pharmacology and Therapeutics, McGill University Health Center, Montreal, QC, Canada.,Present address: Montreal EpiTerapia Inc., Montreal, QC, Canada
| | - Niaz Mahmood
- Department of Medicine, McGill University Health Center, 1001 Décarie Blvd., Room EM1.3232, Montréal, QC, H4A3J1, Canada
| | - Ani Arakelian
- Department of Medicine, McGill University Health Center, 1001 Décarie Blvd., Room EM1.3232, Montréal, QC, H4A3J1, Canada
| | | | | | - Richard Kremer
- Department of Medicine, McGill University Health Center, 1001 Décarie Blvd., Room EM1.3232, Montréal, QC, H4A3J1, Canada
| | - Catalin Mihalcioiu
- Department of Medicine, McGill University Health Center, 1001 Décarie Blvd., Room EM1.3232, Montréal, QC, H4A3J1, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University Health Center, Montreal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, 1001 Décarie Blvd., Room EM1.3232, Montréal, QC, H4A3J1, Canada.
| |
Collapse
|
11
|
Casciaro M, Di Salvo E, Brizzi T, Rodolico C, Gangemi S. Involvement of miR-126 in autoimmune disorders. Clin Mol Allergy 2018; 16:11. [PMID: 29743819 PMCID: PMC5930861 DOI: 10.1186/s12948-018-0089-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Micro-RNA represent a great family of small non-condign ribonucleic acid molecules; in particular microRNA-126 is an important member of this family and is expressed in many human cells such as cardiomyocytes, endothelial and lung cells. Some studies have shown the implication of miR-126 in cancer, but recently significant progresses have also been made in determining the role of miR-126 regulating immune-related diseases; probably, in a near future, they could potentially serve as diagnostic biomarkers or therapeutic targets. OBJECTIVE The purpose of this review is to investigate the role of miR-126 in autoimmune diseases, so as to offer innovative therapies. RESULTS According literature, it was concluded that miRNAs, especially miR-126, are involved in many pathologies and that their expression levels increase in autoimmune diseases because they interfere with the transcription of the proteins involved. Since microRNAs can be detected from several biological sources, they may be attractive as potential biomarkers for the diagnosis, prognosis, disease activity and severity of various diseases. In fact, once confirmed the involvement of miR-126 in autoimmune diseases, it was speculated that it could be used as a promising biomarker. These discovers implicate that miR-126 have a central role in many pathways leading to the development and sustain of autoimmune diseases. Its key role make this microRNA a potential therapeutic target in autoimmunity. CONCLUSION Although miR-126 relevant role in several immune-related diseases, further studies are needed to clear its molecular mechanisms; the final step of these novel researches could be the blockage or the prevention of the diseases onset by creating of new targeted therapy.
Collapse
Affiliation(s)
- Marco Casciaro
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, Messina University Hospital, 98125 Messina, Italy
| | - Eleonora Di Salvo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Teresa Brizzi
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, Messina University Hospital, 98125 Messina, Italy
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
12
|
van Loosdregt J, van Wijk F, Prakken B, Vastert B. Update on research and clinical translation on specific clinical areas from biology to bedside: Unpacking the mysteries of juvenile idiopathic arthritis pathogenesis. Best Pract Res Clin Rheumatol 2018; 31:460-475. [PMID: 29773267 DOI: 10.1016/j.berh.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 02/08/2023]
Abstract
In the past decades, we have gained important insights into the mechanisms of disease and therapy underlying chronic inflammation in juvenile idiopathic arthritis (JIA). These insights have resulted in several game-changing therapeutic modalities for many patients. However, additional progress still has to be made with regard to efficacy, cost reduction, minimization of side effects, and dose-tapering and stop strategies of maintenance drugs. Moreover, to really transform the current therapeutic strategies into personalized medicine, we need validated biomarkers to translate increased insights into clinical practice. In this article, we describe recent developments in JIA research and outline how clinical innovations need to go hand in hand with basic discoveries to really effect care for patients. Facilitating the transition from bench to bedside is crucial for addressing the major current challenges in JIA management. When successful, it will set new standards for a safe, targeted, and personalized medicine in JIA.
Collapse
Affiliation(s)
- Jorg van Loosdregt
- Department of Pediatric Immunology & Rheumatology, Laboratory for Translational Medicine, University Medical Centre Utrecht, University of Utrecht, Lundlaan 6, P.O. Box 85090, 3584 EA/3508 AB, Utrecht, The Netherlands
| | - Femke van Wijk
- Department of Pediatric Immunology & Rheumatology, Laboratory for Translational Medicine, University Medical Centre Utrecht, University of Utrecht, Lundlaan 6, P.O. Box 85090, 3584 EA/3508 AB, Utrecht, The Netherlands
| | - Berent Prakken
- Department of Pediatric Immunology & Rheumatology, Laboratory for Translational Medicine, University Medical Centre Utrecht, University of Utrecht, Lundlaan 6, P.O. Box 85090, 3584 EA/3508 AB, Utrecht, The Netherlands
| | - Bas Vastert
- Department of Pediatric Immunology & Rheumatology, Laboratory for Translational Medicine, University Medical Centre Utrecht, University of Utrecht, Lundlaan 6, P.O. Box 85090, 3584 EA/3508 AB, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Collison J. Paediatric rheumatology: DNA methylation in oligoarticular JIA. Nat Rev Rheumatol 2017; 13:694. [PMID: 29051625 DOI: 10.1038/nrrheum.2017.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|