1
|
Alexander TD, Tymanskyj S, Kennedy KJ, Kaczmarek LK, Covarrubias M. Molecular mechanism governing the plasticity of use-dependent spike broadening in dorsal root ganglion neurons. Proc Natl Acad Sci U S A 2025; 122:e2411033121. [PMID: 39739796 PMCID: PMC11725888 DOI: 10.1073/pnas.2411033121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/14/2024] [Indexed: 01/02/2025] Open
Abstract
Use-dependent spike broadening (UDSB) results from inactivation of the voltage-gated K+ (Kv) channels that regulate the repolarization of the action potential. However, the specific signaling and molecular processes that modulate UDSB have remained elusive. Here, we applied an adeno-associated viral vector approach and dynamic clamping to conclusively demonstrate how multisite phosphorylation of the N-terminal inactivation domain (NTID) of the Kv3.4 channel modulates UDSB in rat dorsal root ganglion (DRG) neurons. The Kv3.4 phosphonull variant promotes slow recovery from inactivation, cumulative inactivation, and UDSB. In contrast, the Kv3.4 phosphomimic variant promotes fast recovery from inactivation and robust resistance to cumulative inactivation and UDSB. Furthermore, knocking down Kv3.4 maximizes AP width and eliminates UDSB modulation. Together with the evidence from previous work, the results concretely suggest how dynamic UDSB modulation governed by multisite phosphorylation of the NTID of Kv3.4 in DRG neurons may play a significant role in mechanosensory transduction and pain modulation.
Collapse
Affiliation(s)
- Tyler D. Alexander
- Department of Neuroscience, Farber Institute for Neuroscience and Jefferson Synaptic Biology Center, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA19107
| | - Stephen Tymanskyj
- Department of Neuroscience, Farber Institute for Neuroscience and Jefferson Synaptic Biology Center, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA19107
| | - Kyle J. Kennedy
- Department of Neuroscience, Farber Institute for Neuroscience and Jefferson Synaptic Biology Center, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA19107
| | - Leonard K. Kaczmarek
- Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, CT06510
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Manuel Covarrubias
- Department of Neuroscience, Farber Institute for Neuroscience and Jefferson Synaptic Biology Center, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA19107
| |
Collapse
|
2
|
Liang Q, Chi G, Cirqueira L, Zhi L, Marasco A, Pilati N, Gunthorpe MJ, Alvaro G, Large CH, Sauer DB, Treptow W, Covarrubias M. The binding and mechanism of a positive allosteric modulator of Kv3 channels. Nat Commun 2024; 15:2533. [PMID: 38514618 PMCID: PMC10957983 DOI: 10.1038/s41467-024-46813-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Small-molecule modulators of diverse voltage-gated K+ (Kv) channels may help treat a wide range of neurological disorders. However, developing effective modulators requires understanding of their mechanism of action. We apply an orthogonal approach to elucidate the mechanism of action of an imidazolidinedione derivative (AUT5), a highly selective positive allosteric modulator of Kv3.1 and Kv3.2 channels. AUT5 modulation involves positive cooperativity and preferential stabilization of the open state. The cryo-EM structure of the Kv3.1/AUT5 complex at a resolution of 2.5 Å reveals four equivalent AUT5 binding sites at the extracellular inter-subunit interface between the voltage-sensing and pore domains of the channel's tetrameric assembly. Furthermore, we show that the unique extracellular turret regions of Kv3.1 and Kv3.2 essentially govern the selective positive modulation by AUT5. High-resolution apo and bound structures of Kv3.1 demonstrate how AUT5 binding promotes turret rearrangements and interactions with the voltage-sensing domain to favor the open conformation.
Collapse
Affiliation(s)
- Qiansheng Liang
- Department of Neuroscience,, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Jack and Vicki Farber Institute for Neuroscience and the Jefferson Synaptic Biology Center, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Leonardo Cirqueira
- Laboratorio de Biologia Teorica e Computacional, University of Brasilia, Brasilia, Brazil
| | - Lianteng Zhi
- Department of Neuroscience,, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Jack and Vicki Farber Institute for Neuroscience and the Jefferson Synaptic Biology Center, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Agostino Marasco
- Autifony Srl, Istituto di Ricerca Pediatrica Citta' della Speranza, Via Corso Stati Uniti, 4f, 35127, Padua, Italy
| | - Nadia Pilati
- Autifony Srl, Istituto di Ricerca Pediatrica Citta' della Speranza, Via Corso Stati Uniti, 4f, 35127, Padua, Italy
| | - Martin J Gunthorpe
- Autifony Therapeutics, Ltd, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, SG1 2FX, UK
| | - Giuseppe Alvaro
- Autifony Srl, Istituto di Ricerca Pediatrica Citta' della Speranza, Via Corso Stati Uniti, 4f, 35127, Padua, Italy
| | - Charles H Large
- Autifony Therapeutics, Ltd, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, SG1 2FX, UK
| | - David B Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Werner Treptow
- Laboratorio de Biologia Teorica e Computacional, University of Brasilia, Brasilia, Brazil
| | - Manuel Covarrubias
- Department of Neuroscience,, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA.
- Jack and Vicki Farber Institute for Neuroscience and the Jefferson Synaptic Biology Center, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
3
|
McClintic WT, Chandler ZD, Karchalla LM, Ondeck CA, O'Brien SW, Campbell CJ, Jacobson AR, McNutt PM. Aminopyridines Restore Ventilation and Reverse Respiratory Acidosis at Late Stages of Botulism in Mice. J Pharmacol Exp Ther 2024; 388:637-646. [PMID: 37977816 PMCID: PMC10801772 DOI: 10.1124/jpet.123.001773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023] Open
Abstract
Botulinum neurotoxin (BoNT) is a potent protein toxin that causes muscle paralysis and death by asphyxiation. Treatments for symptomatic botulism are intubation and supportive care until respiratory function recovers. Aminopyridines have recently emerged as potential treatments for botulism. The clinically approved drug 3,4-diaminopyridine (3,4-DAP) rapidly reverses toxic signs of botulism and has antidotal effects when continuously administered in rodent models of lethal botulism. Although the therapeutic effects of 3,4-DAP likely result from the reversal of diaphragm paralysis, the corresponding effects on respiratory physiology are not understood. Here, we combined unrestrained whole-body plethysmography (UWBP) with arterial blood gas measurements to study the effects of 3,4-DAP, and other aminopyridines, on ventilation and respiration at terminal stages of botulism in mice. Treatment with clinically relevant doses of 3,4-DAP restored ventilation in a dose-dependent manner, producing significant improvements in ventilatory parameters within 10 minutes. Concomitant with improved ventilation, 3,4-DAP treatment reversed botulism-induced respiratory acidosis, restoring blood levels of CO2, pH, and lactate to normal physiologic levels. Having established that 3,4-DAP-mediated improvements in ventilation were directly correlated with improved respiration, we used UWBP to quantitatively evaluate nine additional aminopyridines in BoNT/A-intoxicated mice. Multiple aminopyridines were identified with comparable or enhanced therapeutic efficacies compared with 3,4-DAP, including aminopyridines that selectively improved tidal volume versus respiratory rate and vice versa. In addition to contributing to a growing body of evidence supporting the use of aminopyridines to treat clinical botulism, these data lay the groundwork for the development of aminopyridine derivatives with improved pharmacological properties. SIGNIFICANCE STATEMENT: There is a critical need for fast-acting treatments to reverse respiratory paralysis in patients with botulism. This study used unrestrained, whole-body plethysmography and arterial blood gas analysis to show that aminopyridines rapidly restore ventilation and respiration and reverse respiratory acidosis when administered to mice at terminal stages of botulism. In addition to supporting the use of aminopyridines as first-line treatments for botulism symptoms, these data are expected to contribute to the development of new aminopyridine derivatives with improved pharmacological properties.
Collapse
Affiliation(s)
- William T McClintic
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Zachary D Chandler
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Lalitha M Karchalla
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Celinia A Ondeck
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Sean W O'Brien
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Charity J Campbell
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Alan R Jacobson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Patrick M McNutt
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| |
Collapse
|
4
|
Sparatore F, Sparatore A. 3,3-Disubstituted 3,4-Dihydro-1,2,4-benzotriazines: Chemistry, Biological Activity, and Affinity to Sigma Receptors. Molecules 2023; 29:132. [PMID: 38202715 PMCID: PMC10780181 DOI: 10.3390/molecules29010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
By reducing the 2-nitrophenylhydrazone of cyclohexanone with sodium dithionite, an unexpected yellow compound was obtained instead of the corresponding colorless amino derivative. Many years later, the structure of this compound, namely, cyclohexane-3-spiro-3,4-dihydro-1,2,4-benzotriazine, was demonstrated. From that time, the reduction of 2-nitrophenylhydrazones of different kinds of ketones, followed by air oxidation of the initially formed amino compounds, has represented a general way to synthesize a variety of 3,3-disubstituted 3,4-dihydro-1,2,4-benzotriazines. Many derivatives have been obtained so far by a single research group, and most of them have demonstrated interesting pharmacological activities, mainly antihypertensive, anti-inflammatory, and diuretic effects and other activities with lower diffusion. Moreover, 3,3-disubstituted 3,4-dihydro-1,2,4-benzotriazines represent a novel class of ligands for sigma receptors, with nanomolar affinity to the σ1 subtype. This property might promote the development of agents for cardiovascular, neurodegenerative, and proliferative pathologies. The present commentary, by collecting compounds and biological results obtained so far, intends to celebrate the centennial of the discovery of the first member of this class of compounds and to promote further investigation in the field.
Collapse
Affiliation(s)
- Fabio Sparatore
- Department of Pharmacy, University of Genova, 16132 Genova, Italy
| | - Anna Sparatore
- Department of Pharmaceutical Sciences (DISFARM), University of Milano, 20133 Milano, Italy;
| |
Collapse
|
5
|
Ojala KS, Kaufhold CJ, Davey MR, Yang D, Liang M, Wipf P, Badawi Y, Meriney SD. Potentiation of neuromuscular transmission by a small molecule calcium channel gating modifier improves motor function in a severe spinal muscular atrophy mouse model. Hum Mol Genet 2023; 32:1901-1911. [PMID: 36757138 DOI: 10.1093/hmg/ddad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/03/2023] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a monogenic disease that clinically manifests as severe muscle weakness owing to neurotransmission defects and motoneuron degeneration. Individuals affected by SMA experience neuromuscular weakness that impacts functional activities of daily living. We have used a mouse model of severe SMA (SMNΔ7) to test whether a calcium channel gating modifier (GV-58), alone or in combination with a potassium channel antagonist (3,4-diaminopyridine; 3,4-DAP), can improve neuromuscular function in this mouse model. Bath application of GV-58 alone or in combination with 3,4-DAP significantly restored neuromuscular transmission to control levels in both a mildly vulnerable forearm muscle and a strongly vulnerable trunk muscle in SMNΔ7 mice at postnatal days 10-12. Similarly, acute subcutaneous administration of GV-58 to postnatal day 10 SMNΔ7 mice, alone or in combination with 3,4-DAP, significantly increased a behavioral measure of muscle strength. These data suggest that GV-58 may be a promising treatment candidate that could address deficits in neuromuscular function and strength and that the addition of 3,4-DAP to GV-58 treatment could aid in restoring function in SMA.
Collapse
Affiliation(s)
- Kristine S Ojala
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Cassandra J Kaufhold
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mykenzie R Davey
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Donggyun Yang
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mary Liang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yomna Badawi
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
6
|
Ginebaugh SP, Badawi Y, Laghaei R, Mersky G, Wallace CJ, Tarr TB, Kaufhold C, Reddel S, Meriney SD. Simulations of active zone structure and function at mammalian NMJs predict that loss of calcium channels alone is not sufficient to replicate LEMS effects. J Neurophysiol 2023; 129:1259-1277. [PMID: 37073966 PMCID: PMC10202491 DOI: 10.1152/jn.00404.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/20/2023] Open
Abstract
Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune-mediated neuromuscular disease thought to be caused by autoantibodies against P/Q-type voltage-gated calcium channels (VGCCs), which attack and reduce the number of VGCCs within transmitter release sites (active zones; AZs) at the neuromuscular junction (NMJ), resulting in neuromuscular weakness. However, patients with LEMS also have antibodies to other neuronal proteins, and about 15% of patients with LEMS are seronegative for antibodies against VGCCs. We hypothesized that a reduction in the number of P/Q-type VGCCs alone is not sufficient to explain LEMS effects on transmitter release. Here, we used a computational model to study a variety of LEMS-mediated effects on AZ organization and transmitter release constrained by electron microscopic, pharmacological, immunohistochemical, voltage imaging, and electrophysiological observations. We show that models of healthy AZs can be modified to predict the transmitter release and short-term facilitation characteristics of LEMS and that in addition to a decrease in the number of AZ VGCCs, disruption in the organization of AZ proteins, a reduction in AZ number, a reduction in the amount of synaptotagmin, and the compensatory expression of L-type channels outside the remaining AZs are important contributors to LEMS-mediated effects on transmitter release. Furthermore, our models predict that antibody-mediated removal of synaptotagmin in combination with disruption in AZ organization alone could mimic LEMS effects without the removal of VGCCs (a seronegative model). Overall, our results suggest that LEMS pathophysiology may be caused by a collection of pathological alterations to AZs at the NMJ, rather than by a simple loss of VGCCs.NEW & NOTEWORTHY We used a computational model of the active zone (AZ) in the mammalian neuromuscular junction to investigate Lambert-Eaton myasthenic syndrome (LEMS) pathophysiology. This model suggests that disruptions in presynaptic active zone organization and protein content (particularly synaptotagmin), beyond the simple removal of presynaptic calcium channels, play an important role in LEMS pathophysiology.
Collapse
Affiliation(s)
- Scott P Ginebaugh
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yomna Badawi
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Rozita Laghaei
- Biomedical Application Group, Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Glenn Mersky
- Biomedical Application Group, Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Caleb J Wallace
- Biomedical Application Group, Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Tyler B Tarr
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Cassandra Kaufhold
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Stephen Reddel
- Department of Clinical Neurology, Concord Hospital, Sydney, New South Wales, Australia
| | - Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
7
|
Mori S, Suzuki S, Konishi T, Kawaguchi N, Kishi M, Kuwabara S, Ishizuchi K, Zhou H, Shibasaki F, Tsumoto H, Omura T, Miura Y, Mori S, Higashihara M, Murayama S, Shigemoto K. Proteolytic ectodomain shedding of muscle-specific tyrosine kinase in myasthenia gravis. Exp Neurol 2023; 361:114300. [PMID: 36525997 DOI: 10.1016/j.expneurol.2022.114300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/07/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Autoantibodies to muscle-specific tyrosine kinase (MuSK) proteins at the neuromuscular junction (NMJ) cause refractory generalized myasthenia gravis (MG) with dyspnea more frequently than other MG subtypes. However, the mechanisms via which MuSK, a membrane protein locally expressed on the NMJ of skeletal muscle, is supplied to the immune system as an autoantigen remains unknown. Here, we identified MuSK in both mouse and human serum, with the amount of MuSK dramatically increasing in mice with motor nerve denervation and in MG model mice. Peptide analysis by liquid chromatography-tandem-mass spectrometry (LC-MS/MS) confirmed the presence of MuSK in both human and mouse serum. Furthermore, some patients with MG have significantly higher amounts of MuSK in serum than healthy controls. Our results indicated that the secretion of MuSK proteins from muscles into the bloodstream was induced by ectodomain shedding triggered by neuromuscular junction failure. The results may explain why MuSK-MG is refractory to treatments and causes rapid muscle atrophy in some patients due to the denervation associated with Ab-induced disruption of neuromuscular transmission at the NMJ. Such discoveries pave the way for new MG treatments, and MuSK may be used as a biomarker for other neuromuscular diseases in preclinical studies, clinical diagnostics, therapeutics, and drug discovery.
Collapse
Affiliation(s)
- Shuuichi Mori
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Tokyo, Japan
| | - Shigeaki Suzuki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | | | - Naoki Kawaguchi
- Dowa Institute of Clinical Neuroscience, Neurology Clinic Chiba, Chiba, Japan
| | - Masahiko Kishi
- Department of Internal Medicine, Toho University Sakura Medical Center, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Chiba University School of Medicine, Chiba, Japan
| | - Kei Ishizuchi
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Heying Zhou
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Tokyo, Japan
| | - Futoshi Shibasaki
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging, TMIG, Tokyo, Japan
| | - Takuya Omura
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Tokyo, Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging, TMIG, Tokyo, Japan
| | - Seijiro Mori
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Tokyo, Japan
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital, Tokyo (TMGHIG), Japan
| | | | - Kazuhiro Shigemoto
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology (TMIG), Tokyo, Japan.
| |
Collapse
|
8
|
Qi C, Jin Y, Cheng S, Di L, Wang X, Zhang M, Zhang L, Li XL, Han Y, Ma Q, Min JZ. A novel UHPLC-MS/MS method for the determination of four α-dicarbonyl compounds in wine and dynamic monitoring in human urine after drinking. Food Res Int 2023; 163:112170. [PMID: 36596116 DOI: 10.1016/j.foodres.2022.112170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
α-dicarbonyl compounds (α-DCs) serve as potential biomarkers for oxidative stress-related diseases but are difficult to detect.To study the metabolism of carbonyl compounds, we developed a new mass spectrometry probe, 3-benzyl-2-oxo-4λ3-thiazolidine-4-carbohydrazide (BOTC), containing hydrazyl groups for the targeted detection of carbonyl functional groups.In a novel approach, we used BOTC pre-column derivatization with ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to simultaneously detect four kinds of α-DCs in red wine as well as in urine after drinking. The α-DCs were completely separated (R2 ≥ 0.9995), detection was sensitive (detection limit was 12.5-50 fmol), consistent (intraday and interday precision was 0.1-5.7 %), and efficient (average recoveries were 103.3-110.2 %). The method was applied to the analysis of α-DCs in different wines and the dynamic monitoring of transit and excretion in vivo after drinking. Our novel method provides a new strategy for the detection of α-dicarbonyl compounds in red wine and dicarbonyl compounds produced in oxidative stress-related diseases.
Collapse
Affiliation(s)
- Chao Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yueying Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Shengyu Cheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lei Di
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Xin Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Minghui Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lingli Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Xi-Ling Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yu Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Qingkun Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Jun Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
9
|
Alexander TD, Muqeem T, Zhi L, Tymanskyj SR, Covarrubias M. Tunable Action Potential Repolarization Governed by Kv3.4 Channels in Dorsal Root Ganglion Neurons. J Neurosci 2022; 42:8647-8657. [PMID: 36198500 PMCID: PMC9671581 DOI: 10.1523/jneurosci.1210-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/01/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
The Kv3.4 channel regulates action potential (AP) repolarization in nociceptors and excitatory synaptic transmission in the spinal cord. We hypothesize that this is a tunable role governed by protein kinase-C-dependent phosphorylation of the Kv3.4 cytoplasmic N-terminal inactivation domain (NTID) at four nonequivalent sites. However, there is a paucity of causation evidence linking the phosphorylation status of Kv3.4 to the properties of the AP. To establish this link, we used adeno-associated viral vectors to specifically manipulate the expression and the effective phosphorylation status of Kv3.4 in cultured dorsal root ganglion (DRG) neurons from mixed-sex rat embryos at embryonic day 18. These vectors encoded GFP (background control), wild-type (WT) Kv3.4, phosphonull (PN) Kv3.4 mutant (PN = S[8,9,15,21]A), phosphomimic (PM) Kv3.4 mutant (PM = S[8,9,15,21]D), and a Kv3.4 nonconducting dominant-negative (DN) pore mutant (DN = W429F). Following viral infection of the DRG neurons, we evaluated transduction efficiency and Kv3.4 expression and function via fluorescence microscopy and patch clamping. All functional Kv3.4 constructs induced current overexpression with similar voltage dependence of activation. However, whereas Kv3.4-WT and Kv3.4-PN induced fast transient currents, the Kv3.4-PM induced currents exhibiting impaired inactivation. In contrast, the Kv3.4-DN abolished the endogenous Kv3.4 current. Consequently, Kv3.4-DN and Kv3.4-PM produced APs with the longest and shortest durations, respectively, whereas Kv3.4-WT and Kv3.4-PN produced intermediate results. Moreover, the AP widths and maximum rates of AP repolarization from these groups are negatively correlated. We conclude that the expression and effective phosphorylation status of the Kv3.4 NTID confer a tunable mechanism of AP repolarization, which may provide exquisite regulation of pain signaling in DRG neurons.SIGNIFICANCE STATEMENT The AP is an all-or-none millisecond-long electrical impulse that encodes information in the frequency and patterns of repetitive firing. However, signaling may also depend on the plasticity and diversity of the AP waveform. For instance, the shape and duration of the AP may regulate nociceptive synaptic transmission between a primary sensory afferent to a secondary neuron in the spinal cord. Here, we used mutants of the Kv3.4 voltage-gated potassium channel to manipulate its expression and effective phosphorylation status in dorsal root ganglion neurons and directly show how the expression and malleable inactivation properties of Kv3.4 govern the AP duration and repolarization rate. These results elucidate a mechanism of neural AP plasticity that may regulate pain signaling.
Collapse
Affiliation(s)
- Tyler D Alexander
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Tanziyah Muqeem
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Lianteng Zhi
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Stephen R Tymanskyj
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Jefferson Synaptic Biology Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Manuel Covarrubias
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Vicki & Jack Farber Institute of Neuroscience at Jefferson Health, Philadelphia, Pennsylvania 19107
- Jefferson Synaptic Biology Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
10
|
Laghaei R, Meriney SD. Microphysiological Modeling of the Structure and Function of Neuromuscular Transmitter Release Sites. Front Synaptic Neurosci 2022; 14:917285. [PMID: 35769072 PMCID: PMC9236679 DOI: 10.3389/fnsyn.2022.917285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
The general mechanism of calcium-triggered chemical transmitter release from neuronal synapses has been intensely studied, is well-known, and highly conserved between species and synapses across the nervous system. However, the structural and functional details within each transmitter release site (or active zone) are difficult to study in living tissue using current experimental approaches owing to the small spatial compartment within the synapse where exocytosis occurs with a very rapid time course. Therefore, computer simulations offer the opportunity to explore these microphysiological environments of the synapse at nanometer spatial scales and on a sub-microsecond timescale. Because biological reactions and physiological processes at synapses occur under conditions where stochastic behavior is dominant, simulation approaches must be driven by such stochastic processes. MCell provides a powerful simulation approach that employs particle-based stochastic simulation tools to study presynaptic processes in realistic and complex (3D) geometries using optimized Monte Carlo algorithms to track finite numbers of molecules as they diffuse and interact in a complex cellular space with other molecules in solution and on surfaces (representing membranes, channels and binding sites). In this review we discuss MCell-based spatially realistic models of the mammalian and frog neuromuscular active zones that were developed to study presynaptic mechanisms that control transmitter release. In particular, these models focus on the role of presynaptic voltage-gated calcium channels, calcium sensors that control the probability of synaptic vesicle fusion, and the effects of action potential waveform shape on presynaptic calcium entry. With the development of these models, they can now be used in the future to predict disease-induced changes to the active zone, and the effects of candidate therapeutic approaches.
Collapse
Affiliation(s)
- Rozita Laghaei
- Biomedical Applications Group, Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Stephen D. Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Stephen D. Meriney
| |
Collapse
|
11
|
Machamer JB, Vazquez-Cintron EJ, O'Brien SW, Kelly KE, Altvater AC, Pagarigan KT, Dubee PB, Ondeck CA, McNutt PM. Antidotal treatment of botulism in rats by continuous infusion with 3,4-diaminopyridine. Mol Med 2022; 28:61. [PMID: 35659174 PMCID: PMC9164507 DOI: 10.1186/s10020-022-00487-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are highly potent, select agent toxins that inhibit neurotransmitter release at motor nerve terminals, causing muscle paralysis and death by asphyxiation. Other than post-exposure prophylaxis with antitoxin, the only treatment option for symptomatic botulism is intubation and supportive care until recovery, which can require weeks or longer. In previous studies, we reported the FDA-approved drug 3,4-diaminopyridine (3,4-DAP) reverses early botulism symptoms and prolongs survival in lethally intoxicated mice. However, the symptomatic benefits of 3,4-DAP are limited by its rapid clearance. Here we investigated whether 3,4-DAP could sustain symptomatic benefits throughout the full course of respiratory paralysis in lethally intoxicated rats. First, we confirmed serial injections of 3,4-DAP stabilized toxic signs and prolonged survival in rats challenged with 2.5 LD50 BoNT/A. Rebound of toxic signs and death occurred within hours after the final 3,4-DAP treatment, consistent with the short half-life of 3,4-DAP in rats. Based on these data, we next investigated whether the therapeutic benefits of 3,4-DAP could be sustained throughout the course of botulism by continuous infusion. To ensure administration of 3,4-DAP at clinically relevant doses, three infusion dose rates (0.5, 1.0 and 1.5 mg/kg∙h) were identified that produced steady-state serum levels of 3,4-DAP consistent with clinical dosing. We then compared dose-dependent effects of 3,4-DAP on toxic signs and survival in rats intoxicated with 2.5 LD50 BoNT/A. In contrast to saline vehicle, which resulted in 100% mortality, infusion of 3,4-DAP at ≥ 1.0 mg/kg∙h from 1 to 14 d after intoxication produced 94.4% survival and full resolution of toxic signs, without rebound of toxic signs after infusion was stopped. In contrast, withdrawal of 3,4-DAP infusion at 5 d resulted in re-emergence of toxic sign and death within 12 h, confirming antidotal outcomes require sustained 3,4-DAP treatment for longer than 5 d after intoxication. We exploited this novel survival model of lethal botulism to explore neurophysiological parameters of diaphragm paralysis and recovery. While neurotransmission was nearly eliminated at 5 d, neurotransmission was significantly improved at 21 d in 3,4-DAP-infused survivors, although still depressed compared to naïve rats. 3,4-DAP is the first small molecule to reverse systemic paralysis and promote survival in animal models of botulism, thereby meeting a critical treatment need that is not addressed by post-exposure prophylaxis with conventional antitoxin. These data contribute to a growing body of evidence supporting the use of 3,4-DAP to treat clinical botulism.
Collapse
Affiliation(s)
- James B Machamer
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
- BASF, Research Triangle, Durham, NC, 27709, USA
| | | | - Sean W O'Brien
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Kyle E Kelly
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
| | - Amber C Altvater
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
| | - Kathleen T Pagarigan
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
| | - Parker B Dubee
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
| | - Celinia A Ondeck
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Patrick M McNutt
- U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, MD, 21010, USA.
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
12
|
Ginebaugh SP, Badawi Y, Tarr TB, Meriney SD. Neuromuscular Active Zone Structure and Function in Healthy and Lambert-Eaton Myasthenic Syndrome States. Biomolecules 2022; 12:biom12060740. [PMID: 35740866 PMCID: PMC9221282 DOI: 10.3390/biom12060740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
The mouse neuromuscular junction (NMJ) has long been used as a model synapse for the study of neurotransmission in both healthy and disease states of the NMJ. Neurotransmission from these neuromuscular nerve terminals occurs at highly organized structures called active zones (AZs). Within AZs, the relationships between the voltage-gated calcium channels and docked synaptic vesicles govern the probability of acetylcholine release during single action potentials, and the short-term plasticity characteristics during short, high frequency trains of action potentials. Understanding these relationships is important not only for healthy synapses, but also to better understand the pathophysiology of neuromuscular diseases. In particular, we are interested in Lambert-Eaton myasthenic syndrome (LEMS), an autoimmune disorder in which neurotransmitter release from the NMJ decreases, leading to severe muscle weakness. In LEMS, the reduced neurotransmission is traditionally thought to be caused by the antibody-mediated removal of presynaptic voltage-gated calcium channels. However, recent experimental data and AZ computer simulations have predicted that a disruption in the normally highly organized active zone structure, and perhaps autoantibodies to other presynaptic proteins, contribute significantly to pathological effects in the active zone and the characteristics of chemical transmitters.
Collapse
|
13
|
Goldfeder N, McDonald R, Gaston S, Harrison A, Kim DH, MacIntosh C, Miranda MM, Odom E, Nishad S, Siwik W, Zhang L, Lin JW. Functions of potassium channels blocked by low micromolar 4-aminopyridine in the crayfish nervous system. Synapse 2022; 76:e22234. [PMID: 35460585 DOI: 10.1002/syn.22234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 11/05/2022]
Abstract
4-aminopyridine (4-AP) is a potassium channel blocker that has been used to treat patients with multiple sclerosis and Lambert-Eaton disease. The concentration of this drug in the blood of patients was estimated to be in low or submicromolar range. Animal studies have shown that 4-AP at such low concentration selectively blocks a subset of channels in Kv1 or Kv3 families. The crayfish opener neuromuscular junction and ventral superficial flexor (VSF) preparations were used to examine functions of K+ channels blocked by low concentrations of 4-AP. At opener motor axons, intracellular recordings show that 4-AP could increase action potential (AP) amplitude, duration and after-depolarization (ADP) at 10 μM. As 4-AP concentration was increased, in two-fold steps, AP amplitude did not increase further up to 5 mM. AP duration and ADP increased significantly mainly in two concentration ranges, 10-50 μM and 1-5 mM. The effects of 50 μM 4-AP on the VSF were less consistent than that observed at the opener motor axons. 4-AP did not change AP amplitude of motor axons recorded with an extracellular electrode and changes in AP repolarizing potential was observed in ∼25% of the axons. EPSP recorded simultaneously with AP showed an increase in amplitude with 4-AP treatment only in 30% of the axon-EPSP pairs. 4-AP also increased firing frequencies of ∼50% of axons. In four animals, 4-AP "awakened" the firing of APs from an axon that was silent before the drug. The mixture of positive and negative 4-AP effects summarized above was observed in the same VSF preparations in all cases (n = 8). We propose that there is a significant diversity in the density 4-AP sensitive potassium channels among motor axons of the VSF. Functional significance in the differences of 4-AP sensitivity of the two motor systems is discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nicole Goldfeder
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215
| | - Riley McDonald
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215
| | - Sarah Gaston
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215
| | - Amarri Harrison
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215
| | - Dong-Ho Kim
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215
| | - Clara MacIntosh
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215
| | | | - Emma Odom
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215
| | - Simmi Nishad
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215
| | - William Siwik
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215
| | - Liangzhu Zhang
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215
| | - Jen-Wei Lin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215
| |
Collapse
|
14
|
Presynaptic Paraneoplastic Disorders of the Neuromuscular Junction: An Update. Brain Sci 2021; 11:brainsci11081035. [PMID: 34439654 PMCID: PMC8392118 DOI: 10.3390/brainsci11081035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 01/17/2023] Open
Abstract
The neuromuscular junction (NMJ) is the target of a variety of immune-mediated disorders, usually classified as presynaptic and postsynaptic, according to the site of the antigenic target and consequently of the neuromuscular transmission alteration. Although less common than the classical autoimmune postsynaptic myasthenia gravis, presynaptic disorders are important to recognize due to the frequent association with cancer. Lambert Eaton myasthenic syndrome is due to a presynaptic failure to release acetylcholine, caused by antibodies to the presynaptic voltage-gated calcium channels. Acquired neuromyotonia is a condition characterized by nerve hyperexcitability often due to the presence of antibodies against proteins associated with voltage-gated potassium channels. This review will focus on the recent developments in the autoimmune presynaptic disorders of the NMJ.
Collapse
|