1
|
Anne S, McDonald MR, Lu Y, Peterson RL. Pseudogymnoascus destructans Transcriptional Response to Chronic Copper Stress. J Fungi (Basel) 2025; 11:372. [PMID: 40422706 PMCID: PMC12113139 DOI: 10.3390/jof11050372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/28/2025] Open
Abstract
Copper (Cu) is an essential metal micronutrient, and a fungal pathogen's ability to thrive in diverse niches across a broad range of bioavailable copper levels is vital for host colonization and fungal propagation. Recent transcriptomic studies have implied that trace metal acquisition is important for the propagation of the white nose syndrome (WNS) causing fungus, Pseudogymnoascus destructans, on bat hosts. This report characterizes the P. destructans transcriptional response to Cu-withholding and Cu-overload stress. We identify 583 differently expressed genes (DEGs) that respond to Cu-withholding stress and 667 DEGs that respond to Cu-overload stress. We find that the P. destructans Cu-transporter genes CTR1a and CTR1b, as well as two homologs to Cryptococcus neoformans Cbi1/BIM1 VC83_03095 (BLP2) and VC83_07867 (BLP3), are highly regulated by Cu-withholding stress. We identify a cluster of genes, VC83_01834 - VC83_01838, that are regulated by copper bioavailability, which we identify as the Cu-Responsive gene Cluster (CRC). We find that chronic exposure to elevated copper levels leads to an increase in genes associated with DNA repair and DNA replication fidelity. A comparison of our transcriptomic datasets with P. destructans at WNS fungal infection sites reveals several putative fungal virulence factors that respond to environmental copper stress.
Collapse
Affiliation(s)
- Saika Anne
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Maranda R. McDonald
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Yuan Lu
- Institute for Molecular Life Sciences, Texas State University, San Marcos, TX 78666, USA;
| | - Ryan L. Peterson
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
2
|
Anne S, McDonald MR, Lu Y, Peterson RL. Pseudogymnoascus destructans transcriptional response to chronic copper stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.646060. [PMID: 40236230 PMCID: PMC11996344 DOI: 10.1101/2025.03.28.646060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Copper (Cu) is an essential metal micronutrient, and a fungal pathogens' ability to thrive in diverse niches across a broad range of bioavailable copper levels is vital for host-colonization and fungal-propagation. Recent transcriptomic studies have implemented that trace metal acquisition is important for the propagation of the white nose syndrome (WNS) causing fungus, Pseudogymnoascus destructans , on bat hosts. This report characterizes the P. destructans transcriptional response to Cu-withholding and Cu-overload stress. We identify 583 differently expressed genes (DEGs) that respond to Cu-withholding stress and 667 DEGs that respond to Cu-overload stress. We find that the P. destructans Cu-transporter genes CTR 1a and CTR1 b, as well as two homologs to Cryptococcus neoformans Cbi1/BIM1 VC83_03095 (BLP2) and VC83_07867 (BLP3) are highly regulated by Cu-withholding stress. We identify a cluster of genes, VC83_01834 - VC83_01837, that are regulated by copper bioavailability, which we identify as the Cu Responsive gene Cluster (CRC). We find that chronic exposure to elevated copper levels leads to an increase in genes associated with DNA repair and DNA replication fidelity. A comparison of our transcriptomic data sets with P. destructans at WNS fungal infection sites reveals several putative fungal virulence factors that respond to environmental copper stress.
Collapse
|
3
|
Probst C, Denning-Jannace CA, du Plooy LM, Giamberardino C, Asfaw Y, Franz KJ, Alspaugh JA. A cysteine-rich domain of the Cuf1 transcription factor is required for high copper stress sensing and fungal virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628380. [PMID: 39713408 PMCID: PMC11661212 DOI: 10.1101/2024.12.13.628380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The ability to sense, import but also detoxify copper (Cu) has been shown to be crucial for microbial pathogens to survive within the host. Previous studies conducted with the opportunistic human fungal pathogen Cryptococcus neoformans ( Cn ) have revealed two extreme Cu environments encountered during infection: A high Cu environment within the lung and a low Cu environment within the brain. However, how Cn senses these different host Cu microenvironments, and the consequences of a blunted Cu stress adaption for pathogenesis, are not well understood. In contrast to other fungi, Cn has a single transcription factor, Cuf1, to regulate adaptive responses to both high- and low-Cu stress. Sequence analysis of Cn Cuf1 identified three conserved cysteine (Cys)-rich regions that may play a role in Cu sensing. We mutated the 1 st Cys-rich region within the CUF1 gene to investigate its role for Cn high Cu stress sensing. Subsequent analysis of Cuf1 transcriptional activity and target gene promoter binding demonstrated that the 1 st Cys-rich region is required for Cuf1 transcriptional activity in high Cu stress. We performed an inhalational murine infection to analyze the effects of a blunted high Cu stress response on pathogenesis. No significant differences in lung fungal burden were observed based on variable Cuf1 activity. However, strains with defective high Cu stress regulation induced a markedly altered immune response in mice. Based on these findings, we hypothesize that Cuf1-driven high Cu responses are not required for initial survival but instead modulate immune recognition and inflammation within the mouse lung. Importance Copper is an essential micronutrient required for survival in all kingdoms of life as it is used as a catalytic cofactor for many essential processes in the cell. In turn, this reactivity of copper ions makes elevated levels of free copper toxic for the cell. This dual nature of copper-essential for life but toxic at elevated levels- is used by our innate immune system in a process called nutritional immunity to combat and kill invading pathogens. In this work we explore how the fungal human pathogen Cryptococcus neoformans senses high copper stress, a copper microenvironment encountered within the host lung. We identified a specific cysteine-rich region within the copper responsive transcription factor Cuf1 to be essential for high copper stress sensing. Mutation of this region led to an impaired high copper stress adaptation, which did not affect fitness of the yeast but did impact immune recognition and inflammation inside the host lung.
Collapse
|
4
|
Garg R, David MS, Yang S, Culotta VC. Metals at the Host-Fungal Pathogen Battleground. Annu Rev Microbiol 2024; 78:23-38. [PMID: 38781605 PMCID: PMC12044431 DOI: 10.1146/annurev-micro-041222-023745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Fungal infections continue to represent a major threat to public health, particularly with the emergence of multidrug-resistant fungal pathogens. As part of the innate immune response, the host modulates the availability of metals as armament against pathogenic microbes, including fungi. The transition metals Fe, Cu, Zn, and Mn are essential micronutrients for all life forms, but when present in excess, these same metals are potent toxins. The host exploits the double-edged sword of these metals, and will either withhold metal micronutrients from pathogenic fungi or attack them with toxic doses. In response to these attacks, fungal pathogens cleverly adapt by modulating metal transport, metal storage, and usage of metals as cofactors for enzymes. Here we review the current state of understanding on Fe, Cu, Zn, and Mn at the host-fungal pathogen battleground and provide perspectives for future research, including a hope for new antifungals based on metals.
Collapse
Affiliation(s)
- Ritu Garg
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Marika S David
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Shuyi Yang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| |
Collapse
|
5
|
Dang TTV, Maufrais C, Colin J, Moyrand F, Mouyna I, Coppée JY, Onyishi CU, Lipecka J, Guerrera IC, May RC, Janbon G. Alternative TSS use is widespread in Cryptococcus fungi in response to environmental cues and regulated genome-wide by the transcription factor Tur1. PLoS Biol 2024; 22:e3002724. [PMID: 39052688 PMCID: PMC11302930 DOI: 10.1371/journal.pbio.3002724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/06/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Alternative transcription start site (TSS) usage regulation has been identified as a major means of gene expression regulation in metazoans. However, in fungi, its impact remains elusive as its study has thus far been restricted to model yeasts. Here, we first re-analyzed TSS-seq data to define genuine TSS clusters in 2 species of pathogenic Cryptococcus. We identified 2 types of TSS clusters associated with specific DNA sequence motifs. Our analysis also revealed that alternative TSS usage regulation in response to environmental cues is widespread in Cryptococcus, altering gene expression and protein targeting. Importantly, we performed a forward genetic screen to identify a unique transcription factor (TF) named Tur1, which regulates alternative TSS (altTSS) usage genome-wide when cells switch from exponential phase to stationary phase. ChiP-Seq and DamID-Seq analyses suggest that at some loci, the role of Tur1 might be direct. Tur1 has been previously shown to be essential for virulence in C. neoformans. We demonstrated here that a tur1Δ mutant strain is more sensitive to superoxide stress and phagocytosed more efficiently by macrophages than the wild-type (WT) strain.
Collapse
Affiliation(s)
- Thi Tuong Vi Dang
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Corinne Maufrais
- Université Paris Cité, Institut Pasteur, HUB Bioinformatique et Biostatistique, C3BI, USR 3756 IP CNRS, Paris, France
| | - Jessie Colin
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| | - Frédérique Moyrand
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Isabelle Mouyna
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Jean-Yves Coppée
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| | - Chinaemerem U. Onyishi
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Joanna Lipecka
- Université Paris Cité, SFR Necker INSERM US24/CNRS UAR3633, Proteomics Platform, Paris, France
| | - Ida Chiara Guerrera
- Université Paris Cité, SFR Necker INSERM US24/CNRS UAR3633, Proteomics Platform, Paris, France
| | - Robin C. May
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Guilhem Janbon
- Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Paris, France
| |
Collapse
|
6
|
Telzrow CL, Esher Righi S, Cathey JM, Granek JA, Alspaugh JA. Cryptococcus neoformans Mar1 function links mitochondrial metabolism, oxidative stress, and antifungal tolerance. Front Physiol 2023; 14:1150272. [PMID: 36969606 PMCID: PMC10033685 DOI: 10.3389/fphys.2023.1150272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction: Microbial pathogens undergo significant physiological changes during interactions with the infected host, including alterations in metabolism and cell architecture. The Cryptococcus neoformans Mar1 protein is required for the proper ordering of the fungal cell wall in response to host-relevant stresses. However, the precise mechanism by which this Cryptococcus-specific protein regulates cell wall homeostasis was not defined. Methods: Here, we use comparative transcriptomics, protein localization, and phenotypic analysis of a mar1D loss-of-function mutant strain to further define the role of C. neoformans Mar1 in stress response and antifungal resistance. Results: We demonstrate that C. neoformans Mar1 is highly enriched in mitochondria. Furthermore, a mar1Δ mutant strain is impaired in growth in the presence of select electron transport chain inhibitors, has altered ATP homeostasis, and promotes proper mitochondrial morphogenesis. Pharmacological inhibition of complex IV of the electron transport chain in wild-type cells promotes similar cell wall changes as the mar1Δ mutant strain, supporting prior associations between mitochondrial function and cell wall homeostasis. Although Mar1 is not required for general susceptibility to the azole antifungals, the mar1Δ mutant strain displays increased tolerance to fluconazole that correlates with repressed mitochondrial metabolic activity. Discussion: Together, these studies support an emerging model in which the metabolic activity of microbial cells directs cell physiological changes to allow persistence in the face of antimicrobial and host stress.
Collapse
Affiliation(s)
- Calla L. Telzrow
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Shannon Esher Righi
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jackson M. Cathey
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Joshua A. Granek
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, United States
| | - J. Andrew Alspaugh
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
7
|
Dang TTV, Colin J, Janbon G. Alternative Transcription Start Site Usage and Functional Implications in Pathogenic Fungi. J Fungi (Basel) 2022; 8:1044. [PMID: 36294609 PMCID: PMC9604717 DOI: 10.3390/jof8101044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Pathogenic fungi require delicate gene regulation mechanisms to adapt to diverse living environments and escape host immune systems. Recent advances in sequencing technology have exposed the complexity of the fungal genome, thus allowing the gradual disentanglement of multiple layers of gene expression control. Alternative transcription start site (aTSS) usage, previously reported to be prominent in mammals and to play important roles in physiopathology, is also present in fungi to fine-tune gene expression. Depending on the alteration in their sequences, RNA isoforms arising from aTSSs acquire different characteristics that significantly alter their stability and translational capacity as well as the properties and biologic functions of the resulting proteins. Disrupted control of aTSS usage has been reported to severely impair growth, virulence, and the infectious capacity of pathogenic fungi. Here, we discuss principle concepts, mechanisms, and the functional implication of aTSS usage in fungi.
Collapse
Affiliation(s)
- Thi Tuong Vi Dang
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Jessie Colin
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, F-75014 Paris, France
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| |
Collapse
|
8
|
Interactions between copper homeostasis and the fungal cell wall affect copper stress resistance. PLoS Pathog 2022; 18:e1010195. [PMID: 35737716 PMCID: PMC9258870 DOI: 10.1371/journal.ppat.1010195] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/06/2022] [Accepted: 05/31/2022] [Indexed: 01/09/2023] Open
Abstract
Copper homeostasis mechanisms are essential for microbial adaption to changing copper levels within the host during infection. In the opportunistic fungal pathogen Cryptococcus neoformans (Cn), the Cn Cbi1/Bim1 protein is a newly identified copper binding and release protein that is highly induced during copper limitation. Recent studies demonstrated that Cbi1 functions in copper uptake through the Ctr1 copper transporter during copper limitation. However, the mechanism of Cbi1 action is unknown. The fungal cell wall is a dynamic structure primarily composed of carbohydrate polymers, such as chitin and chitosan, polymers known to strongly bind copper ions. We demonstrated that Cbi1 depletion affects cell wall integrity and architecture, connecting copper homeostasis with adaptive changes within the fungal cell wall. The cbi1Δ mutant strain possesses an aberrant cell wall gene transcriptional signature as well as defects in chitin / chitosan deposition and exposure. Furthermore, using Cn strains defective in chitosan biosynthesis, we demonstrated that cell wall chitosan modulates the ability of the fungal cell to withstand copper stress. Given the previously described role for Cbi1 in copper uptake, we propose that this copper-binding protein could be involved in shuttling copper from the cell wall to the copper transporter Ctr1 for regulated microbial copper uptake.
Collapse
|
9
|
Mattila H, Österman-Udd J, Mali T, Lundell T. Basidiomycota Fungi and ROS: Genomic Perspective on Key Enzymes Involved in Generation and Mitigation of Reactive Oxygen Species. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:837605. [PMID: 37746164 PMCID: PMC10512322 DOI: 10.3389/ffunb.2022.837605] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 09/26/2023]
Abstract
Our review includes a genomic survey of a multitude of reactive oxygen species (ROS) related intra- and extracellular enzymes and proteins among fungi of Basidiomycota, following their taxonomic classification within the systematic classes and orders, and focusing on different fungal lifestyles (saprobic, symbiotic, pathogenic). Intra- and extracellular ROS metabolism-involved enzymes (49 different protein families, summing 4170 protein models) were searched as protein encoding genes among 63 genomes selected according to current taxonomy. Extracellular and intracellular ROS metabolism and mechanisms in Basidiomycota are illustrated in detail. In brief, it may be concluded that differences between the set of extracellular enzymes activated by ROS, especially by H2O2, and involved in generation of H2O2, follow the differences in fungal lifestyles. The wood and plant biomass degrading white-rot fungi and the litter-decomposing species of Agaricomycetes contain the highest counts for genes encoding various extracellular peroxidases, mono- and peroxygenases, and oxidases. These findings further confirm the necessity of the multigene families of various extracellular oxidoreductases for efficient and complete degradation of wood lignocelluloses by fungi. High variations in the sizes of the extracellular ROS-involved gene families were found, however, among species with mycorrhizal symbiotic lifestyle. In addition, there are some differences among the sets of intracellular thiol-mediation involving proteins, and existence of enzyme mechanisms for quenching of intracellular H2O2 and ROS. In animal- and plant-pathogenic species, extracellular ROS enzymes are absent or rare. In these fungi, intracellular peroxidases are seemingly in minor role than in the independent saprobic, filamentous species of Basidiomycota. Noteworthy is that our genomic survey and review of the literature point to that there are differences both in generation of extracellular ROS as well as in mechanisms of response to oxidative stress and mitigation of ROS between fungi of Basidiomycota and Ascomycota.
Collapse
Affiliation(s)
| | | | | | - Taina Lundell
- Department of Microbiology, Faculty of Agriculture and Forestry, Viikki Campus, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Oxidative Stress Causes Vacuolar Fragmentation in the Human Fungal Pathogen Cryptococcus neoformans. J Fungi (Basel) 2021; 7:jof7070523. [PMID: 34210104 PMCID: PMC8305764 DOI: 10.3390/jof7070523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/07/2021] [Accepted: 06/26/2021] [Indexed: 02/04/2023] Open
Abstract
Vacuoles are dynamic cellular organelles, and their morphology is altered by various stimuli or stresses. Vacuoles play an important role in the physiology and virulence of many fungal pathogens. For example, a Cryptococcus neoformans mutant deficient in vacuolar functions showed significantly reduced expression of virulence factors such as capsule and melanin synthesis and was avirulent in a mouse model of cryptococcosis. In the current study, we found significantly increased vacuolar fragmentation in the C. neoformans mutants lacking SOD1 or SOD2, which respectively encode Zn, Cu-superoxide dismutase and Mn-superoxide dismutase. The sod2 mutant showed a greater level of vacuole fragmentation than the sod1 mutant. We also observed that the vacuoles were highly fragmented when wild-type cells were grown in a medium containing high concentrations of iron, copper, or zinc. Moreover, elevated temperature and treatment with the antifungal drug fluconazole caused increased vacuolar fragmentation. These conditions also commonly cause an increase in the levels of intracellular reactive oxygen species in the fungus, suggesting that vacuoles are fragmented in response to oxidative stress. Furthermore, we observed that Sod2 is not only localized in mitochondria but also in the cytoplasm within phagocytosed C. neoformans cells, possibly due to copper or iron limitation.
Collapse
|