1
|
Chavez MB, Andras NL, Tan MH, Kolli TN, Chu EY, Goldberg HA, Foster BL. Exogenous bone sialoprotein improves extraction socket healing in Ibsp knockout and wild-type mice. Bone 2025; 192:117381. [PMID: 39722365 PMCID: PMC11761379 DOI: 10.1016/j.bone.2024.117381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Bone sialoprotein (Ibsp/BSP) is a bone-associated extracellular matrix protein. Ibsp knockout (Ibsp-/-) mice exhibit defective alveolar bone formation, mineralization, and healing. We hypothesized BSP would rescue defective alveolar bone healing in a molar extraction model in Ibsp-/- mice. Collagen gel with or without native rat BSP (nBSP) or recombinant rat BSP (rBSP) was delivered to sockets after first maxillary molar extraction in Ibsp-/- and wild-type (WT) mice. Tissues were harvested 0, 1, 2, 7, and 14 days post-procedure (dpp) and analyzed by micro-computed tomography, histology, and immunohistochemistry (IHC). Histology and IHC demonstrated that collagen and BSP were retained within sockets. At 14 dpp, both bone volume fraction (BV/TV) and bone mineral density (BMD) were increased by both nBSP (over 50 %) and rBSP (over 60 %), compared to collagen alone in Ibsp-/- mice. In WT alveolar bone, BV/TV and BMD were also increased by nBSP (over 30 %) and rBSP (over 60 %) compared to collagen controls. Gene expression analyses revealed few changes from delivery of nBSP, while addition of rBSP resulted in regulation of cell signaling, ECM, mineralization, and osteoblast/osteoclast-associated genes. Exogenous BSP rescued alveolar bone healing defects in Ibsp-/- mice and enhanced bone healing in WT mice. Despite both forms of BSP improving bone healing, the substantial differences in how they regulate gene expression suggests that exogenous BSP acts in a complex, multifunctional manner to promote bone healing. These results support BSP as a novel approach to improve the quantity and quality of new bone in socket healing.
Collapse
Affiliation(s)
- M B Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA; College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - N L Andras
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M H Tan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - T N Kolli
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - E Y Chu
- Division of Operative Dentistry, Department of General Dentistry, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - H A Goldberg
- Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - B L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Chowdhury AS, Oxford JT. Collagen Alpha 1(XI) Amino-Terminal Domain Modulates Type I Collagen Fibril Assembly. Biochemistry 2025; 64:735-747. [PMID: 39841124 PMCID: PMC11800387 DOI: 10.1021/acs.biochem.4c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
The amino-terminal domain of collagen α1(XI) plays a key role in controlling fibrillogenesis. However, the specific mechanisms through which various isoforms of collagen α1(XI) regulate this process are not fully understood. We measured the kinetics of collagen type I self-assembly in the presence of specific collagen α1(XI) isoforms. Molecular dynamics simulations, protein-protein docking studies, and molecular mechanics Poisson-Boltzmann surface area were utilized to understand the molecular mechanisms. In vitro, in silico, and thermodynamic studies demonstrated an isoform-specific effect on self-assembly kinetics. Our results indicate isoform-specific differences in the rate constants, activation energy, and free energy of binding. These differences may result from isoform-specific interaction dynamics and modulation of steric hindrance due to the chemically distinct variable regions. We show that isoform A interacts with collagen type I due in part to the acidic variable region, increasing the activation energy of fibril growth while decreasing the rate constant during the growth phase. In contrast, the basic variable region of isoform B may result in less steric hindrance than isoform A. Isoform 0 demonstrated the highest activation energy and the lowest rate constant during the growth phase. Although the presence of isoforms reduced the rate constants for fibril growth, an increase in total turbidity during the plateau phase was observed compared to controls. Overall, these results are consistent with collagen α1(XI) NTD isoforms facilitating fibrillogenesis by increasing the final yield by reducing the rate of the lag and/or growth phases, while extending the duration of the growth phase.
Collapse
Affiliation(s)
- Abu Sayeed Chowdhury
- Biomolecular
Sciences Graduate Program, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States
| | - Julia Thom Oxford
- Biomolecular
Research Institute, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States
| |
Collapse
|
3
|
Schoonraad SA, Jaimes AA, Singh AJX, Croland KJ, Bryant SJ. Osteogenic effects of covalently tethered rhBMP-2 and rhBMP-9 in an MMP-sensitive PEG hydrogel nanocomposite. Acta Biomater 2023; 170:53-67. [PMID: 37634836 PMCID: PMC10831697 DOI: 10.1016/j.actbio.2023.08.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
While bone morphogenic protein-2 (BMP-2) is one of the most widely studied BMPs in bone tissue engineering, BMP-9 has been purported to be a highly osteogenic BMP. This work investigates the individual osteogenic effects of recombinant human (rh) BMP-2 and rhBMP-9, when tethered into a hydrogel, on encapsulated human mesenchymal stem cells (MSCs). A matrix-metalloproteinase (MMP)-sensitive hydrogel nanocomposite, comprised of poly(ethylene glycol) crosslinked with MMP-sensitive peptides, tethered RGD, and entrapped hydroxyapatite nanoparticles was used. The rhBMPs were functionalized with free thiols and then covalently tethered into the hydrogel by a thiol-norbornene photoclick reaction. rhBMP-2 retained its full bioactivity post-thiolation, while the bioactivity of rhBMP-9 was partially reduced. Nonetheless, both rhBMPs were highly effective at enhancing osteogenesis over 12-weeks in a chemically-defined medium. Expression of ID1 and osterix, early markers of osteogenesis; collagen type I, a main component of the bone extracellular matrix (ECM); and osteopontin, bone sialoprotein II and dentin matrix protein I, mature osteoblast markers, increased with increasing concentrations of tethered rhBMP-2 or rhBMP-9. When comparing the two BMPs, rhBMP-9 led to more rapid collagen deposition and greater mineralization long-term. In summary, rhBMP-2 retained its bioactivity post-thiolation while rhBMP-9 is more susceptible to thiolation. Despite this shortcoming with rhBMP-9, both rhBMPs when tethered into this hydrogel, enhanced osteogenesis of MSCs, leading to a mature osteoblast phenotype surrounded by a mineralized ECM. STATEMENT OF SIGNIFICANCE: Osteoinductive hydrogels are a promising vehicle to deliver mesenchymal stem cells (MSCs) for bone regeneration. This study examines the in vitro osteoinductive capabilities when tethered bone morphogenic proteins (BMPs) are incorporated into a degradable biomimetic hydrogel with cell adhesive ligands, matrix metalloproteinase sensitive crosslinks for cell-mediated degradation, and hydroxyapatite nanoparticles. This study demonstrates that BMP-2 is readily thiolated and tethered without loss of bioactivity while bioactivity of BMP-9 is more susceptible to immobilization. Nonetheless, when either BMP2 or BMP9 are tethered into this hydrogel, osteogenesis of human MSCs is enhanced, bone extracellular matrix is deposited, and a mature osteoblast phenotype is achieved. This bone-biomimetic hydrogel is a promising design for stem cell-mediated bone regeneration.
Collapse
Affiliation(s)
- Sarah A Schoonraad
- Materials Science & Engineering Program, University of Colorado, 4001 Discovery Dr, Boulder, CO 80309-0613, United States
| | - Alan A Jaimes
- Department of Biochemistry, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, United States
| | - Arjun J X Singh
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, United States
| | - Kiera J Croland
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, United States
| | - Stephanie J Bryant
- Materials Science & Engineering Program, University of Colorado, 4001 Discovery Dr, Boulder, CO 80309-0613, United States; Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, United States; BioFrontiers Institute, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, United States.
| |
Collapse
|
4
|
Bone Sialoprotein Immobilized in Collagen Type I Enhances Angiogenesis In Vitro and In Ovo. Polymers (Basel) 2023; 15:polym15041007. [PMID: 36850289 PMCID: PMC9968013 DOI: 10.3390/polym15041007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Bone fracture healing is a multistep process, including early immunological reactions, osteogenesis, and as a key factor, angiogenesis. Molecules inducing osteogenesis as well as angiogenesis are rare, but hold promise to be employed in bone tissue engineering. It has been demonstrated that the bone sialoprotein (BSP) can induce bone formation when immobilized in collagen type I, but its effect on angiogenesis still has to be characterized in detail. Therefore, the aim of this study was to analyse the effects of BSP immobilized in a collagen type I gel on angiogenesis. First, in vitro analyses with endothelial cells (HUVECs) were performed detecting enhancing effects of BSP on proliferation and gene expression of endothelial markers. A spheroid model was employed confirming these results. Finally, the inducing impact of BSP-collagen on vascular density was proved in a yolk sac membrane assay. Our results demonstrate that BSP is capable of inducing angiogenesis and confirm that collagen type I is the optimal carrier for this protein. Taking into account former results, and literature showing that BSP also induces osteogenesis, one can hypothesize that BSP couples angiogenesis and osteogenesis, making it a promising molecule to be used in bone tissue regeneration.
Collapse
|
5
|
Porter GC, Abdelmoneim D, Li KC, Duncan WJ, Coates DE. The Effect of Low-Temperature Thermal Processing on Bovine Hydroxyapatite Bone Substitutes, toward Bone Cell Interaction and Differentiation. MATERIALS 2022; 15:ma15072504. [PMID: 35407837 PMCID: PMC8999525 DOI: 10.3390/ma15072504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/26/2022] [Accepted: 03/26/2022] [Indexed: 12/17/2022]
Abstract
Ideal bone grafting scaffolds are osteoinductive, osteoconductive, and encourage osteogenesis through the remodeling processes of bone resorption, new bone formation, and successful integration or replacement; however, achieving this trifecta remains challenging. Production methods of bone grafts, such as thermal processing, can have significant effects on the degree of cell-surface interactions via wide-scale changes in the material properties. Here, we investigated the effects of small incremental changes at low thermal processing temperatures on the degree of osteoclast and osteoblast attachment, proliferation, and differentiation. Bovine bone scaffolds were prepared at 100, 130, 160, 190, and 220 °C and compared with a commercial control, Bio-Oss®. Osteoclast attachment and activity were significantly higher on lower temperature processed bone and were not present ≥190 °C. The highest osteoblast proliferation and differentiation were obtained from treatments at 130 and 160 °C. Similarly, qRT2-PCR assays highlighted osteoblasts attached to bone processed at 130 and 160 °C as demonstrating the highest osteogenic gene expression. This study demonstrated the significant effects of small-scale processing changes on bone graft materials in vitro, which may translate to a tailored approach of cellular response in vivo.
Collapse
|
6
|
Picker J, Lan Z, Arora S, Green M, Hahn M, Cosgriff-Hernandez E, Hook M. Prokaryotic Collagen-Like Proteins as Novel Biomaterials. Front Bioeng Biotechnol 2022; 10:840939. [PMID: 35372322 PMCID: PMC8968730 DOI: 10.3389/fbioe.2022.840939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Collagens are the major structural component in animal extracellular matrices and are critical signaling molecules in various cell-matrix interactions. Its unique triple helical structure is enabled by tripeptide Gly-X-Y repeats. Understanding of sequence requirements for animal-derived collagen led to the discovery of prokaryotic collagen-like protein in the early 2000s. These prokaryotic collagen-like proteins are structurally similar to mammalian collagens in many ways. However, unlike the challenges associated with recombinant expression of mammalian collagens, these prokaryotic collagen-like proteins can be readily expressed in E. coli and are amenable to genetic modification. In this review article, we will first discuss the properties of mammalian collagen and provide a comparative analysis of mammalian collagen and prokaryotic collagen-like proteins. We will then review the use of prokaryotic collagen-like proteins to both study the biology of conventional collagen and develop a new biomaterial platform. Finally, we will describe the application of Scl2 protein, a streptococcal collagen-like protein, in thromboresistant coating for cardiovascular devices, scaffolds for bone regeneration, chronic wound dressing and matrices for cartilage regeneration.
Collapse
Affiliation(s)
- Jonathan Picker
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| | - Ziyang Lan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| | - Mykel Green
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Mariah Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | | - Magnus Hook
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| |
Collapse
|