1
|
So M, Ono M, Oogai S, Kondo M, Yamazaki K, Nachtegael C, Hamajima H, Mutoh R, Kato M, Kawate H, Oki T, Kawata Y, Kumamoto S, Tokui N, Takei T, Shimizu K, Inoue A, Yamamoto N, Unoki M, Tanabe K, Nakashima K, Sasaki H, Hojo H, Nagata Y, Suetake I. Inhibitory effects of extracts from Eucalyptus gunnii on α-synuclein amyloid fibrils. Biosci Biotechnol Biochem 2024; 88:1289-1298. [PMID: 39169473 DOI: 10.1093/bbb/zbae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Amyloid fibril formation is associated with various amyloidoses, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Despite the numerous studies on the inhibition of amyloid formation, the prevention and treatment of a majority of amyloid-related disorders are still challenging. In this study, we investigated the effects of various plant extracts on amyloid formation of α-synuclein. We found that the extracts from Eucalyptus gunnii are able to inhibit amyloid formation, and to disaggregate preformed fibrils, in vitro. The extract itself did not lead to cell damage. In the extract, miquelianin, which is a glycosylated form of quercetin and has been detected in the plasma and the brain, was identified and assessed to have a moderate inhibitory activity, compared to the effects of ellagic acid and quercetin, which are strong inhibitors for amyloid formation. The properties of miquelianin provide insights into the mechanisms controlling the assembly of α-synuclein in the brain.
Collapse
Affiliation(s)
- Masatomo So
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Misaki Ono
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Shigeki Oogai
- Saga Food & Cosmetic Laboratory, Saga Prefectural Industrial Innovation Center, Saga, Japan
| | - Minako Kondo
- ARFS, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kaede Yamazaki
- Saga Food & Cosmetic Laboratory, Saga Prefectural Industrial Innovation Center, Saga, Japan
| | - Charlotte Nachtegael
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Hiroshi Hamajima
- Saga Food & Cosmetic Laboratory, Saga Prefectural Industrial Innovation Center, Saga, Japan
| | - Risa Mutoh
- Department of Applied Physics, Faculty of Science, Fukuoka University, Fukuoka, Japan
| | - Masaki Kato
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Hisaya Kawate
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Tomoyuki Oki
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Shiho Kumamoto
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Noritaka Tokui
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Institute of Preventive and Medical Dietetics, Nakamura Gakuen University, Fukuoka, Japan
| | - Toshiki Takei
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Inoue
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoki Yamamoto
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Motoko Unoki
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichi Tanabe
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Institute of Preventive and Medical Dietetics, Nakamura Gakuen University, Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yasuo Nagata
- Saga Food & Cosmetic Laboratory, Saga Prefectural Industrial Innovation Center, Saga, Japan
| | - Isao Suetake
- Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Institute of Preventive and Medical Dietetics, Nakamura Gakuen University, Fukuoka, Japan
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Yao Y, Zhao Q, Tao Y, Liu K, Cao T, Chen Z, Liu C, Le W, Zhao J, Li D, Kang W. Different charged biopolymers induce α-synuclein to form fibrils with distinct structures. J Biol Chem 2024; 300:107862. [PMID: 39374778 PMCID: PMC11570948 DOI: 10.1016/j.jbc.2024.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The aggregation of α-synuclein (α-syn) into amyloid fibrils, a key process in the development of Parkinson's disease (PD) and other synucleinopathies, is influenced by a range of factors such as charged biopolymers, chaperones, and metabolites. However, the specific impacts of different biopolymers on α-syn fibril structure are not well understood. In our work, we found that different polyanions and polycations, such as polyphosphate (polyP), polyuridine (polyU), and polyamines (including putrescine, spermidine, and spermine), markedly altered the fibrillation kinetics of α-syn in vitro. Furthermore, the seeding assay revealed distinct cross-seeding capacities across different biopolymer-induced α-syn fibrils, suggesting the formation of structurally distinct strains under different conditions. Utilizing cryo-electron microscopy (cryo-EM), we further examined the detailed structural configuration of α-syn fibrils formed in the presence of these biopolymers. Notably, we found that while polyamines do not change the atomic structure of α-syn fibrils, polyU and polyP induce the formation of distinct amyloid fibrils, exhibiting a range of structural polymorphs. Our work offers valuable insights into how various charged biopolymers affect the aggregation process and the resultant structures of α-syn fibrils, thereby enhancing our understanding of the structural variations in α-syn fibrils across different pathological conditions.
Collapse
Affiliation(s)
- Yuxuan Yao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Qinyue Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Kaien Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Tianyi Cao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zipeng Chen
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - WeiDong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Zhao
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| | - Wenyan Kang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurology, Ruijin Hainan Hospital, Shanghai Jiao Tong University, School of Medicine (Boao Research Hospital), Hainan, China.
| |
Collapse
|
3
|
Holt C, Carver JA. Invited review: Modeling milk stability. J Dairy Sci 2024; 107:5259-5279. [PMID: 38522835 DOI: 10.3168/jds.2024-24779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/26/2024]
Abstract
Novel insights into the stability of milk and milk products during storage and processing result from describing caseins near neutral pH as hydrophilic, intrinsically disordered, proteins. Casein solubility is strongly influenced by pH and multivalent ion binding. Solubility is high at a neutral pH or above, but decreases as the casein net charge approaches zero, allowing a condensed casein phase or gel to form, then increases at lower pH. Of particular importance for casein micelle stability near neutral pH is the proportion of free caseins in the micelle (i.e., caseins not bound directly to nanoclusters of calcium phosphate). Free caseins are more soluble and better able to act as molecular chaperones (to prevent casein and whey protein aggregation) than bound caseins. Some free caseins are highly phosphorylated and can also act as mineral chaperones to inhibit the growth of calcium phosphate phases and prevent mineralized deposits from forming on membranes or heat exchangers. Thus, casein micelle stability is reduced when free caseins bind to amyloid fibrils, destabilized whey proteins or calcium phosphate. The multivalent-binding model of the casein micelle quantitatively describes these and other factors affecting the stability of milk and milk protein products during manufacture and storage.
Collapse
Affiliation(s)
- C Holt
- School of Biomolecular Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - J A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
4
|
Guan J, Jakob U. The Protein Scaffolding Functions of Polyphosphate. J Mol Biol 2024; 436:168504. [PMID: 38423453 PMCID: PMC11921889 DOI: 10.1016/j.jmb.2024.168504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Inorganic polyphosphate (polyP), one of the first high-energy compound on earth, defies its extreme compositional and structural simplicity with an astoundingly wide array of biological activities across all domains of life. However, the underlying mechanism of such functional pleiotropy remains largely elusive. In this review, we will summarize recent studies demonstrating that this simple polyanion stabilizes protein folding intermediates and scaffolds select native proteins. These functions allow polyP to act as molecular chaperone that protects cells against protein aggregation, as pro-amyloidogenic factor that accelerates both physiological and disease-associated amyloid formation, and as a modulator of liquid-liquid phase separation processes. These activities help to explain polyP's known roles in bacterial stress responses and pathogenicity, provide the mechanistic foundation for its potential role in human neurodegenerative diseases, and open a new direction regarding its influence on gene expression through condensate formation. We will highlight critical unanswered questions and point out potential directions that will help to further understand the pleiotropic functions of this ancient and ubiquitous biopolymer.
Collapse
Affiliation(s)
- Jian Guan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Do TM, Horinek D, Matubayasi N. How ATP suppresses the fibrillation of amyloid peptides: analysis of the free-energy contributions. Phys Chem Chem Phys 2024; 26:11880-11892. [PMID: 38568008 DOI: 10.1039/d4cp00179f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Recent experiments have revealed that adenosine triphosphate (ATP) suppresses the fibrillation of amyloid peptides - a process closely linked to neurodegenerative diseases such as Alzheimer's and Parkinson's. Apart from the adsorption of ATP onto amyloid peptides, the molecular understanding is still limited, leaving the underlying mechanism for the fibrillation suppression by ATP largely unclear, especially in regards to the molecular energetics. Here we provide an explanation at the molecular scale by quantifying the free energies using all-atom molecular dynamics simulations. We found that the changes of the free energies due to the addition of ATP lead to a significant equilibrium shift towards monomeric peptides in agreement with experiments. Despite ATP being a highly charged species, the decomposition of the free energies reveals that the van der Waals interactions with the peptide are decisive in determining the relative stabilization of the monomeric state. While the phosphate moiety exhibits strong electrostatic interactions, the compensation by the water solvent results in a minor, overall Coulomb contribution. Our quantitative analysis of the free energies identifies which intermolecular interactions are responsible for the suppression of the amyloid fibril formation by ATP and offers a promising method to analyze the roles of similarly complex cosolvents in aggregation processes.
Collapse
Affiliation(s)
- Tuan Minh Do
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 560-8531 Toyonaka, Osaka, Japan.
| | - Dominik Horinek
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 560-8531 Toyonaka, Osaka, Japan.
| |
Collapse
|
6
|
Louros N, Schymkowitz J, Rousseau F. Mechanisms and pathology of protein misfolding and aggregation. Nat Rev Mol Cell Biol 2023; 24:912-933. [PMID: 37684425 DOI: 10.1038/s41580-023-00647-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
Despite advances in machine learning-based protein structure prediction, we are still far from fully understanding how proteins fold into their native conformation. The conventional notion that polypeptides fold spontaneously to their biologically active states has gradually been replaced by our understanding that cellular protein folding often requires context-dependent guidance from molecular chaperones in order to avoid misfolding. Misfolded proteins can aggregate into larger structures, such as amyloid fibrils, which perpetuate the misfolding process, creating a self-reinforcing cascade. A surge in amyloid fibril structures has deepened our comprehension of how a single polypeptide sequence can exhibit multiple amyloid conformations, known as polymorphism. The assembly of these polymorphs is not a random process but is influenced by the specific conditions and tissues in which they originate. This observation suggests that, similar to the folding of native proteins, the kinetics of pathological amyloid assembly are modulated by interactions specific to cells and tissues. Here, we review the current understanding of how intrinsic protein conformational propensities are modulated by physiological and pathological interactions in the cell to shape protein misfolding and aggregation pathology.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Berbon M, Martinez D, Morvan E, Grélard A, Kauffmann B, Waeytens J, Wien F, Arluison V, Habenstein B. Hfq C-terminal region forms a β-rich amyloid-like motif without perturbing the N-terminal Sm-like structure. Commun Biol 2023; 6:1075. [PMID: 37865695 PMCID: PMC10590398 DOI: 10.1038/s42003-023-05462-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Hfq is a pleitropic actor that serves as stress response and virulence factor in the bacterial cell. To execute its multiple functions, Hfq assembles into symmetric torus-shaped hexamers. Extending outward from the hexameric core, Hfq presents a C-terminal region, described as intrinsically disordered in solution. Many aspects of the role and the structure of this region remain unclear. For instance, in its truncated form it can promote amyloid-like filament assembly. Here, we show that a minimal 11-residue motif at the C-terminal end of Hfq assembles into filaments with amyloid characteristics. Our data suggest that the full-length Hfq in its filamentous state contains a similar molecular fingerprint than that of the short β-strand peptide, and that the Sm-core structure is not affected by filament formation. Hfq proteins might thus co-exist in two forms in vivo, either as isolated, soluble hexamers or as self-assembled hexamers through amyloid-reminiscent interactions, modulating Hfq cellular functions.
Collapse
Affiliation(s)
- Mélanie Berbon
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Denis Martinez
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Estelle Morvan
- Univ. Bordeaux, CNRS, INSERM, IECB, UAR 3033, Pessac, France
| | - Axelle Grélard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Brice Kauffmann
- Univ. Bordeaux, CNRS, INSERM, IECB, UAR 3033, Pessac, France
| | - Jehan Waeytens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgique
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, UMR12 CEA CNRS, CEA Saclay, 91191, Gif-sur-Yvette, France.
- Université de Paris Cité, UFR SDV, 75013, Paris, France.
| | - Birgit Habenstein
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France.
| |
Collapse
|
8
|
Sudhakar S, Manohar A, Mani E. Liquid-Liquid Phase Separation (LLPS)-Driven Fibrilization of Amyloid-β Protein. ACS Chem Neurosci 2023; 14:3655-3664. [PMID: 37718544 DOI: 10.1021/acschemneuro.3c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Amyloid-β [Aβ(1-40)] aggregation into a fibrillar network is one of the major hallmarks of Alzheimer's disease (AD). Recently, a few studies reported that polyphosphate (polyP), an anionic biopolymer that participates in various cellular physiological processes in humans, induces fibrilization in many amyloidogenic proteins [ 2020 Alzheimer's Disease Facts and Figures; John Wiley and Sons Inc., 2020; Tanzi, R. E.; Bertram, L. Cell 2005, 120, 545-555; Selkoe, D. J. Proc. Natl. Acad. Sci. U.S.A. 1995, 275, 630-631; and Rambaran, R. N.; Serpell, L. C. Prion 2008, 2, 112-117]. However, the role of polyP in Aβ(1-40) fibrilization and the underlying mechanism are unclear. In this study, we report experimental investigations on the role of polyP in the fibrilization kinetics of Aβ(1-40). It is found that polyP exhibits a dual effect depending upon the pH value. At pH = 7 (neutral), polyP inhibits amyloid fibrilization in a dose-dependent manner similar to negatively charged nanoparticles. On the contrary, at pH = 3 (acidic), polyP accelerates amyloid fibrilization kinetics via liquid-liquid phase separation (LLPS), wherein the protein-rich droplets contain mature fibrils. In the parameter space spanned by concentrations of Aβ(1-40) and polyP, a phase diagram is constructed to demark the domain where LLPS is observed at pH = 3. Characterization of the protein aggregates, secondary structure content in the aggregates, and cell viability studies in the presence of aggregates are discussed at both pH values. This study reveals that anionic biopolymers can modulate amyloid fibrilization kinetics, linked to neurodegenerative diseases, depending upon their local concentrations and pH.
Collapse
Affiliation(s)
- Swathi Sudhakar
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai 600036, India
| | - Anagha Manohar
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ethayaraja Mani
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
9
|
Kamski-Hennekam ER, Huang J, Ahmed R, Melacini G. Toward a molecular mechanism for the interaction of ATP with alpha-synuclein. Chem Sci 2023; 14:9933-9942. [PMID: 37736631 PMCID: PMC10510630 DOI: 10.1039/d3sc03612j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/19/2023] [Indexed: 09/23/2023] Open
Abstract
The ability of Adenosine Triphosphate (ATP) to modulate protein solubility establishes a critical link between ATP homeostasis and proteinopathies, such as Parkinson's (PD). The most significant risk factor for PD is aging, and ATP levels decline dramatically with age. However, the mechanism by which ATP interacts with alpha-synuclein (αS), whose aggregation is characteristic of PD, is currently not fully understood, as is ATP's effect on αS aggregation. Here, we use nuclear magnetic resonance spectroscopy as well as fluorescence, dynamic light scattering and microscopy to show that ATP affects multiple species in the αS self-association cascade. The triphosphate moiety of ATP disrupts long-range electrostatic intramolecular contacts in αS monomers to enhance initial aggregation, while also inhibiting the formation of late-stage β-sheet fibrils by disrupting monomer-fibril interactions. These effects are modulated by magnesium ions and early onset PD-related αS mutations, suggesting that loss of the ATP hydrotropic function on αS fibrillization may play a role in PD etiology.
Collapse
Affiliation(s)
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University Hamilton ON L8S 4M1 Canada
| | - Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton ON L8S 4M1 Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University Hamilton ON L8S 4M1 Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton ON L8S 4M1 Canada
| |
Collapse
|
10
|
Naskar S, Gour N. Realization of Amyloid-like Aggregation as a Common Cause for Pathogenesis in Diseases. Life (Basel) 2023; 13:1523. [PMID: 37511898 PMCID: PMC10381831 DOI: 10.3390/life13071523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Amyloids were conventionally referred to as extracellular and intracellular accumulation of Aβ42 peptide, which causes the formation of plaques and neurofibrillary tangles inside the brain leading to the pathogenesis in Alzheimer's disease. Subsequently, amyloid-like deposition was found in the etiology of prion diseases, Parkinson's disease, type II diabetes, and cancer, which was attributed to the aggregation of prion protein, α-Synuclein, islet amyloid polypeptide protein, and p53 protein, respectively. Hence, traditionally amyloids were considered aggregates formed exclusively by proteins or peptides. However, since the last decade, it has been discovered that other metabolites, like single amino acids, nucleobases, lipids, glucose derivatives, etc., have a propensity to form amyloid-like toxic assemblies. Several studies suggest direct implications of these metabolite assemblies in the patho-physiology of various inborn errors of metabolisms like phenylketonuria, tyrosinemia, cystinuria, and Gaucher's disease, to name a few. In this review, we present a comprehensive literature overview that suggests amyloid-like structure formation as a common phenomenon for disease progression and pathogenesis in multiple syndromes. The review is devoted to providing readers with a broad knowledge of the structure, mode of formation, propagation, and transmission of different extracellular amyloids and their implications in the pathogenesis of diseases. We strongly believe a review on this topic is urgently required to create awareness about the understanding of the fundamental molecular mechanism behind the origin of diseases from an amyloid perspective and possibly look for a common therapeutic strategy for the treatment of these maladies by designing generic amyloid inhibitors.
Collapse
Affiliation(s)
- Soumick Naskar
- Department of Chemistry, Indrashil University, Kadi, Mehsana 382740, Gujarat, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana 382740, Gujarat, India
| |
Collapse
|
11
|
Supersaturation-Dependent Formation of Amyloid Fibrils. Molecules 2022; 27:molecules27144588. [PMID: 35889461 PMCID: PMC9321232 DOI: 10.3390/molecules27144588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
The supersaturation of a solution refers to a non-equilibrium phase in which the solution is trapped in a soluble state, even though the solute’s concentration is greater than its thermodynamic solubility. Upon breaking supersaturation, crystals form and the concentration of the solute decreases to its thermodynamic solubility. Soon after the discovery of the prion phenomena, it was recognized that prion disease transmission and propagation share some similarities with the process of crystallization. Subsequent studies exploring the structural and functional association between amyloid fibrils and amyloidoses solidified this paradigm. However, recent studies have not necessarily focused on supersaturation, possibly because of marked advancements in structural studies clarifying the atomic structures of amyloid fibrils. On the other hand, there is increasing evidence that supersaturation plays a critical role in the formation of amyloid fibrils and the onset of amyloidosis. Here, we review the recent evidence that supersaturation plays a role in linking unfolding/folding and amyloid fibril formation. We also introduce the HANABI (HANdai Amyloid Burst Inducer) system, which enables high-throughput analysis of amyloid fibril formation by the ultrasonication-triggered breakdown of supersaturation. In addition to structural studies, studies based on solubility and supersaturation are essential both to developing a comprehensive understanding of amyloid fibrils and their roles in amyloidosis, and to developing therapeutic strategies.
Collapse
|