1
|
Pompilio A, Lupetti V, Puca V, Di Bonaventura G. Repurposing High-Throughput Screening Reveals Unconventional Drugs with Antimicrobial and Antibiofilm Potential Against Methicillin-Resistant Staphylococcus aureus from a Cystic Fibrosis Patient. Antibiotics (Basel) 2025; 14:402. [PMID: 40298549 PMCID: PMC12024424 DOI: 10.3390/antibiotics14040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Antibiotic therapy faces challenges from rising acquired and biofilm-related antibiotic resistance rates. High resistance levels to commonly used antibiotics have been observed in methicillin-resistant Staphylococcus aureus (MRSA) strains among cystic fibrosis (CF) patients, indicating an urgent need for new antibacterial agents. This study aimed to identify potential novel therapeutics with antibacterial and antibiofilm activities against an MRSA CF strain by screening, for the first time, the Drug Repurposing Compound Library (MedChem Express). Methods/Results: Among the 3386 compounds, a high-throughput screening-based spectrophotometric approach identified 2439 (72%), 654 (19.3%), and 426 (12.6%) drugs active against planktonic cells, biofilm formation, and preformed biofilm, respectively, although to different extents. The most active hits were 193 (5.7%), against planktonic cells, causing a 100% growth inhibition; 5 (0.14%), with excellent activity against biofilm formation (i.e., reduction ≥ 90%); and 4, showing high activity (i.e., 60% ≤ biofilm reduction < 90%) against preformed biofilms. The potential hits belonged to several primary research areas, with "cancer" being the most prevalent. After performing a literature review to identify other, already published biological properties that could be relevant to the CF lung environment (i.e., activity against other CF pathogens, and anti-inflammatory and anti-virulence potential), the most interesting hits were the following: 5-(N,N-Hexamethylene)-amiloride (diuretic), Toremifene (anticancer), Zafirlukast (antiasthmatic), Fenretide (anticancer), and Montelukast (antiasthmatic) against planktonic S. aureus cells; Hemin against biofilm formation; and Heparin, Clemastine (antihistaminic), and Bromfenac (nonsteroidal anti-inflammatory) against established biofilms. Conclusions: These findings warrant further in vitro and in vivo studies to confirm the potential of repurposing these compounds for managing lung infections caused by S. aureus in CF patients.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral and Biomedical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (V.L.)
- Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Veronica Lupetti
- Department of Medical, Oral and Biomedical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (V.L.)
| | - Valentina Puca
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biomedical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (V.L.)
- Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
2
|
Xu H, Zhang X, Lv Z, Huang F, Zou Y, Wang C, Ding F, Sun Y. Computational exploration of the self-aggregation mechanisms of phenol-soluble modulins β1 and β2 in Staphylococcus aureus biofilms. Colloids Surf B Biointerfaces 2025; 248:114498. [PMID: 39778221 DOI: 10.1016/j.colsurfb.2025.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/01/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The formation of functional bacterial amyloids by phenol-soluble modulins (PSMs) in Staphylococcus aureus is a critical component of biofilm-associated infections, providing robust protective barriers against antimicrobial agents and immune defenses. Clarifying the molecular mechanisms of PSM self-assembly within the biofilm matrix is essential for developing strategies to disrupt biofilm integrity and combat biofilm-related infections. In this study, we analyzed the self-assembly dynamics of PSM-β1 and PSM-β2 by examining their folding and dimerization through long-timescale atomistic discrete molecular dynamics simulations. Our findings revealed that both peptides primarily adopt helical structures as monomers but shift to β-sheets upon dimerization. Monomeric state, PSM-β1 exhibited frequent transitions between helical and β-sheet forms, while PSM-β2 largely retained a helical structure. Upon dimerization, both peptides showed pronounced β-sheet formation around conserved C-terminal residues 21-44. Residues 21-33, largely unstructured as monomers, demonstrated strong tendencies for β-sheet formation and intermolecular interactions, underscoring their central role in the self-assembly of both peptides. Additionally, the PSM-β1 N-terminus formed β-sheets only when interacting with the C-terminus, whereas the PSM-β2 N-terminus remained helical and uninvolved in β-sheet formation. These distinct aggregation behaviors likely contribute to biofilm dynamics, with C-terminal regions facilitating biofilm formation and N-terminal regions influencing stability. Targeting residues 21-33 in PSM-β1 and PSM-β2 offers a promising therapeutic approach for disrupting biofilm integrity. This study advances our understanding of PSM-β1 and PSM-β2 self-assembly and presents new targets for drug design against biofilm-associated diseases.
Collapse
Affiliation(s)
- Huan Xu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xiaohan Zhang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Zhongyue Lv
- Department of Neurology, the Affiliated LiHuiLi Hospital of Ningbo University, Ningbo 315211, China
| | - Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), the Affiliated LiHuiLi Hospital of Ningbo University, Ningbo 315211, China
| | - Yu Zou
- Department of Sport and Exercise Science, Zhejiang University, Hangzhou 310058, China
| | - Chuang Wang
- School of Basic Medical Science, Health Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States.
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|
3
|
Zhu R, Stone T, Wang Y. The role of shear rates on amyloid formation from biofilm peptide phenol-soluble modulins. Biophys J 2024; 123:1106-1115. [PMID: 38549371 PMCID: PMC11079943 DOI: 10.1016/j.bpj.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/28/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024] Open
Abstract
Biofilms, microbial communities enclosed in the self-produced extracellular matrix, have a significant impact on human health, environment, and industry. The pathogen Staphylococcus aureus (S. aureus) is recognized as one of the most frequent causes of biofilm-related infections. Phenol-soluble modulins (PSMs) serve as a crucial component, fortifying S. aureus biofilm matrix through self-assembly into amyloid fibrils, which enhances S. aureus colonization and resistance to antibiotics. However, the role of shear rate, one of the critical physiological factors within blood vessels, on the formation of PSM amyloids remains poorly understood. In this work, using a combination of thioflavin T fluorescence kinetic studies, circular dichroism spectrometry, and electron microscopy, we demonstrated that shear rates ranging from 150 to 300 s-1 accelerate fibrillation of PSMα1, α3, and α4 into amyloids, resulting in elongated amyloid structures. Furthermore, PSMα1, α3, and α4 predominantly self-assembled into amyloid fibers with a cross-α structure under shear conditions, deviating from the typical β-sheet configuration of PSM amyloids. These findings imply the role of shear rates within the bloodstream on enhancing PSM self-assembly that is associated with S. aureus biofilm formation.
Collapse
Affiliation(s)
- Runyao Zhu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Trevor Stone
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana; Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia
| | - Yichun Wang
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana.
| |
Collapse
|
4
|
Kristoffersen K, Hansen KH, Andreasen M. Differential Effects of Lipid Bilayers on αPSM Peptide Functional Amyloid Formation. Int J Mol Sci 2023; 25:102. [PMID: 38203273 PMCID: PMC10779341 DOI: 10.3390/ijms25010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Phenol-soluble modulins (PSMs) are key virulence factors of S. aureus, and they comprise the structural scaffold of biofilm as they self-assemble into functional amyloids. They have been shown to interact with cell membranes as they display toxicity towards human cells through cell lysis, with αPSM3 being the most cytotoxic. In addition to causing cell lysis in mammalian cells, PSMs have also been shown to interact with bacterial cell membranes through antimicrobial effects. Here, we present a study on the effects of lipid bilayers on the aggregation mechanism of αPSM using chemical kinetics to study the effects of lipid vesicles on the aggregation kinetics and using circular dichroism (CD) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) to investigate the corresponding secondary structure of the aggregates. We found that the effects of lipid bilayers on αPSM aggregation were not homogeneous between lipid type and αPSM peptides, although none of the lipids caused changes in the dominating aggregation mechanism. In the case of αPSM3, all types of lipids slowed down aggregation to a varying degree, with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) having the most pronounced effect. For αPSM1, lipids had opposite effects, where DOPC decelerated aggregation and lipopolysaccharide (LPS) accelerated the aggregation, while 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DOPG) had no effect. For αPSM4, both DOPG and LPS accelerated the aggregation, but only at high concentration, while DOPC showed no effect. None of the lipids was capable of inducing aggregation of αPSM2. Our data reveal a complex interaction pattern between PSMs peptides and lipid bilayers that causes changes in the aggregation kinetics by affecting different kinetic parameters along with only subtle changes in morphology.
Collapse
Affiliation(s)
| | | | - Maria Andreasen
- Department of Biomedicine, Aarhus University, Willhelm Meyer’s Allé 3, 8000 Aarhus, Denmark
| |
Collapse
|
5
|
Tammara V, Das A. The Molecular Mechanism of PSMα3 Aggregation: A New View. J Phys Chem B 2023; 127:8317-8330. [PMID: 37734054 DOI: 10.1021/acs.jpcb.3c03806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The emergence of a novel cross-α fibrillar structure, unlike the commonly observed sequence-independent cross-β one, of a 22-residue bacterial virulent amphipathic α-helical peptide of the phenol soluble modulin (PSM) family, PSMα3, with many deleterious effects on human life, has infused uncertainty to the paradigm of the intrinsically polymorphic, multivariate, multiphasic, and cross-sequence-cross-disease entangled protein aggregation landscape and hence on the identity of the therapeutic target. We, here, deconvolute the factors contributing to the genesis and hence the transition of lower to higher order aggregates of PSMα3 in its natural state and three noncanonical designed variants using conventional and enhanced sampling approach-based atomistic simulations. PSMα3 shows structural polymorphism with nominal α-helicity, substantial β-propensity, and dominant random-coil features, irrespective of the extent of aggregation. Moreover, the individual features of the overall amphipathicity operate alternatively depending on the extent and organization of aggregation; the dominance gradually moves from charged to hydrophobic residues with the progressive generation of higher order aggregates (dimer to oligomer to fibril) and with increasing orderedness of the self-assembled construct (oligomer vs dimer/fibril). Similarly, the contribution of interchain salt bridges decreases with increasing order of aggregation (dimer to oligomer to fibril). However, the intrachain salt bridges consistently display their role in all phases of aggregation. Such phase-independent features also include equivalent roles of electrostatic and van der Waals forces on intrachain interactions, sole contribution of van der Waals forces on interchain cross-talk, and negligible peptide-water relationship. Finally, we propose a conjugate peptide-based aggregation suppressor having a single-point proline mutation.
Collapse
Affiliation(s)
- Vaishnavi Tammara
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Atanu Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Rayan B, Barnea E, Khokhlov A, Upcher A, Landau M. Differential fibril morphologies and thermostability determine functional roles of Staphylococcus aureus PSMα1 and PSMα3. Front Mol Biosci 2023; 10:1184785. [PMID: 37469708 PMCID: PMC10353841 DOI: 10.3389/fmolb.2023.1184785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
Phenol-soluble modulins (PSMs) are virulent peptides secreted by staphylococci that undergo self-assembly into amyloid fibrils. This study focuses on Staphylococcus aureus PSMα1 and PSMα3, which share homologous sequences but exhibit distinct amyloid fibril structures. Upon subjecting PSMα1 to an 80°C heat shock, it fibrillates into cross-β structures, resulting in the loss of cytotoxic activity. Conversely, PSMα3 cross-α fibrils undergo reversible disaggregation upon heat shock, leading to the recovery of cytotoxicity. The differential thermostability probably arises from the presence of hydrogen bonds along the β-strands within the β-sheets of the cross-β fibrils. We propose that the breakdown of PSMα3 fibrils into soluble species, potentially co-aggregating with membrane lipids, is crucial for its toxic process and enables the reversible modulation of its biological activity under stress conditions. In contrast, the formation of robust and irreversible cross-β fibrils by PSMα1 corresponds to its role in biofilm stability. These findings emphasize how the unique fibril morphologies and thermostability of PSMα1 and PSMα3 shape their functional roles in various environments of S. aureus.
Collapse
Affiliation(s)
- Bader Rayan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eilon Barnea
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alexander Khokhlov
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alexander Upcher
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- Centre for Structural Systems Biology (CSSB), Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- The Center for Experimental Medicine, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| |
Collapse
|
7
|
Austin PD, Stapleton P, Elia M. Comparative effect of seven prophylactic locks to prevent biofilm biomass and viability in intravenous catheters. J Antimicrob Chemother 2022; 77:2191-2198. [PMID: 35723966 DOI: 10.1093/jac/dkac181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Patients requiring long-term intravenous access are at risk of intraluminal catheter bloodstream infection. 'Prophylactic' locks aim to limit this risk but there is uncertainty regarding the most effective lock. OBJECTIVES To develop a novel technique intended to replicate clinical procedures to compare the effectiveness of various 'prophylactic' locks against biofilm biomass ('biomass') formation and biofilm viability ('viability') of Escherichia coli and Staphylococcus epidermidis in intravenous catheters. METHODS For 10 consecutive days 106 cfu/mL E. coli NCTC 10418 and S. epidermidis ATCC 12228 were separately cultured in single lumen 9.6 French silicone tunnelled and cuffed catheters. These were flushed with 0.9% w/v sodium chloride using a push-pause technique before and after instillation of seven 'prophylactic' locks (water, ethanol, sodium chloride, heparinized sodium chloride, citrate, taurolidine plus citrate, and taurolidine; each in triplicate) for 6 h daily. Intraluminal 'biomass' and 'viability' were quantified using crystal violet staining and flush culture, respectively. RESULTS The reduction of 'biomass' and 'viability' depended on both agent and species. Citrate was least effective against E. coli 'viability' and 'biomass' but most effective against S. epidermidis 'viability', and taurolidine was most effective against E. coli 'biomass' and 'viability' but least effective against S. epidermidis 'viability'. 'Biomass' and 'viability' were significantly correlated in E. coli between (r = 0.997, P < 0.001) and within (r = 0.754, P = 0.001) interventions, but not in S. epidermidis. CONCLUSIONS A novel technique found the effect of 'prophylactic' agents in reducing 'biomass' and 'viability' varied by species. The choice of agent depends on the most likely infecting organism.
Collapse
Affiliation(s)
- Peter David Austin
- UCL School of Pharmacy, University College London, London, UK.,Pharmacy Department, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Paul Stapleton
- UCL School of Pharmacy, University College London, London, UK
| | - Marinos Elia
- Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
8
|
Akbey Ü, Andreasen M. Functional amyloids from bacterial biofilms - structural properties and interaction partners. Chem Sci 2022; 13:6457-6477. [PMID: 35756505 PMCID: PMC9172111 DOI: 10.1039/d2sc00645f] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/05/2022] [Indexed: 12/26/2022] Open
Abstract
Protein aggregation and amyloid formation have historically been linked with various diseases such as Alzheimer's and Parkinson's disease, but recently functional amyloids have gained a great deal of interest in not causing a disease and having a distinct function in vivo. Functional bacterial amyloids form the structural scaffold in bacterial biofilms and provide a survival strategy for the bacteria along with antibiotic resistance. The formation of functional amyloids happens extracellularly which differs from most disease related amyloids. Studies of functional amyloids have revealed several distinctions compared to disease related amyloids including primary structures designed to optimize amyloid formation while still retaining a controlled assembly of the individual subunits into classical cross-β-sheet structures, along with a unique cross-α-sheet amyloid fold. Studies have revealed that functional amyloids interact with components found in the extracellular matrix space such as lipids from membranes and polymers from the biofilm. Intriguingly, a level of complexity is added as functional amyloids also interact with several disease related amyloids and a causative link has even been established between functional amyloids and neurodegenerative diseases. It is hence becoming increasingly clear that functional amyloids are not inert protein structures found in bacterial biofilms but interact with many different components including human proteins related to pathology. Gaining a clear understanding of the factors governing the interactions will lead to improved strategies to combat biofilm associated infections and the correlated antibiotic resistance. In the current review we summarize the current state of the art knowledge on this exciting and fast growing research field of biofilm forming bacterial functional amyloids, their structural features and interaction partners.
Collapse
Affiliation(s)
- Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh Pittsburgh PA 15261 USA
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University Wilhelm Meyers Allé 3 8000 Aarhus Denmark
| |
Collapse
|
9
|
Feng R, Dan N, Chen Y, Dan W. Crosslinking of dialdehyde heparin: a new strategy for improving the anticoagulant properties of porcine acellular dermal matrix. RSC Adv 2022; 12:6811-6820. [PMID: 35424614 PMCID: PMC8981558 DOI: 10.1039/d1ra08982j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/22/2022] [Indexed: 01/25/2023] Open
Abstract
The anticoagulant properties of valve materials are essential to maintain blood patency after artificial valve implantation. Porcine acellular dermal matrix (pADM) has low immunogenicity, good biocompatibility, and can reduce calcification by eliminating heterogeneous cells. However, its main component is collagen, which has strong coagulation function and poor anticoagulant activity. When used in heart valve materials, it can easily coagulate and form a life-threatening thrombus. Therefore, it is necessary to improve its anticoagulant performance. The glutaraldehyde (GA) cross-linked valves widely used clinically are easy to calcify with poor anticoagulant performance and cytotoxicity. In this study, dialdehyde heparin containing cross-linking active aldehyde groups was prepared by sodium periodate oxidation, then it was used for crosslinking with pADM to chemically modify its anticoagulant performance. Compared with GA cross-linked pADM (GA-pA), dialdehyde heparin cross-linked pADM (OL-pA) has better thermal stability and biocompatibility, especially its anticoagulant and antiplatelet adhesion were significantly improved, which can reduce the incidence of coagulation, thrombocytopenia and bleeding. In summary, dialdehyde heparin is expected to be applied to modify the anticoagulant properties of pADM and has great potential for the preparation and clinical application of anticoagulant materials such as heart valves and artificial blood vessels.
Collapse
Affiliation(s)
- Rongxin Feng
- Key Laboratory of Leather Chemistry and Engineering of the Education Ministry, Sichuan University Chengdu Sichuan 610065 China
| | - Nianhua Dan
- Key Laboratory of Leather Chemistry and Engineering of the Education Ministry, Sichuan University Chengdu Sichuan 610065 China
- Research Center of Biomedical Engineering, Sichuan University Chengdu Sichuan 610065 China
| | - Yining Chen
- Key Laboratory of Leather Chemistry and Engineering of the Education Ministry, Sichuan University Chengdu Sichuan 610065 China
- Research Center of Biomedical Engineering, Sichuan University Chengdu Sichuan 610065 China
| | - Weihua Dan
- Key Laboratory of Leather Chemistry and Engineering of the Education Ministry, Sichuan University Chengdu Sichuan 610065 China
- Research Center of Biomedical Engineering, Sichuan University Chengdu Sichuan 610065 China
| |
Collapse
|
10
|
Interaction of membrane vesicles with the Pseudomonas functional amyloid protein FapC facilitates amyloid formation. BBA ADVANCES 2022; 2:100055. [PMID: 37082589 PMCID: PMC10074931 DOI: 10.1016/j.bbadva.2022.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Functional amyloids (FA) are proteins which are evolutionarily optimized to form highly stable fibrillar structures that strengthen the bacterial biofilm matrix. FA such as CsgA (E. coli) and FapC (Pseudomonas) are secreted to the bacterial surface where they integrate into growing fibril structures projecting from the outer membrane. FA are exposed to membrane surfaces in this process, but it remains unclear how membranes can interact with FA and potentially affect the self-assembly. Here we report the effect of different vesicles (DOPG, DMPG, DOPS, DOPC and DMPC) on the kinetics and structural endpoints of FapC fibrillation using various biophysical techniques. Particularly anionic lipids such as DMPG trigger FapC fibrillation, and the protein's second repeat sequence (R2) appears to be important for this interaction. Vesicles formed from phospholipids extracted from three different Pseudomonas strains (Δfap, ΔFapC and pfap) induce FapC fibrillation by accelerating nucleation. The general aggregation inhibitor epigallocatechin gallate (EGCG) inhibits FapC fibrillation by blocking interactions between FapC and vesicles and redirecting FapC monomers to oligomer structures. Our work indicates that biological membranes can contribute significantly to the fibrillation of functional amyloid.
Collapse
|
11
|
Haikal C, Ortigosa-Pascual L, Najarzadeh Z, Bernfur K, Svanbergsson A, Otzen DE, Linse S, Li JY. The Bacterial Amyloids Phenol Soluble Modulins from Staphylococcus aureus Catalyze Alpha-Synuclein Aggregation. Int J Mol Sci 2021; 22:11594. [PMID: 34769023 PMCID: PMC8584152 DOI: 10.3390/ijms222111594] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
Aggregated α-synuclein (α-syn) is the main constituent of Lewy bodies, which are a pathological hallmark of Parkinson's disease (PD). Environmental factors are thought to be potential triggers capable of initiating the aggregation of the otherwise monomeric α-syn. Braak's seminal work redirected attention to the intestine and recent reports of dysbiosis have highlighted the potential causative role of the microbiome in the initiation of pathology of PD. Staphylococcus aureus is a bacterium carried by 30-70% of the general population. It has been shown to produce functional amyloids, called phenol soluble modulins (PSMαs). Here, we studied the kinetics of α-syn aggregation under quiescent conditions in the presence or absence of four different PSMα peptides and observed a remarkable shortening of the lag phase in their presence. Whereas pure α-syn monomer did not aggregate up to 450 h after initiation of the experiment in neither neutral nor mildly acidic buffer, the addition of different PSMα peptides resulted in an almost immediate increase in the Thioflavin T (ThT) fluorescence. Despite similar peptide sequences, the different PSMα peptides displayed distinct effects on the kinetics of α-syn aggregation. Kinetic analyses of the data suggest that all four peptides catalyze α-syn aggregation through heterogeneous primary nucleation. The immunogold electron microscopic analyses showed that the aggregates were fibrillar and composed of α-syn. In addition of the co-aggregated materials to a cell model expressing the A53T α-syn variant fused to GFP was found to catalyze α-syn aggregation and phosphorylation in the cells. Our results provide evidence of a potential trigger of synucleinopathies and could have implications for the prevention of the diseases.
Collapse
Affiliation(s)
- Caroline Haikal
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (C.H.); (A.S.)
| | - Lei Ortigosa-Pascual
- Department of Biochemistry and Structural Biology, Lund University, 22100 Lund, Sweden; (L.O.-P.); (K.B.); (S.L.)
| | - Zahra Najarzadeh
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; (Z.N.); (D.E.O.)
| | - Katja Bernfur
- Department of Biochemistry and Structural Biology, Lund University, 22100 Lund, Sweden; (L.O.-P.); (K.B.); (S.L.)
| | - Alexander Svanbergsson
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (C.H.); (A.S.)
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; (Z.N.); (D.E.O.)
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, 22100 Lund, Sweden; (L.O.-P.); (K.B.); (S.L.)
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; (C.H.); (A.S.)
- Health Sciences Institute, China Medical University, Shenyang 110112, China
| |
Collapse
|