1
|
Ghanim GE, Hu H, Boulanger J, Nguyen THD. Structural mechanism of LINE-1 target-primed reverse transcription. Science 2025; 388:eads8412. [PMID: 40048554 DOI: 10.1126/science.ads8412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/11/2025] [Indexed: 04/26/2025]
Abstract
Long interspersed element-1 (LINE-1) retrotransposons are the only active autonomous transposable elements in humans. They propagate by reverse transcribing their messenger RNA into new genomic locations by a process called target-primed reverse transcription (TPRT). In this work, we present four cryo-electron microscopy structures of the human LINE-1 TPRT complex, revealing the conformational dynamics of open reading frame 2 protein (ORF2p) and its extensive remodeling of the target DNA for TPRT initiation. We observe nicking of the DNA second strand during reverse transcription of the first strand. Structure prediction identifies high-confidence binding sites for LINE-1-associated factors-namely proliferating cell nuclear antigen (PCNA) and cytoplasmic poly(A)-binding protein 1 (PABPC1)-on ORF2p. Together with our structural data, this suggests a mechanism by which these factors regulate retrotransposition and supports a model for TPRT that accounts for retrotransposition outcomes observed in cells.
Collapse
Affiliation(s)
| | - Hongmiao Hu
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
2
|
Arnold JJ, Martinez A, Jain A, Liu X, Moustafa IM, Cameron CE. Mechanism of forced-copy-choice RNA recombination by enteroviral RNA-dependent RNA polymerases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637143. [PMID: 39974949 PMCID: PMC11839138 DOI: 10.1101/2025.02.07.637143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Forced-copy-choice recombination occurs at the end of a template, differing from copy-choice recombination, which happens at internal positions. This mechanism may produce full-length genomes from fragments created by host antiviral responses. Previous studies from our laboratory demonstrated that poliovirus (PV) RNA-dependent RNA polymerase (RdRp) switches to an "acceptor" template in vitro when initiated on a heteropolymeric RNA-primed "donor" template. Surprisingly, recombinants showed template switching from the 3'-end of the donor template. We have developed a primed-template system to study PV RdRp-catalyzed forced-copy-choice RNA recombination. PV RdRp adds a single, non-templated nucleotide to the 3'-end of a blunt-ended, double-stranded RNA product, forming a "plus-one" intermediate essential for template switching. Non-templated addition of CMP was favored over AMP and GMP (80:20:1); UMP addition was negligible. A single basepair between the plus-one intermediate and the 3'-end of the acceptor template was necessary and sufficient for template switching, which could occur without RdRp dissociation. Formation of the plus-one intermediate was rate limiting for template switching. PV RdRp also utilized synthetic, preformed intermediates, including those with UMP 3'-overhangs. Reactions showed up to five consecutive template-switching events, consistent with a repair function for this form of recombination. PV RdRp may exclude UMP during forced-copy-choice RNA recombination to preclude creation of nonsense mutations during RNA fragment assembly. Several other picornaviral RdRps were evaluated, and all were capable of RNA fragment assembly to some extent. Lastly, we propose a structure-based hypothesis for the PV RdRp-plus-one intermediate complex based on an elongating PV RdRp structure.
Collapse
Affiliation(s)
- Jamie J. Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Alexandre Martinez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Abha Jain
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Xinran Liu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ibrahim M. Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| |
Collapse
|
3
|
Guo LT, Grinko A, Olson S, Leipold AM, Graveley B, Saliba AE, Pyle AM. Characterization and implementation of the MarathonRT template-switching reaction to expand the capabilities of RNA-seq. RNA (NEW YORK, N.Y.) 2024; 30:1495-1512. [PMID: 39174298 PMCID: PMC11482623 DOI: 10.1261/rna.080032.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
End-to-end RNA-sequencing methods that capture 5'-sequence content without cumbersome library manipulations are of great interest, particularly for analysis of long RNAs. While template-switching methods have been developed for RNA sequencing by distributive short-read RTs, such as the MMLV RTs used in SMART-Seq methods, they have not been adapted to leverage the power of ultraprocessive RTs, such as those derived from group II introns. To facilitate this transition, we dissected the individual processes that guide the enzymatic specificity and efficiency of the multistep template-switching reaction carried out by RTs, in this case, by MarathonRT. Remarkably, this is the first study of its kind, for any RT. First, we characterized the nucleotide specificity of nontemplated addition (NTA) reaction that occurs when the RT extends past the RNA 5'-terminus. We then evaluated the binding specificity of specialized template-switching oligonucleotides, optimizing their sequences and chemical properties to guide efficient template-switching reaction. Having dissected and optimized these individual steps, we then unified them into a procedure for performing RNA sequencing with MarathonRT enzymes, using a well-characterized RNA reference set. The resulting reads span a six-log range in transcript concentration and accurately represent the input RNA identities in both length and composition. We also performed RNA-seq from total human RNA and poly(A)-enriched RNA, with short- and long-read sequencing demonstrating that MarathonRT enhances the discovery of unseen RNA molecules by conventional RT. Altogether, we have generated a new pipeline for rapid, accurate sequencing of complex RNA libraries containing mixtures of long RNA transcripts.
Collapse
Affiliation(s)
- Li-Tao Guo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Anastasiya Grinko
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Sara Olson
- Genetics and Genome Sciences, University of Connecticut Health, Farmington, Connecticut 06030, USA
| | - Alexander M Leipold
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080 Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology (IMIB), 97070 Würzburg, Germany
| | - Brenton Graveley
- Genetics and Genome Sciences, University of Connecticut Health, Farmington, Connecticut 06030, USA
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080 Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology (IMIB), 97070 Würzburg, Germany
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
4
|
Tang S, Conte V, Zhang DJ, Žedaveinytė R, Lampe GD, Wiegand T, Tang LC, Wang M, Walker MWG, George JT, Berchowitz LE, Jovanovic M, Sternberg SH. De novo gene synthesis by an antiviral reverse transcriptase. Science 2024; 386:eadq0876. [PMID: 39116258 PMCID: PMC11758365 DOI: 10.1126/science.adq0876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Defense-associated reverse transcriptase (DRT) systems perform DNA synthesis to protect bacteria against viral infection, but the identities and functions of their DNA products remain largely unknown. We show that DRT2 systems encode an unprecedented immune pathway that involves de novo gene synthesis through rolling circle reverse transcription of a noncoding RNA (ncRNA). Programmed template jumping on the ncRNA generates a concatemeric cDNA, which becomes double-stranded upon viral infection. This DNA product constitutes a protein-coding, nearly endless open reading frame (neo) gene whose expression leads to potent cell growth arrest, restricting the viral infection. Our work highlights an elegant expansion of genome coding potential through RNA-templated gene creation and challenges conventional paradigms of genetic information encoded along the one-dimensional axis of genomic DNA.
Collapse
Affiliation(s)
- Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Valentin Conte
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Dennis J. Zhang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Rimantė Žedaveinytė
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - George D. Lampe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Lauren C. Tang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Megan Wang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Matt W. G. Walker
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jerrin Thomas George
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Luke E. Berchowitz
- Department of Genetics and Development, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer's and the Aging Brain, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
5
|
Wilkinson ME, Li D, Gao A, Macrae RK, Zhang F. Phage-triggered reverse transcription assembles a toxic repetitive gene from a noncoding RNA. Science 2024; 386:eadq3977. [PMID: 39208082 PMCID: PMC12039810 DOI: 10.1126/science.adq3977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Reverse transcription has frequently been co-opted for cellular functions and in prokaryotes is associated with protection against viral infection, but the underlying mechanisms of defense are generally unknown. Here, we show that in the DRT2 defense system, the reverse transcriptase binds a neighboring pseudoknotted noncoding RNA. Upon bacteriophage infection, a template region of this RNA is reverse transcribed into an array of tandem repeats that reconstitute a promoter and open reading frame, allowing expression of a toxic repetitive protein and an abortive infection response. Biochemical reconstitution of this activity and cryo-electron microscopy provide a molecular basis for repeat synthesis. Gene synthesis from a noncoding RNA is a previously unknown mode of genetic regulation in prokaryotes.
Collapse
Affiliation(s)
- Max E. Wilkinson
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Li
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Alex Gao
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Rhiannon K. Macrae
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Feng Zhang
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Tang S, Conte V, Zhang DJ, Žedaveinytė R, Lampe GD, Wiegand T, Tang LC, Wang M, Walker MW, George JT, Berchowitz LE, Jovanovic M, Sternberg SH. De novo gene synthesis by an antiviral reverse transcriptase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593200. [PMID: 38766058 PMCID: PMC11100668 DOI: 10.1101/2024.05.08.593200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Bacteria defend themselves from viral infection using diverse immune systems, many of which sense and target foreign nucleic acids. Defense-associated reverse transcriptase (DRT) systems provide an intriguing counterpoint to this immune strategy by instead leveraging DNA synthesis, but the identities and functions of their DNA products remain largely unknown. Here we show that DRT2 systems execute an unprecedented immunity mechanism that involves de novo gene synthesis via rolling-circle reverse transcription of a non-coding RNA (ncRNA). Unbiased profiling of RT-associated RNA and DNA ligands in DRT2-expressing cells revealed that reverse transcription generates concatenated cDNA repeats through programmed template jumping on the ncRNA. The presence of phage then triggers second-strand cDNA synthesis, leading to the production of long double-stranded DNA. Remarkably, this DNA product is efficiently transcribed, generating messenger RNAs that encode a stop codon-less, never-ending ORF (neo) whose translation causes potent growth arrest. Phylogenetic analyses and screening of diverse DRT2 homologs further revealed broad conservation of rolling-circle reverse transcription and Neo protein function. Our work highlights an elegant expansion of genome coding potential through RNA-templated gene creation, and challenges conventional paradigms of genetic information encoded along the one-dimensional axis of genomic DNA.
Collapse
Affiliation(s)
- Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Valentin Conte
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Dennis J. Zhang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Rimantė Žedaveinytė
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - George D. Lampe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Lauren C. Tang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Megan Wang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Matt W.G. Walker
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jerrin Thomas George
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Luke E. Berchowitz
- Department of Genetics and Development, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer’s and the Aging Brain, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
7
|
Baldwin ET, van Eeuwen T, Hoyos D, Zalevsky A, Tchesnokov EP, Sánchez R, Miller BD, Di Stefano LH, Ruiz FX, Hancock M, Işik E, Mendez-Dorantes C, Walpole T, Nichols C, Wan P, Riento K, Halls-Kass R, Augustin M, Lammens A, Jestel A, Upla P, Xibinaku K, Congreve S, Hennink M, Rogala KB, Schneider AM, Fairman JE, Christensen SM, Desrosiers B, Bisacchi GS, Saunders OL, Hafeez N, Miao W, Kapeller R, Zaller DM, Sali A, Weichenrieder O, Burns KH, Götte M, Rout MP, Arnold E, Greenbaum BD, Romero DL, LaCava J, Taylor MS. Structures, functions and adaptations of the human LINE-1 ORF2 protein. Nature 2024; 626:194-206. [PMID: 38096902 PMCID: PMC10830420 DOI: 10.1038/s41586-023-06947-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
The LINE-1 (L1) retrotransposon is an ancient genetic parasite that has written around one-third of the human genome through a 'copy and paste' mechanism catalysed by its multifunctional enzyme, open reading frame 2 protein (ORF2p)1. ORF2p reverse transcriptase (RT) and endonuclease activities have been implicated in the pathophysiology of cancer2,3, autoimmunity4,5 and ageing6,7, making ORF2p a potential therapeutic target. However, a lack of structural and mechanistic knowledge has hampered efforts to rationally exploit it. We report structures of the human ORF2p 'core' (residues 238-1061, including the RT domain) by X-ray crystallography and cryo-electron microscopy in several conformational states. Our analyses identified two previously undescribed folded domains, extensive contacts to RNA templates and associated adaptations that contribute to unique aspects of the L1 replication cycle. Computed integrative structural models of full-length ORF2p show a dynamic closed-ring conformation that appears to open during retrotransposition. We characterize ORF2p RT inhibition and reveal its underlying structural basis. Imaging and biochemistry show that non-canonical cytosolic ORF2p RT activity can produce RNA:DNA hybrids, activating innate immune signalling through cGAS/STING and resulting in interferon production6-8. In contrast to retroviral RTs, L1 RT is efficiently primed by short RNAs and hairpins, which probably explains cytosolic priming. Other biochemical activities including processivity, DNA-directed polymerization, non-templated base addition and template switching together allow us to propose a revised L1 insertion model. Finally, our evolutionary analysis demonstrates structural conservation between ORF2p and other RNA- and DNA-dependent polymerases. We therefore provide key mechanistic insights into L1 polymerization and insertion, shed light on the evolutionary history of L1 and enable rational drug development targeting L1.
Collapse
Affiliation(s)
| | - Trevor van Eeuwen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - David Hoyos
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arthur Zalevsky
- Department of Bioengineering and Therapeutic Sciences University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Bryant D Miller
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Luciano H Di Stefano
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Francesc Xavier Ruiz
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Matthew Hancock
- Department of Bioengineering and Therapeutic Sciences University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Esin Işik
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Carlos Mendez-Dorantes
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Thomas Walpole
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Charles Nichols
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Paul Wan
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Kirsi Riento
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | - Rowan Halls-Kass
- Charles River Laboratories, Chesterford Research Park, Saffron Walden, UK
| | | | - Alfred Lammens
- Proteros Biostructures GmbH, Martinsried, Planegg, Germany
| | - Anja Jestel
- Proteros Biostructures GmbH, Martinsried, Planegg, Germany
| | - Paula Upla
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Kera Xibinaku
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | | | - Kacper B Rogala
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna M Schneider
- Structural Biology of Selfish RNA, Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biology Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Oliver Weichenrieder
- Structural Biology of Selfish RNA, Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Kathleen H Burns
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA.
| | | | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands.
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Araujo Tavares RDC, Mahadeshwar G, Wan H, Pyle AM. MRT-ModSeq - Rapid Detection of RNA Modifications with MarathonRT. J Mol Biol 2023; 435:168299. [PMID: 37802215 DOI: 10.1016/j.jmb.2023.168299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
Chemical modifications are essential regulatory elements that modulate the behavior and function of cellular RNAs. Despite recent advances in sequencing-based RNA modification mapping, methods combining accuracy and speed are still lacking. Here, we introduce MRT-ModSeq for rapid, simultaneous detection of multiple RNA modifications using MarathonRT. MRT-ModSeq employs distinct divalent cofactors to generate 2-D mutational profiles that are highly dependent on nucleotide identity and modification type. As a proof of concept, we use the MRT fingerprints of well-studied rRNAs to implement a general workflow for detecting RNA modifications. MRT-ModSeq rapidly detects positions of diverse modifications across a RNA transcript, enabling assignment of m1acp3Y, m1A, m3U, m7G and 2'-OMe locations through mutation-rate filtering and machine learning. m1A sites in sparsely modified targets, such as MALAT1 and PRUNE1 could also be detected. MRT-ModSeq can be trained on natural and synthetic transcripts to expedite detection of diverse RNA modification subtypes across targets of interest.
Collapse
Affiliation(s)
| | - Gandhar Mahadeshwar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA. https://twitter.com/gandzmakerdance
| | - Han Wan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA. https://twitter.com/HanWan19744358
| | - Anna Marie Pyle
- Department of Chemistry, Yale University, New Haven, CT 06511, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
9
|
Zabrady M, Zabrady K, Li AH, Doherty AJ. Reverse transcriptases prime DNA synthesis. Nucleic Acids Res 2023; 51:7125-7142. [PMID: 37279911 PMCID: PMC10415136 DOI: 10.1093/nar/gkad478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
The discovery of reverse transcriptases (RTs) challenged the central dogma by establishing that genetic information can also flow from RNA to DNA. Although they act as DNA polymerases, RTs are distantly related to replicases that also possess de novo primase activity. Here we identify that CRISPR associated RTs (CARTs) directly prime DNA synthesis on both RNA and DNA. We demonstrate that RT-dependent priming is utilized by some CRISPR-Cas complexes to synthesise new spacers and integrate these into CRISPR arrays. Expanding our analyses, we show that primer synthesis activity is conserved in representatives of other major RT classes, including group II intron RT, telomerase and retroviruses. Together, these findings establish a conserved innate ability of RTs to catalyse de novo DNA primer synthesis, independently of accessory domains or alternative priming mechanisms, which likely plays important roles in a wide variety of biological pathways.
Collapse
Affiliation(s)
- Matej Zabrady
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Katerina Zabrady
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Arthur W H Li
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| |
Collapse
|
10
|
Tavares RDCA, Mahadeshwar G, Wan H, Pyle AM. MRT-ModSeq - Rapid detection of RNA modifications with MarathonRT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542276. [PMID: 37292902 PMCID: PMC10245971 DOI: 10.1101/2023.05.25.542276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemical modifications are essential regulatory elements that modulate the behavior and function of cellular RNAs. Despite recent advances in sequencing-based RNA modification mapping, methods combining accuracy and speed are still lacking. Here, we introduce MRT- ModSeq for rapid, simultaneous detection of multiple RNA modifications using MarathonRT. MRT-ModSeq employs distinct divalent cofactors to generate 2-D mutational profiles that are highly dependent on nucleotide identity and modification type. As a proof of concept, we use the MRT fingerprints of well-studied rRNAs to implement a general workflow for detecting RNA modifications. MRT-ModSeq rapidly detects positions of diverse modifications across a RNA transcript, enabling assignment of m1acp3Y, m1A, m3U, m7G and 2'-OMe locations through mutation-rate filtering and machine learning. m1A sites in sparsely modified targets, such as MALAT1 and PRUNE1 could also be detected. MRT-ModSeq can be trained on natural and synthetic transcripts to expedite detection of diverse RNA modification subtypes across targets of interest.
Collapse
Affiliation(s)
| | - Gandhar Mahadeshwar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
| | - Han Wan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Anna Marie Pyle
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| |
Collapse
|
11
|
Wilkinson ME, Frangieh CJ, Macrae RK, Zhang F. Structure of the R2 non-LTR retrotransposon initiating target-primed reverse transcription. Science 2023; 380:301-308. [PMID: 37023171 PMCID: PMC10499050 DOI: 10.1126/science.adg7883] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Non-long terminal repeat (non-LTR) retrotransposons, or long interspersed nuclear elements (LINEs), are an abundant class of eukaryotic transposons that insert into genomes by target-primed reverse transcription (TPRT). During TPRT, a target DNA sequence is nicked and primes reverse transcription of the retrotransposon RNA. Here, we report the cryo-electron microscopy structure of the Bombyx mori R2 non-LTR retrotransposon initiating TPRT at its ribosomal DNA target. The target DNA sequence is unwound at the insertion site and recognized by an upstream motif. An extension of the reverse transcriptase (RT) domain recognizes the retrotransposon RNA and guides the 3' end into the RT active site to template reverse transcription. We used Cas9 to retarget R2 in vitro to non-native sequences, suggesting future use as a reprogrammable RNA-based gene-insertion tool.
Collapse
Affiliation(s)
- Max E. Wilkinson
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Chris J. Frangieh
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Rhiannon K. Macrae
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Feng Zhang
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Cui G, Hua D, Zhao X, Zhou J, Yang Y, Huang T, Wang X, Zhao Y, Zhang T, Liao J, Guan Z, Luo P, Chen Z, Qi X, Hong W. A New EBS2b-IBS2b Base Paring (A -8/T -8) Improved the Gene-Targeting Efficiency of Thermotargetron in Escherichia coli. Microbiol Spectr 2023; 11:e0315922. [PMID: 36809044 PMCID: PMC10100991 DOI: 10.1128/spectrum.03159-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/21/2023] [Indexed: 02/23/2023] Open
Abstract
Thermophilic group II intron is one type of retrotransposon composed of intron RNA and intron-encoded protein (IEP), which can be utilized in gene targeting by harnessing their novel ribozyme-based DNA integration mechanism termed "retrohoming." It is mediated by a ribonucleoprotein (RNP) complex that contains the excised intron lariat RNA and an IEP with reverse transcriptase (RT) activity. The RNP recognizes targeting sites by exon-binding sequences 2 (EBS2)/intron-binding sequences 2 (IBS2), EBS1/IBS1, and EBS3/IBS3 bases pairing. Previously, we developed the TeI3c/4c intron as a thermophilic gene targeting system-Thermotargetron (TMT). However, we found that the targeting efficiency of TMT varies significantly at different targeting sites, which leads to a relatively low success rate. To further improve the success rate and gene-targeting efficiency of TMT, we constructed a Random Gene-targeting Plasmids Pool (RGPP) to analyze the sequence recognition preference of TMT. A new base pairing, located at the -8 site between EBS2/IBS2 and EBS1/IBS1 (named EBS2b-IBS2b), increased the success rate (2.45- to 5.07-fold) and significantly improved gene-targeting efficiency of TMT. A computer algorithm (TMT 1.0), based on the newly discovered sequence recognition roles, was also developed to facilitate the design of TMT gene-targeting primers. The present work could essentially expand the practicalities of TMT in the genome engineering of heat-tolerance mesophilic and thermophilic bacteria. IMPORTANCE The randomized base pairing in the interval of IBS2 and IBS1 of Tel3c/4c intron (-8 and -7 sites) in Thermotargetron (TMT) results in a low success rate and gene-targeting efficiency in bacteria. In the present work, we constructed a randomized gene-targeting plasmids pool (RGPP) to study whether there is a base preference in target sequences. Among all the successful "retrohoming" targets, we found that a new EBS2b-IBS2b base paring (A-8/T-8) significantly increased TMT's gene-targeting efficiency, and the concept is also applicable to other gene targets in redesigned gene-targeting plasmids pool in E. coli. The improved TMT is a promising tool for the genetic engineering of bacteria and could promote metabolic engineering and synthetic biology research in valuable microbes that recalcitrance for genetic manipulation.
Collapse
Affiliation(s)
- Guzhen Cui
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University
| | - Dengxiong Hua
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University
| | - Xingxing Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jia Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying Yang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tingyu Huang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xinxin Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jian Liao
- School/Hospital of Stomatology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Peng Luo
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry
| | - Zhenghong Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry
- Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University
- School/Hospital of Stomatology, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
13
|
Chung K, Xu L, Chai P, Peng J, Devarkar SC, Pyle AM. Structures of a mobile intron retroelement poised to attack its structured DNA target. Science 2022; 378:627-634. [PMID: 36356138 PMCID: PMC10190682 DOI: 10.1126/science.abq2844] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Group II introns are ribozymes that catalyze their self-excision and function as retroelements that invade DNA. As retrotransposons, group II introns form ribonucleoprotein (RNP) complexes that roam the genome, integrating by reversal of forward splicing. Here we show that retrotransposition is achieved by a tertiary complex between a structurally elaborate ribozyme, its protein mobility factor, and a structured DNA substrate. We solved cryo-electron microscopy structures of an intact group IIC intron-maturase retroelement that was poised for integration into a DNA stem-loop motif. By visualizing the RNP before and after DNA targeting, we show that it is primed for attack and fits perfectly with its DNA target. This study reveals design principles of a prototypical retroelement and reinforces the hypothesis that group II introns are ancient elements of genetic diversification.
Collapse
Affiliation(s)
- Kevin Chung
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Ling Xu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Swapnil C. Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
14
|
Park SK, Mohr G, Yao J, Russell R, Lambowitz AM. Group II intron-like reverse transcriptases function in double-strand break repair. Cell 2022; 185:3671-3688.e23. [PMID: 36113466 PMCID: PMC9530004 DOI: 10.1016/j.cell.2022.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/16/2022] [Accepted: 08/14/2022] [Indexed: 01/26/2023]
Abstract
Bacteria encode reverse transcriptases (RTs) of unknown function that are closely related to group II intron-encoded RTs. We found that a Pseudomonas aeruginosa group II intron-like RT (G2L4 RT) with YIDD instead of YADD at its active site functions in DNA repair in its native host and when expressed in Escherichia coli. G2L4 RT has biochemical activities strikingly similar to those of human DNA repair polymerase θ and uses them for translesion DNA synthesis and double-strand break repair (DSBR) via microhomology-mediated end-joining (MMEJ). We also found that a group II intron RT can function similarly in DNA repair, with reciprocal active-site substitutions showing isoleucine favors MMEJ and alanine favors primer extension in both enzymes. These DNA repair functions utilize conserved structural features of non-LTR-retroelement RTs, including human LINE-1 and other eukaryotic non-LTR-retrotransposon RTs, suggesting such enzymes may have inherent ability to function in DSBR in a wide range of organisms.
Collapse
Affiliation(s)
- Seung Kuk Park
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Georg Mohr
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jun Yao
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Rick Russell
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Alan M Lambowitz
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
15
|
Pimentel SC, Upton HE, Collins K. Separable structural requirements for cDNA synthesis, nontemplated extension, and template jumping by a non-LTR retroelement reverse transcriptase. J Biol Chem 2022; 298:101624. [PMID: 35065960 PMCID: PMC8857657 DOI: 10.1016/j.jbc.2022.101624] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Broad evolutionary expansion of polymerase families has enabled specialization of their activities for distinct cellular roles. In addition to template-complementary synthesis, many polymerases extend their duplex products by nontemplated nucleotide addition (NTA). This activity is exploited for laboratory strategies of cloning and sequencing nucleic acids and could have important biological function, although the latter has been challenging to test without separation-of-function mutations. Several retroelement and retroviral reverse transcriptases (RTs) support NTA and also template jumping, by which the RT performs continuous complementary DNA (cDNA) synthesis using physically separate templates. Previous studies that aimed to dissect the relationship between NTA and template jumping leave open questions about structural requirements for each activity and their interdependence. Here, we characterize the structural requirements for cDNA synthesis, NTA, template jumping, and the unique terminal transferase activity of Bombyx mori R2 non-long terminal repeat retroelement RT. With sequence alignments and structure modeling to guide mutagenesis, we generated enzyme variants across motifs generally conserved or specific to RT subgroups. Enzyme variants had diverse NTA profiles not correlated with other changes in cDNA synthesis activity or template jumping. Using these enzyme variants and panels of activity assay conditions, we show that template jumping requires NTA. However, template jumping by NTA-deficient enzymes can be rescued using primer duplex with a specific length of 3′ overhang. Our findings clarify the relationship between NTA and template jumping as well as additional activities of non-long terminal repeat RTs, with implications for the specialization of RT biological functions and laboratory applications.
Collapse
Affiliation(s)
- Sydney C Pimentel
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA
| | - Heather E Upton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, USA.
| |
Collapse
|
16
|
Xu H, Nottingham RM, Lambowitz AM. TGIRT-seq Protocol for the Comprehensive Profiling of Coding and Non-coding RNA Biotypes in Cellular, Extracellular Vesicle, and Plasma RNAs. Bio Protoc 2021; 11:e4239. [PMID: 35005084 PMCID: PMC8678547 DOI: 10.21769/bioprotoc.4239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 09/12/2023] Open
Abstract
High-throughput RNA sequencing (RNA-seq) has extraordinarily advanced our understanding of gene expression and disease etiology, and is a powerful tool for the identification of biomarkers in a wide range of organisms. However, most RNA-seq methods rely on retroviral reverse transcriptases (RTs), enzymes that have inherently low fidelity and processivity, to convert RNAs into cDNAs for sequencing. Here, we describe an RNA-seq protocol using Thermostable Group II Intron Reverse Transcriptases (TGIRTs), which have high fidelity, processivity, and strand-displacement activity, as well as a proficient template-switching activity that enables efficient and seamless RNA-seq adapter addition. By combining these activities, TGIRT-seq enables the simultaneous profiling of all RNA biotypes from small amounts of starting material, with superior RNA-seq metrics, and unprecedented ability to sequence structured RNAs. The TGIRT-seq protocol for Illumina sequencing consists of three steps: (i) addition of a 3' RNA-seq adapter, coupled to the initiation of cDNA synthesis at the 3' end of a target RNA, via template switching from a synthetic adapter RNA/DNA starter duplex; (ii) addition of a 5' RNA-seq adapter, by using thermostable 5' App DNA/RNA ligase to ligate an adapter oligonucleotide to the 3' end of the completed cDNA; (iii) minimal PCR amplification, to add capture sites and indices for Illumina sequencing. TGIRT-seq for the Illumina sequencing platform has been used for comprehensive profiling of coding and non-coding RNAs in ribodepleted, chemically fragmented cellular RNAs, and for the analysis of intact (non-chemically fragmented) cellular, extracellular vesicle (EV), and plasma RNAs, where it yields continuous full-length end-to-end sequences of structured small non-coding RNAs (sncRNAs), including tRNAs, snoRNAs, snRNAs, pre-miRNAs, and full-length excised linear intron (FLEXI) RNAs. Graphic abstract: Figure 1.Overview of the TGIRT-seq protocol for Illumina sequencing.Major steps are: (1) Template switching from a synthetic R2 RNA/R2R DNA starter duplex with a 1-nt 3' DNA overhang (a mixture of A, C, G, and T residues, denoted N) that base pairs to the 3' nucleotide of a target RNA, and upon initiating reverse transcription by adding dNTPs, seamlessly links an R2R adapter to the 5' end of the resulting cDNA; (2) Ligation of an R1R adapter to the 3' end of the completed cDNA; and (3) Minimal PCR amplification with primers that add Illumina capture sites (P5 and P7) and barcode sequences (indices 5 and 7). The index 7 barcode is required, while the index 5 barcode is optional, to provide unique dual indices (UDIs).
Collapse
Affiliation(s)
- Hengyi Xu
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Ryan M. Nottingham
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Alan M. Lambowitz
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|