1
|
Krzesinski BJ, Holub TJ, Gabani ZY, Margittai M. Cellular Uptake of Tau Aggregates Triggers Disulfide Bond Formation in Four-Repeat Tau Monomers. ACS Chem Neurosci 2025; 16:171-180. [PMID: 39714208 PMCID: PMC11740991 DOI: 10.1021/acschemneuro.4c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024] Open
Abstract
Oxidative stress is an important driver of aging and has been linked to numerous neurodegenerative disorders, including Alzheimer's disease. A key pathological hallmark of Alzheimer's are filamentous inclusions made of the microtubule associated protein Tau. Based on alternative splicing, Tau protein can feature either three or four microtubule binding repeats. Distinctively, three-repeat Tau contains a single cysteine; four-repeat Tau contains two. Although there is evidence that the cysteines in pathological Tau filaments exist in the reduced form, very little is known about the alternative disulfide-bonded state. It is unclear whether it can exist nontransiently in the reducing environment of the cytosol. Such knowledge, however, is important as different redox states of Tau could modulate aggregation. To address this question, we transfected HEK293 cells expressing the P301S variant of four-repeat Tau with fibril seeds composed of compact, disulfide-bonded Tau monomers. In vitro, these fibrils are observed to recruit only compact Tau, but not Tau in which the cysteines are reduced or replaced by alanines or serines. In line with this characteristic, the fibrils dissociate when treated with a reducing agent. When offered to HEK293 cells, variant Tau protein is recruited to the seeds forming intracellular fibrils with the same seeding properties as the in vitro counterparts. Markedly, the proteins in these fibrils have a compact, disulfide-bonded configuration and dissociate upon reduction. These findings reveal that uptake of exogeneous fibril seeds triggers oxidation of Tau monomers, modulating intracellular aggregation.
Collapse
Affiliation(s)
- Brad J. Krzesinski
- Department of Chemistry and
Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Tyler J. Holub
- Department of Chemistry and
Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Zachariah Y. Gabani
- Department of Chemistry and
Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Martin Margittai
- Department of Chemistry and
Biochemistry, University of Denver, Denver, Colorado 80208, United States
| |
Collapse
|
2
|
Ferretti S, Zanella I. The Underestimated Role of Iron in Frontotemporal Dementia: A Narrative Review. Int J Mol Sci 2024; 25:12987. [PMID: 39684697 DOI: 10.3390/ijms252312987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The term frontotemporal dementia (FTD) comprises a group of neurodegenerative disorders characterized by the progressive degeneration of the frontal and temporal lobes of the brain with language impairment and changes in cognitive, behavioral and executive functions, and in some cases motor manifestations. A high proportion of FTD cases are due to genetic mutations and inherited in an autosomal-dominant manner with variable penetrance depending on the implicated gene. Iron is a crucial microelement that is involved in several cellular essential functions in the whole body and plays additional specialized roles in the central nervous system (CNS) mainly through its redox-cycling properties. Such a feature may be harmful under aerobic conditions, since it may lead to the generation of highly reactive hydroxyl radicals. Dysfunctions of iron homeostasis in the CNS are indeed involved in several neurodegenerative disorders, although it is still challenging to determine whether the dyshomeostasis of this essential but harmful metal is a direct cause of neurodegeneration, a contributor factor or simply a consequence of other neurodegenerative mechanisms. Unlike many other neurodegenerative disorders, evidence of the dysfunction in brain iron homeostasis in FTD is still scarce; nonetheless, the recent literature intriguingly suggests its possible involvement. The present review aims to summarize what is currently known about the contribution of iron dyshomeostasis in FTD based on clinical, imaging, histological, biochemical and molecular studies, further suggesting new perspectives and offering new insights for future investigations on this underexplored field of research.
Collapse
Affiliation(s)
- Sara Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Medical Genetics Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
3
|
Sies H, Mailloux RJ, Jakob U. Fundamentals of redox regulation in biology. Nat Rev Mol Cell Biol 2024; 25:701-719. [PMID: 38689066 PMCID: PMC11921270 DOI: 10.1038/s41580-024-00730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Oxidation-reduction (redox) reactions are central to the existence of life. Reactive species of oxygen, nitrogen and sulfur mediate redox control of a wide range of essential cellular processes. Yet, excessive levels of oxidants are associated with ageing and many diseases, including cardiological and neurodegenerative diseases, and cancer. Hence, maintaining the fine-tuned steady-state balance of reactive species production and removal is essential. Here, we discuss new insights into the dynamic maintenance of redox homeostasis (that is, redox homeodynamics) and the principles underlying biological redox organization, termed the 'redox code'. We survey how redox changes result in stress responses by hormesis mechanisms, and how the lifelong cumulative exposure to environmental agents, termed the 'exposome', is communicated to cells through redox signals. Better understanding of the molecular and cellular basis of redox biology will guide novel redox medicine approaches aimed at preventing and treating diseases associated with disturbed redox regulation.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Percio A, Cicchinelli M, Masci D, Summo M, Urbani A, Greco V. Oxidative Cysteine Post Translational Modifications Drive the Redox Code Underlying Neurodegeneration and Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2024; 13:883. [PMID: 39199129 PMCID: PMC11351139 DOI: 10.3390/antiox13080883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Redox dysregulation, an imbalance between oxidants and antioxidants, is crucial in the pathogenesis of various neurodegenerative diseases. Within this context, the "redoxome" encompasses the network of redox molecules collaborating to maintain cellular redox balance and signaling. Among these, cysteine-sensitive proteins are fundamental for this homeostasis. Due to their reactive thiol groups, cysteine (Cys) residues are particularly susceptible to oxidative post-translational modifications (PTMs) induced by free radicals (reactive oxygen, nitrogen, and sulfur species) which profoundly affect protein functions. Cys-PTMs, forming what is referred to as "cysteinet" in the redox proteome, are essential for redox signaling in both physiological and pathological conditions, including neurodegeneration. Such modifications significantly influence protein misfolding and aggregation, key hallmarks of neurodegenerative diseases such as Alzheimer's, Parkinson's, and notably, amyotrophic lateral sclerosis (ALS). This review aims to explore the complex landscape of cysteine PTMs in the cellular redox environment, elucidating their impact on neurodegeneration at protein level. By investigating specific cysteine-sensitive proteins and the regulatory networks involved, particular emphasis is placed on the link between redox dysregulation and ALS, highlighting this pathology as a prime example of a neurodegenerative disease wherein such redox dysregulation is a distinct hallmark.
Collapse
Affiliation(s)
- Anna Percio
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
- Department of Laboratory Diagnostic and Infectious Diseases, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy
| | - Michela Cicchinelli
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
- Department of Laboratory Diagnostic and Infectious Diseases, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy
| | - Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
| | - Mariagrazia Summo
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
- Department of Laboratory Diagnostic and Infectious Diseases, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
- Department of Laboratory Diagnostic and Infectious Diseases, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy
| |
Collapse
|
5
|
Seo DH, Huh YH, Cheong HK, Kim EH, Lim JS, Lee MJ, Lee D, Ryu KS. Mechanism of Methylene Blue Inducing the Disulfide Bond Formation of Tubulin-Associated Unit Proteins. JACS AU 2024; 4:2451-2455. [PMID: 39055157 PMCID: PMC11267549 DOI: 10.1021/jacsau.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 07/27/2024]
Abstract
Methylene blue (MB) has recently completed a Phase-3 clinical trial as leuco-methylthioninium (LMT) bis(hydromethanesulfonate) for treating Alzheimer's disease. Herein, we investigated the mechanism underlying the MB inhibition of tubulin-associated unit (tau) aggregation by focusing on tau monomers. We found that MB causes disulfide bond formation, resulting in strong nuclear magnetic resonance chemical shift perturbations in a large area of tau proteins. The oxidized form of MB, namely methylthioninium (MT+), specifically catalyzed the oxidation of cysteine residues in tau proteins to form disulfide bonds directly using O2. This process is independent of the MT+-to-LMT redox cycle. Moreover, MT+ preferentially oxidized C291 and C322 in the lysine-rich R2 and R3 domains. Under in vivo brain physoxia conditions, LMT may convert to MT+, possibly interfering with tau fibrillation via disulfide bond formation.
Collapse
Affiliation(s)
- Dong-Hyun Seo
- Ochang
center, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
- KBSI
School of Bioscience, University of Science
and Technology, 162 Yeongudanji-Ro,
Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
| | - Yang Hoon Huh
- Ochang
center, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
| | - Hae-Kap Cheong
- Ochang
center, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
| | - Eun-Hee Kim
- Ochang
center, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
| | - Jong-Soo Lim
- Novorex
Inc., 240 Pangyoyeok-Ro, Seongnam-Si, Gyeonggi-Do 13493, South Korea
| | - Min Jung Lee
- Dong-A
ST Research Institute, Yongin-Si, Gyeonggi-Do 17073, South Korea
| | - Donghan Lee
- Ochang
center, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
| | - Kyoung-Seok Ryu
- Ochang
center, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
- KBSI
School of Bioscience, University of Science
and Technology, 162 Yeongudanji-Ro,
Ochang-Eup, Cheongju-Si, Chungcheongbuk-Do 28119, South Korea
| |
Collapse
|
6
|
Heath SG, Gray SG, Hamzah EM, O'Connor KM, Bozonet SM, Botha AD, de Cordovez P, Magon NJ, Naughton JD, Goldsmith DLW, Schwartfeger AJ, Sunde M, Buell AK, Morris VK, Göbl C. Amyloid formation and depolymerization of tumor suppressor p16 INK4a are regulated by a thiol-dependent redox mechanism. Nat Commun 2024; 15:5535. [PMID: 38951545 PMCID: PMC11217399 DOI: 10.1038/s41467-024-49581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
The conversion of a soluble protein into polymeric amyloid structures is a process that is poorly understood. Here, we describe a fully redox-regulated amyloid system in which cysteine oxidation of the tumor suppressor protein p16INK4a leads to rapid amyloid formation. We identify a partially-structured disulfide-bonded dimeric intermediate species that subsequently assembles into fibrils. The stable amyloid structures disassemble when the disulfide bond is reduced. p16INK4a is frequently mutated in cancers and is considered highly vulnerable to single-point mutations. We find that multiple cancer-related mutations show increased amyloid formation propensity whereas mutations stabilizing the fold prevent transition into amyloid. The complex transition into amyloids and their structural stability is therefore strictly governed by redox reactions and a single regulatory disulfide bond.
Collapse
Affiliation(s)
- Sarah G Heath
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Shelby G Gray
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Emilie M Hamzah
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Karina M O'Connor
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Stephanie M Bozonet
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Alex D Botha
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Pierre de Cordovez
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Nicholas J Magon
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Jennifer D Naughton
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Dylan L W Goldsmith
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Margaret Sunde
- School of Medical Sciences and Sydney Nano, The University of Sydney, Sydney, Australia
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Vanessa K Morris
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
| | - Christoph Göbl
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
7
|
Eisenberg D, Hou K, Ge P, Sawaya M, Dolinsky J, Yang Y, Jiang YX, Lutter L, Boyer D, Cheng X, Pi J, Zhang J, Lu J, Yang S, Yu Z, Feigon J. How short peptides can disassemble ultra-stable tau fibrils extracted from Alzheimer's disease brain by a strain-relief mechanism. RESEARCH SQUARE 2024:rs.3.rs-4152095. [PMID: 38766197 PMCID: PMC11100904 DOI: 10.21203/rs.3.rs-4152095/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Reducing fibrous aggregates of protein tau is a possible strategy for halting progression of Alzheimer's dis-ease (AD). Previously we found that in vitro the D-peptide D-TLKIVWC disassembles tau fibrils from AD brains (AD-tau) into benign segments with no energy source present beyond ambient thermal agitation. This disassembly by a short peptide was unexpected, given that AD-tau is sufficiently stable to withstand disas-sembly in boiling SDS detergent. To consider D peptide-mediated disassembly as a potential therapeutic for AD, it is essential to understand the mechanism and energy source of the disassembly action. We find as-sembly of D-peptides into amyloid-like fibrils is essential for tau fibril disassembly. Cryo-EM and atomic force microscopy reveal that these D-peptide fibrils have a right-handed twist and embrace tau fibrils which have a left-handed twist. In binding to the AD-tau fibril, the oppositely twisted D-peptide fibril produces a strain, which is relieved by the disassembly of both fibrils. This strain-relief mechanism appears to operate in other examples of amyloid fibril disassembly and provides a new direction for the development of first-in-class therapeutics for amyloid diseases.
Collapse
Affiliation(s)
| | - Ke Hou
- University of California, Los Angeles
| | - Peng Ge
- University of California, Los Angeles
| | | | | | - Yuan Yang
- University of California Los Angeles
| | | | | | | | | | - Justin Pi
- University of California, Los Angeles
| | | | - Jiahui Lu
- University of California, Los Angeles
| | - Shixin Yang
- Janelia Research Campus, Howard Hughes Medical Institute
| | | | | |
Collapse
|
8
|
Hou K, Ge P, Sawaya MR, Dolinsky JL, Yang Y, Jiang YX, Lutter L, Boyer DR, Cheng X, Pi J, Zhang J, Lu J, Yang S, Yu Z, Feigon J, Eisenberg DS. How short peptides can disassemble ultra-stable tau fibrils extracted from Alzheimer's disease brain by a strain-relief mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586668. [PMID: 38585812 PMCID: PMC10996594 DOI: 10.1101/2024.03.25.586668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Reducing fibrous aggregates of protein tau is a possible strategy for halting progression of Alzheimer's disease (AD). Previously we found that in vitro the D-peptide D-TLKIVWC disassembles tau fibrils from AD brains (AD-tau) into benign segments with no energy source present beyond ambient thermal agitation. This disassembly by a short peptide was unexpected, given that AD-tau is sufficiently stable to withstand disassembly in boiling SDS detergent. To consider D peptide-mediated disassembly as a potential therapeutic for AD, it is essential to understand the mechanism and energy source of the disassembly action. We find assembly of D-peptides into amyloid-like fibrils is essential for tau fibril disassembly. Cryo-EM and atomic force microscopy reveal that these D-peptide fibrils have a right-handed twist and embrace tau fibrils which have a left-handed twist. In binding to the AD-tau fibril, the oppositely twisted D-peptide fibril produces a strain, which is relieved by disassembly of both fibrils. This strain-relief mechanism appears to operate in other examples of amyloid fibril disassembly and provides a new direction for the development of first-in-class therapeutics for amyloid diseases.
Collapse
|
9
|
Kalyaanamoorthy S, Opare SK, Xu X, Ganesan A, Rao PPN. Post-Translational Modifications in Tau and Their Roles in Alzheimer's Pathology. Curr Alzheimer Res 2024; 21:24-49. [PMID: 38623984 DOI: 10.2174/0115672050301407240408033046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Microtubule-Associated Protein Tau (also known as tau) has been shown to accumulate into paired helical filaments and neurofibrillary tangles, which are known hallmarks of Alzheimer's disease (AD) pathology. Decades of research have shown that tau protein undergoes extensive post-translational modifications (PTMs), which can alter the protein's structure, function, and dynamics and impact the various properties such as solubility, aggregation, localization, and homeostasis. There is a vast amount of information describing the impact and role of different PTMs in AD pathology and neuroprotection. However, the complex interplay between these PTMs remains elusive. Therefore, in this review, we aim to comprehend the key post-translational modifications occurring in tau and summarize potential connections to clarify their impact on the physiology and pathophysiology of tau. Further, we describe how different computational modeling methods have helped in understanding the impact of PTMs on the structure and functions of the tau protein. Finally, we highlight the tau PTM-related therapeutics strategies that are explored for the development of AD therapy.
Collapse
Affiliation(s)
| | - Stanley Kojo Opare
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Xiaoxiao Xu
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Aravindhan Ganesan
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Praveen P N Rao
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
10
|
Gastrointestinal Tract Stabilized Protein Delivery Using Disulfide Thermostable Exoshell System. Int J Mol Sci 2022; 23:ijms23179856. [PMID: 36077259 PMCID: PMC9456531 DOI: 10.3390/ijms23179856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Thermostable exoshells (tES) are engineered proteinaceous nanoparticles used for the rapid encapsulation of therapeutic proteins/enzymes, whereby the nanoplatform protects the payload from proteases and other denaturants. Given the significance of oral delivery as the preferred model for drug administration, we structurally improved the stability of tES through multiple inter-subunit disulfide linkages that were initially absent in the parent molecule. The disulfide-linked tES, as compared to tES, significantly stabilized the activity of encapsulated horseradish peroxidase (HRP) at acidic pH and against the primary human digestive enzymes, pepsin, and trypsin. Furthermore, the disulfide-linked tES (DS-tES) exhibited significant intestinal permeability as evaluated using Caco2 cells. In vivo bioluminescence assay showed that encapsulated Renilla luciferase (rluc) was ~3 times more stable in mice compared to the free enzyme. DS-tES collected mice feces had ~100 times more active enzyme in comparison to the control (free enzyme) after 24 h of oral administration, demonstrating strong intestinal stability. Taken together, the in vitro and in vivo results demonstrate the potential of DS-tES for intraluminal and systemic oral drug delivery applications.
Collapse
|
11
|
Maina MB, Al-Hilaly YK, Oakley S, Burra G, Khanom T, Biasetti L, Mengham K, Marshall K, Harrington CR, Wischik CM, Serpell LC. Dityrosine Cross-links are Present in Alzheimer's Disease-derived Tau Oligomers and Paired Helical Filaments (PHF) which Promotes the Stability of the PHF-core Tau (297-391) In Vitro. J Mol Biol 2022; 434:167785. [PMID: 35961386 DOI: 10.1016/j.jmb.2022.167785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
Abstract
A characteristic hallmark of Alzheimer's Disease (AD) is the pathological aggregation and deposition of tau into paired helical filaments (PHF) in neurofibrillary tangles (NFTs). Oxidative stress is an early event during AD pathogenesis and is associated with tau-mediated AD pathology. Oxidative environments can result in the formation of covalent dityrosine crosslinks that can increase protein stability and insolubility. Dityrosine cross-linking has been shown in Aβ plaques in AD and α-synuclein aggregates in Lewy bodies in ex vivo tissue sections, and this modification may increase the insolubility of these aggregates and their resistance to degradation. Using the PHF-core tau fragment (residues 297 - 391) as a model, we have previously demonstrated that dityrosine formation traps tau assemblies to reduce further elongation. However, it is unknown whether dityrosine crosslinks are found in tau deposits in vivo in AD and its relevance to disease mechanism is unclear. Here, using transmission electron microscope (TEM) double immunogold-labelling, we reveal that neurofibrillary NFTs in AD are heavily decorated with dityrosine crosslinks alongside tau. Single immunogold-labelling TEM and fluorescence spectroscopy revealed the presence of dityrosine on AD brain-derived tau oligomers and fibrils. Using the tau (297-391) PHF-core fragment as a model, we further showed that prefibrillar tau species are more amenable to dityrosine crosslinking than tau fibrils. Dityrosine formation results in heat and SDS stability of oxidised prefibrillar and fibrillar tau assemblies. This finding has implications for understanding the mechanism governing the insolubility and toxicity of tau assemblies in vivo.
Collapse
Affiliation(s)
- Mahmoud B Maina
- Sussex Neuroscience, School of Life Sciences, University of Sussex UK; Biomedical Science Research and Training Centre, Yobe State University, Nigeria. https://twitter.com/mahmoudbukar
| | - Youssra K Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex UK; Chemistry Department, College of Sciences, Mustansiriyah University, Baghdad, Iraq
| | - Sebastian Oakley
- Sussex Neuroscience, School of Life Sciences, University of Sussex UK
| | - Gunasekhar Burra
- Sussex Neuroscience, School of Life Sciences, University of Sussex UK; Analytical Development Biologics, Biopharmaceutical Development, Syngene International Limited, Biocon Park, Bommasandra Jigani Link Road, Bangalore 560009, India
| | - Tahmida Khanom
- Sussex Neuroscience, School of Life Sciences, University of Sussex UK
| | - Luca Biasetti
- Sussex Neuroscience, School of Life Sciences, University of Sussex UK
| | - Kurtis Mengham
- Sussex Neuroscience, School of Life Sciences, University of Sussex UK
| | - Karen Marshall
- Sussex Neuroscience, School of Life Sciences, University of Sussex UK
| | - Charles R Harrington
- Institute of Medical Sciences, University of Aberdeen, UK; TauRx Therapeutics Ltd, Aberdeen, UK
| | - Claude M Wischik
- Institute of Medical Sciences, University of Aberdeen, UK; TauRx Therapeutics Ltd, Aberdeen, UK
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex UK.
| |
Collapse
|
12
|
Hatters DM. Flipping the switch: How cysteine oxidation directs tau amyloid conformations. J Biol Chem 2021; 297:101309. [PMID: 34656563 PMCID: PMC8545682 DOI: 10.1016/j.jbc.2021.101309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/15/2022] Open
Abstract
Tau can adopt distinct fibril conformations in different human neurodegenerative diseases, which may invoke distinct pathological mechanisms. In a recent issue, Weismiller et al. showed that intramolecular disulfide links between cys291 and cys322 for a specific tau isoform containing four microtubule-binding repeats direct the formation of a structurally distinct amyloid polymorph. These findings have implications in how oxidative stress can flip switches of tau polymorphism in these diseases.
Collapse
Affiliation(s)
- Danny M Hatters
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|