1
|
Jiang D, Li Y. Unraveling the immunosuppressive microenvironment of glioblastoma and advancements in treatment. Front Immunol 2025; 16:1590781. [PMID: 40443668 PMCID: PMC12119497 DOI: 10.3389/fimmu.2025.1590781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/18/2025] [Indexed: 06/02/2025] Open
Abstract
Glioblastoma, the most common and aggressive primary brain tumor, remains a significant challenge in oncology due to its immunosuppressive tumor microenvironment (TME). This review summarizes the complex interplay of immune cells and cytokines within the TME, which contribute to immune evasion and tumor progression. We further emphasize the synergistic crosstalk among these components and how it shapes therapeutic vulnerability. Besides, we highlight recent advancements in immunotherapy, including immune checkpoint inhibitors, CAR-T cell therapy, NK cell therapy, oncolytic viruses, and vaccine-based strategies. Despite promising preclinical and clinical results, overcoming the immunosuppressive TME remains a critical hurdle. This review underscores the potential of targeting the TME to enhance therapeutic outcomes in glioblastoma.
Collapse
Affiliation(s)
| | - Yunqian Li
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Sharma A, Zalejski J, Bendre SV, Kavrokova S, Hasdemir HS, Ozgulbas DG, Sun J, Pathmasiri KC, Shi R, Aloulou A, Berkley K, Delisle CF, Wang Y, Weisser E, Buweneka P, Pierre-Jacques D, Mukherjee S, Abbasi DA, Lee D, Wang B, Gevorgyan V, Cologna SM, Tajkhorshid E, Nelson ER, Cho W. Cholesterol-targeting Wnt-β-catenin signaling inhibitors for colorectal cancer. Nat Chem Biol 2025:10.1038/s41589-025-01870-y. [PMID: 40240631 DOI: 10.1038/s41589-025-01870-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/28/2025] [Indexed: 04/18/2025]
Abstract
Most persons with colorectal cancer (CRC) carry adenomatous polyposis coli (APC) truncation leading to aberrant Wnt-β-catenin signaling; however, effective targeted therapy for them is lacking as the mechanism by which APC truncation drives CRC remains elusive. Here, we report that the cholesterol level in the inner leaflet of the plasma membrane (IPM) is elevated in all tested APC-truncated CRC cells, driving Wnt-independent formation of Wnt signalosomes through Dishevelled (Dvl)-cholesterol interaction. Cholesterol-Dvl interaction inhibitors potently blocked β-catenin signaling in APC-truncated CRC cells and suppressed their viability. Because of low IPM cholesterol level and low Dvl expression and dependence, normal cells including primary colon epithelial cells were not sensitive to these inhibitors. In vivo testing with a xenograft mouse model showed that our inhibitors effectively suppressed truncated APC-driven tumors without causing intestinal toxicity. Collectively, these results suggest that the most common type of CRC could be effectively and safely treated by blocking the cholesterol-Dvl-β-catenin signaling axis.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Julian Zalejski
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Shruti Vijay Bendre
- Department of Molecular and Integrative Physiology, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Simona Kavrokova
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Hale Siir Hasdemir
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Defne Gorgun Ozgulbas
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jiachen Sun
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | | | - Ruicheng Shi
- Department of Comparative Biosciences, Division of Nutritional Sciences, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ahmed Aloulou
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Kyli Berkley
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Charles F Delisle
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Young Wang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Erin Weisser
- Department of Molecular and Integrative Physiology, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Pawanthi Buweneka
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | | | - Sayandeb Mukherjee
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Diana A Abbasi
- Department of Neurogenetics and Translational Neuroscience, Rush University, Chicago, IL, USA
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Bo Wang
- Department of Comparative Biosciences, Division of Nutritional Sciences, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | | | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Sun J, Zalejski J, Song S, Sharma A, Wang W, Hu Y, Lo WT, Koch PA, Singh J, Singaram I, An B, Zhao JJ, Gong LW, Haucke V, Gao R, Cho W. PI(3,5)P 2 Controls the Signaling Activity of Class I PI3K. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.01.25.525550. [PMID: 36747849 PMCID: PMC9900776 DOI: 10.1101/2023.01.25.525550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
3-Phosphoinositides are ubiquitous cellular lipids that play pivotal regulatory roles in health and disease. Among 3-phosphoinositides, phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) remains the least understood species in terms of its spatiotemporal dynamics and physiological function due to the lack of a specific sensor that allows spatiotemporally resolved quantitative imaging of PI(3,5)P 2 . Using a newly developed ratiometric PI(3,5)P 2 sensor engineered from the C-terminal SH2 domain of Class I phosphoinositide 3-kinases (PI3K)-p85α subunit we demonstrate that a unique pool of PI(3,5)P 2 is generated on lysosomes and late endosomes in response to growth factor stimulation. This PI(3,5)P 2 , the formation of which is mediated sequentially by Class II PI3KC2β and PIKfyve, plays a crucial role in terminating the activity of growth factor-stimulated Class I PI3K, one of the most frequently mutated proteins in cancer, via specific interaction with its regulatory p85 subunit. A small molecule inhibitor of p85α-PI(3,5)P 2 binding specifically blocks the feedback inhibition of Class I PI3K by PI(3,5)P 2 and thus serves as a PI3K activator that promotes neurite growth. Furthermore, cancer-causing mutations of the Class I PI3K-p85 subunit inhibit p85-PI(3,5)P 2 interaction and thereby induce sustained activation of Class I PI3K. Our results unravel a hitherto unknown spatiotemporally specific regulatory function of PI(3,5)P 2 that links Class I and II PI3Ks and modulates the magnitude of PI3K-mediated growth factor signaling. These results also suggest new therapeutic possibilities for treating cancer patients with p85 mutations and promoting wound healing and tissue regeneration.
Collapse
|
4
|
Nian Q, Liu R, Zeng J. Unraveling the pathogenesis of myelosuppression and therapeutic potential of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155810. [PMID: 38905848 DOI: 10.1016/j.phymed.2024.155810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Myelosuppression is a serious and common complication of radiotherapy and chemotherapy in cancer patients and is characterized by a reduction of peripheral blood cells. This condition not only compromises the efficacy of treatment but also increases the risk of patient death. Natural products are emerging as promising adjuvant therapies due to their antioxidant properties, ability to modulate immune responses, and capacity to stimulate haematopoietic stem cell proliferation. These therapies demonstrate significant potential in ameliorating myelosuppression. METHODS A systematic review of the literature was performed utilizing the search terms "natural products," "traditional Chinese medicine," and "myelosuppression" across prominent databases, including Google Scholar, PubMed, and Web of Science. All pertinent literature was meticulously analysed and summarized. The objective of this study was to perform a pertinent analysis to elucidate the mechanisms underlying myelosuppression and to categorize and synthesize information on natural products and traditional Chinese medicines employed for the therapeutic management of myelosuppression. RESULTS Myelosuppression resulting from drug and radiation exposure, viral infections, and exosomes is characterized by multiple underlying mechanisms involving immune factors, target genes, and the activation of diverse signalling pathways, including the (TGF-β)/Smad pathway. Recently, traditional Chinese medicine monomers and compounds, including more than twenty natural products, such as Astragalus and Angelica, have shown promising potential as therapeutics for ameliorating myelosuppression. These natural products exert their effects by modulating haematopoietic stem cells, immune factors, and critical signalling pathways. CONCLUSIONS Understanding the various mechanisms of myelosuppression facilitates the exploration of natural product therapies and biological target identification for evaluating herbal medicine efficacy. This study aimed to establish a foundation for the clinical application of natural products and provide methodologies and technical support for exploring additional treatments for myelosuppression.
Collapse
Affiliation(s)
- Qing Nian
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Rongxing Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
5
|
Alfaro E, Casitas R, Díaz-García E, García-Tovar S, Galera R, Torres-Vargas M, Fernández-Velilla M, López-Fernández C, Añón JM, Quintana-Díaz M, García-Río F, Cubillos-Zapata C. TGF-β1 overexpression in severe COVID-19 survivors and its implications for early-phase fibrotic abnormalities and long-term functional impairment. Front Immunol 2024; 15:1401015. [PMID: 39281687 PMCID: PMC11393737 DOI: 10.3389/fimmu.2024.1401015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction In post-COVID survivors, transforming growth factor-beta-1 (TGF-β1) might mediate fibroblast activation, resulting in persistent fibrosis. Methods In this study, 82 survivors of COVID-19-associated ARDS were examined at 6- and 24-months post-ICU discharge. At 6-months, quantitative CT analysis of lung attenuation was performed and active TGF-β1 was measured in blood and exhaled breath condensate (EBC). Results At 6-months of ICU-discharge, patients with reduced DmCO/alveolar volume ratio exhibited higher plasma and EBC levels of active TGF-β1. Plasma TGF-β1 levels were elevated in dyspneic survivors and directly related to the high-attenuation lung volume. In vitro, plasma and EBC from survivors induced profibrotic changes in human primary fibroblasts in a TGF-β receptor-dependent manner. Finally, at 6-months, plasma and EBC active TGF-β1 levels discriminated patients who, 24-months post-ICU-discharge, developed gas exchange impairment. Discussion TGF-β1 pathway plays a pivotal role in the early-phase fibrotic abnormalities in COVID-19-induced ARDS survivors, with significant implications for long-term functional impairment.
Collapse
Affiliation(s)
- Enrique Alfaro
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Raquel Casitas
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Elena Díaz-García
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Sara García-Tovar
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Raúl Galera
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - María Torres-Vargas
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | | | - Cristina López-Fernández
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - José M. Añón
- Department of Intensive Medicine, La Paz University Hospital, Madrid, Spain
| | - Manuel Quintana-Díaz
- Department of Intensive Medicine, La Paz University Hospital, Madrid, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Francisco García-Río
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Carolina Cubillos-Zapata
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| |
Collapse
|
6
|
Miyazawa K, Itoh Y, Fu H, Miyazono K. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem 2024; 300:107256. [PMID: 38569937 PMCID: PMC11063908 DOI: 10.1016/j.jbc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-β type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-β family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-β family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-β, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
7
|
Liang Q, Hu Y, Yuan Q, Yu M, Wang H, Zhao B. MET exon 14 skipping mutation drives cancer progression and recurrence via activation of SMAD2 signalling. Br J Cancer 2024; 130:380-393. [PMID: 38110666 PMCID: PMC10844616 DOI: 10.1038/s41416-023-02495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND c-Met encoded by the proto-oncogene MET, also known as hepatocyte growth factor (HGF) receptor, plays a crucial role in cellular processes. MET exon 14 skipping alteration (METΔ14EX) is a newly discovered MET mutation. SMAD2 is an important downstream transcription factor in TGF-β pathway. Unfortunately, the mechanisms by which METΔ14EX leads to oncogenic transformation are scarcely understood. The relationship between METΔ14EX and SMAD2 has not been studied yet. METHODS We generate METΔ14EX models by CRISPR-Cas9. In vitro transwell, wound-healing, soft-agar assay, in vivo metastasis and subcutaneous recurrence assay were used to study the role of METΔ14EX in tumour progression. RNA-seq, Western blotting, co-immunoprecipitation (CO-IP) and immunofluorescent were performed to explore the interaction between c-Met and SMAD2. RESULTS Our results demonstrated that METΔ14EX, independent of HGF, can prolong the constitutive activation of c-Met downstream signalling pathways by impeding c-Met degradation and facilitating tumour metastasis and recurrence. Meanwhile, METΔ14EX strengthens the interaction between c-Met and SMAD2, promoting SMAD2 phosphorylation. Therapeutically, MET inhibitor crizotinib impedes METΔ14EX-mediated tumour metastasis by decreasing SMAD2 phosphorylation. CONCLUSIONS These data elucidated the previously unrecognised role of METΔ14EX in cancer progression via activation of SMAD2 independent of TGF-β, which helps to develop more effective therapies for such patients. METΔ14EX alteration significantly triggers tumour progression via activation of SMAD2 signalling that are involved in activating tumour invasion, metastasis and recurrence. On the left, in the MET wild-type (METWT), the juxtamembrane (JM) domain is involved in the regulation of tyrosine kinase activity, receptor degradation, and caspase cleavage. On the right, the METΔ14EX mutation leads to the loss of the juxtamembrane domain, resulting in an abnormal MET protein lacking a CBL-binding site. This causes the accumulation of truncated MET receptors followed by constitutive activation of the MET signalling pathway. Thus, the METΔ14EX-mutated protein has strong binding and phosphorylation to SMAD2, which results in the phosphorylation of a large number of SMAD2/3 proteins that combine with SMAD4 to form a complex in the nucleus, activating downstream signalling pathways, such as EMT and ECM remodelling, resulting in tumour progression and recurrence. TF transcription factor.
Collapse
Affiliation(s)
- Qiaoyan Liang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yajun Hu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qingyun Yuan
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Min Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Huijie Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China.
| | - Bing Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Tsujimura N, Ogino T, Hiraki M, Kai T, Yamamoto H, Hirose H, Yokoyama Y, Sekido Y, Hata T, Miyoshi N, Takahashi H, Uemura M, Mizushima T, Doki Y, Eguchi H, Yamamoto H. Super Carbonate Apatite-miR-497a-5p Complex Is a Promising Therapeutic Option against Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2023; 16:618. [PMID: 37111375 PMCID: PMC10146939 DOI: 10.3390/ph16040618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The incidence of inflammatory bowel disease (IBD) is increasing worldwide. It is reported that TGF-β/Smad signal pathway is inactivated in patients with Crohn's disease by overexpression of Smad 7. With expectation of multiple molecular targeting by microRNAs (miRNAs), we currently attempted to identify certain miRNAs that activate TGF-β/Smad signal pathway and aimed to prove in vivo therapeutic efficacy in mouse model. Through Smad binding element (SBE) reporter assays, we focused on miR-497a-5p. This miRNA is common between mouse and human species and enhanced the activity of TGF-β/Smad signal pathway, decreased Smad 7 and/or increased phosphorylated Smad 3 expression in non-tumor cell line HEK293, colorectal cancer cell line HCT116 and mouse macrophage J774a.1 cells. MiR-497a-5p also suppressed the production of inflammatory cytokines TNF-α, IL-12p40, a subunit of IL-23, and IL-6 when J774a.1 cells were stimulated by lipopolysaccharides (LPS). In a long-term therapeutic model for mouse dextran sodium sulfate (DSS)-induced colitis, systemic delivery of miR-497a-5p load on super carbonate apatite (sCA) nanoparticle as a vehicle restored epithelial structure of the colonic mucosa and suppressed bowel inflammation compared with negative control miRNA treatment. Our data suggest that sCA-miR-497a-5p may potentially have a therapeutic ability against IBD although further investigation is essential.
Collapse
Affiliation(s)
- Naoto Tsujimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
| | - Masayuki Hiraki
- Department of Gastroenterological Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki 660-8511, Japan
| | - Taisei Kai
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City 565-0871, Japan
| | - Hiroyuki Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City 565-0871, Japan
| | - Haruka Hirose
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City 565-0871, Japan
| | - Yuki Sekido
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
| | - Tsuyoshi Hata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka Police Hospital, Osaka 543-0035, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City 565-0871, Japan
| |
Collapse
|
9
|
Mendez PL, Obendorf L, Jatzlau J, Burdzinski W, Reichenbach M, Nageswaran V, Haghikia A, Stangl V, Hiepen C, Knaus P. Atheroprone fluid shear stress-regulated ALK1-Endoglin-SMAD signaling originates from early endosomes. BMC Biol 2022; 20:210. [PMID: 36171573 PMCID: PMC9520843 DOI: 10.1186/s12915-022-01396-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fluid shear stress enhances endothelial SMAD1/5 signaling via the BMP9-bound ALK1 receptor complex supported by the co-receptor Endoglin. While moderate SMAD1/5 activation is required to maintain endothelial quiescence, excessive SMAD1/5 signaling promotes endothelial dysfunction. Increased BMP signaling participates in endothelial-to-mesenchymal transition and inflammation culminating in vascular diseases such as atherosclerosis. While the function of Endoglin has so far been described under picomolar concentrations of BMP9 and short-term shear application, we investigated Endoglin under physiological BMP9 and long-term pathophysiological shear conditions. RESULTS We report here that knock-down of Endoglin leads to exacerbated SMAD1/5 phosphorylation and atheroprone gene expression profile in HUVECs sheared for 24 h. Making use of the ligand-trap ALK1-Fc, we furthermore show that this increase is dependent on BMP9/10. Mechanistically, we reveal that long-term exposure of ECs to low laminar shear stress leads to enhanced Endoglin expression and endocytosis of Endoglin in Caveolin-1-positive early endosomes. In these endosomes, we could localize the ALK1-Endoglin complex, labeled BMP9 as well as SMAD1, highlighting Caveolin-1 vesicles as a SMAD signaling compartment in cells exposed to low atheroprone laminar shear stress. CONCLUSIONS We identified Endoglin to be essential in preventing excessive activation of SMAD1/5 under physiological flow conditions and Caveolin-1-positive early endosomes as a new flow-regulated signaling compartment for BMP9-ALK1-Endoglin signaling axis in atheroprone flow conditions.
Collapse
Affiliation(s)
- Paul-Lennard Mendez
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- International Max-Planck Research School for Biology and Computation, Berlin, Germany
| | - Leon Obendorf
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Jerome Jatzlau
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Wiktor Burdzinski
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
- Berlin School for Regenerative Therapies, Berlin, Germany
| | - Maria Reichenbach
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Vanasa Nageswaran
- Charité-Universitätsmedizin Berlin, Klinik für Kardiologie, Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Arash Haghikia
- Charité-Universitätsmedizin Berlin, Klinik für Kardiologie, Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Berlin, Germany
| | - Verena Stangl
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Christian Hiepen
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
- Faculty of Engineering and Natural Sciences, Westphalian University of Applied Sciences, Recklinghausen, Germany
| | - Petra Knaus
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany.
- International Max-Planck Research School for Biology and Computation, Berlin, Germany.
- Berlin School for Regenerative Therapies, Berlin, Germany.
| |
Collapse
|
10
|
Pham H, Singaram I, Sun J, Ralko A, Puckett M, Sharma A, Vrielink A, Cho W. Development of a novel spatiotemporal depletion system for cellular cholesterol. J Lipid Res 2022; 63:100178. [PMID: 35143844 PMCID: PMC8953671 DOI: 10.1016/j.jlr.2022.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/30/2022] Open
Abstract
Cholesterol is an essential component of mammalian cell membranes whose subcellular concentration and function are tightly regulated by de novo biosynthesis, transport, and storage. Although recent reports have suggested diverse functions of cellular cholesterol in different subcellular membranes, systematic investigation of its site-specific roles has been hampered by the lack of a methodology for spatiotemporal manipulation of cellular cholesterol levels. Here, we report the development of a new cholesterol depletion system that allows for spatiotemporal manipulation of intracellular cholesterol levels. This system utilizes a genetically encoded cholesterol oxidase whose intrinsic membrane binding activity is engineered in such a way that its membrane targeting can be controlled in a spatiotemporally specific manner via chemically induced dimerization. In combination with in situ quantitative imaging of cholesterol and signaling activity measurements, this system allows for unambiguous determination of site-specific functions of cholesterol in different membranes, including the plasma membrane and the lysosomal membrane.
Collapse
Affiliation(s)
- Ha Pham
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Indira Singaram
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Jiachen Sun
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Arthur Ralko
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Madalyn Puckett
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Ashutosh Sharma
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|